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Abstract

Multi-modal biometric fusion is more accurate and re-
liable compared to recognition using a single biometric
modality. However, most existing fusion approaches neglect
the influence of the qualities of the biometric samples in in-
formation fusion. Our goal is to advance the state-of-the-art
in biometric fusion technology by providing a more univer-
sal and more accurate solution for personal identification
and verification with predictive quality metrics.

In this work, we developed score-level multi-modal fu-
sion algorithms based on predictive quality metrics and em-
ployed them for the task of face and fingerprint biometric
fusion. The causal relationships in the context of the fusion
scenario are modeled by Bayesian Networks. The recogni-
tion/verification decision is then made through probabilistic
inference. Our experiments demonstrated that the proposed
score-level fusion algorithms significantly improve the ver-
ification performance over the methods based on the raw
match score of a single modality (face or fingerprint). Fur-
thermore, the fusion framework with both face and finger-
print image qualities achieves the best verification perfor-
mance and outperforms all other baseline fusion algorithms
tested including other straightforward quality-based fusion
methods.

1. Introduction
Biometric identification has the potential of becoming

an increasingly powerful tool for public safety. How-
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ever it is challenged by the imperfect nature of the image
data, intra-subject variation, inter-subject similarities, and
subject-dependent characteristics [14], especially when the
biometric data is from a single source. These issues can
be overcome by biometric fusion, where multiple biometric
modalities and/or multiple biometric samples are combined
to improve performance by making the best use of all avail-
able biometric technologies and devices.

Generally speaking, there are three major approaches
to biometric fusion: multi-modal, multi-sample, and multi-
algorithm [2]. Multi-modal biometric fusion, where the
recognition is performed on multiple biometric samples ac-
quired from different biometric sources of a subject (e.g.,
face and fingerprint) or from different sensor types (e.g.,
optical sensor and thermal sensor) [2], has received increas-
ing interest and is demonstrated to be more accurate and
reliable compared to recognition performed on a single bio-
metric modality. In addition, it will “make ‘spoofing’ more
difficult” [2]. Furthermore, a biometric system often con-
sists of three levels: data/feature extraction, match score,
and decision making; and fusion can occur at any level [14].

A number of projects have looked at the fusion of mul-
tiple biometric modalities. The modalities studied include
fingerprint, face, iris, palmprint, hand geometry, ear, voice,
and 3D face. A detailed overview on multi-modal biometric
fusion approaches can be found in [14] and [2]. However,
current biometric fusion technologies often suffer in oper-
ational environments where the quality of biometric sam-
ples varies significantly. For example, the acquisition con-
dition affects the fingerprint image quality [16], while intra-
personal variations and imaging conditions (e.g., face pose
and facial expression) affect the facial image quality signifi-
cantly. Recently, biometric quality metrics have been devel-
oped and utilized to improve the performance of biometric
verification [12] and influence the multi-modal biometric
fusion [4, 5, 11, 9, 13].

Our approach is differentiated from most existing work
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by the explicit incorporation of predictive quality metrics
in the fusion process. To do this, we develop a unified
probabilistic framework to introduce and model the rela-
tionships among multiple modalities along with their re-
lationships with their quality assessments. The quality-
based biometric fusion is performed by probabilistic in-
ference through the framework. Specifically, we propose
and investigate two quality-based multi-modal fusion algo-
rithms at the match score level and demonstrate them with
an example of fusing face and fingerprint image samples:
1) fusion with facial image quality and 2) fusion with both
face and fingerprint image qualities. Although Maurer and
Baker [9] also employed a probabilistic network to perform
quality-based multi-modal biometric fusion, they only con-
sider the quality of probe samples by assuming that the
gallery samples have uniformly high quality. In contrast,
we assume that both the probe and gallery sample qualities
may impact matcher performance, so the proposed fusion
frameworks account for both quality values. Furthermore,
quality-related facial image features are explicitly modeled
in our approach, allowing the inference of facial image qual-
ity as a hidden node, utilizing both the quality-related fea-
tures and the match scores.

Experimental results demonstrate that the proposed
score-level face and fingerprint biometric fusion algorithms
improve the biometric verification performance signifi-
cantly compared to methods based solely on raw match
scores of face/fingerprint. Furthermore, we also compare
the proposed algorithms with several other fusion algo-
rithms including other straightforward quality-dependent
multi-modal fusion algorithms and show that the proposed
fusion algorithm with both face and fingerprint image qual-
ities outperforms all the other algorithms for comparison.

2. Score-level Face and Fingerprint Biometric
Fusion with Quality Metrics

2.1. Quality Metrics

Biometric quality assessment has been increasingly used
in various aspects of biometric systems such as rejecting
poor quality samples in the image enrollment process [1],
incorporating quality assessment in the verification pro-
cess [12], predicting algorithm performance [18, 7, 15], and
multi-modal biometric fusion [4, 5, 11, 9, 13]. As described
in [16, 7], the quality of a biometric sample can be defined
as a scalar quantity; and an effective quality metric should
be predictive of the performance of a biometric system such
that high quality biometric samples would result in high
recognition performance given a matching algorithm.

In this work, we employ the NIST Fingerprint Image
Quality (NFIQ) derived by Tabassi et al. [16], where 5 dis-
crete quality levels are defined for the fingerprint images
based on a normalized match score. To assess the quality

Table 1. Nomenclature

fg,a A quality-related image feature vector of a gallery facial image
fp,a A quality-related image feature vector of a probe facial image
qg,a Image quality for a gallery facial image.
qp,a Image quality for a probe facial image.
qg,i Image quality for a gallery fingerprint image.
qp,i Image quality for a probe fingerprint image.
sa Match score for a gallery-probe facial image pair
si Match score for a gallery-probe fingerprint image pair
match Whether the gallery and probe samples belong to same subject

for both fingerprint and face

values for facial image samples, we define the facial image
quality metric as a symmetric normalized match score fol-
lowing the work by Ozay et al. [12] and further discretize
the continuous quality values into 3 discrete levels. These
quality metrics are designed to be predictive of the perfor-
mance of matching algorithms.

2.2. Causal Relationships in Score-level Quality-
based Face and Fingerprint Fusion

There are several key elements involved in a quality-
based face and fingerprint fusion process including quality-
related image features of facial images, image quality for
both probe and gallery facial images, image quality for both
probe and gallery fingerprint images, the match scores for
facial and fingerprint images, and the fact of match/no-
match of the probe and gallery images1. The nomenclature
and terminology that will be used hereafter are listed in Ta-
ble 1. We use subscript a for face and i for fingerprint.

From a Bayesian inference viewpoint, for quality-based
score-level face and fingerprint biometric fusion, there are
three causal relationships among the nine elements defined
in Table 1. First, by assuming that the facial image quality
is affected by the quality-related facial image features, and
thus can be directly derived from the image features, fg,a
and fp,a can be regarded as the causes to generate qg,a and
qp,a, respectively. Second, given a face recognition engine,
the match score of a gallery-probe facial image pair sa is af-
fected by the image qualities of the gallery and probe facial
images (qg,a and qp,a) and the state of match (match/no-
match). Finally, given a fingerprint recognition algorithm,
the match score of a gallery-probe fingerprint image pair si
is affected by the image qualities of the gallery and probe
fingerprint images (qg,i and qp,i) and the state of match
(match/no-match).

These causal relationships can be represented by a graph-
ical model, as shown in Fig. 1. Specifically, we propose to
use a Bayesian Network (BN) to model and learn such rela-
tionships. A BN is a Directed Acyclic Graph that represents
a joint probability distribution among a set of variables. In

1In this work, we do not directly utilize quality-related image features
for fingerprint images since we are using the NFIQ metric.



Figure 1. A graphical model for score-level quality-based face and
fingerprint biometric fusion, where the shaded nodes and the un-
shaded nodes represent measurement nodes and hidden nodes, re-
spectively.

a BN, nodes denote variables and the links among nodes
denote the conditional dependencies among the variables.
The conditional dependency is characterized by the con-
ditional probability associated with each node. As shown
in Fig. 1, the direct links between the nodes represent the
causal relationships described above. The shaded nodes are
measurement nodes (fg,a, fp,a, sa, si, qg,i, and qp,i), whose
states can be obtained through computer vision techniques;
and the unshaded nodes (qg,a, qp,a, and match) are hidden
nodes, whose states are what we will estimate via the model.

2.3. Model Parameterization and Learning

Given the model structure shown in Fig. 1, we need to
define the states for each node, and then parameterize the
model parameter associated with each node. A node X
is parameterized by its conditional probability p(X|pa(X))
given its parents pa(X) or its prior probability p(X) if it
does not have a parent.

Node match has binary states (match ∈ 0, 1) represent-
ing no-match or match of the face and fingerprint gallery-
probe pairs and is parameterized by its prior probability
p(match). If match = 1, the gallery and probe samples
belong to the same subject for both fingerprint and face.

The quality qg,i for the gallery fingerprint image has
Ki = 5 discrete states as in [16], where “1” represents the
highest quality level and “5” represents the lowest quality
level. It is parameterized by its prior probability p(qg,i).
The states of qp,i are defined and p(qp,i) is parameterized
likewise for the quality of the probe fingerprint image.

The continuous vector fg,a contains the quality-related
image features for the gallery facial image and parameter-
ized by its prior probability p(fg,a). The quality-related im-
age features can be coordinates of a set of facial landmarks,
PCA shape coefficients of a facial shape, and/or PCA ap-
pearance coefficients of a face region. The quality-related
image feature vector fg,a is assumed to satisfy a multivariate
Gaussian distribution, which is required by the BN imple-
mentation (Bayes Net Toolbox for Matlab [10]) used in this

work, such that:

p(fg,a) = (2π)−
dfg,a

2 |Σfg,a
|− 1

2 exp(−
γ2
fg,a

2
) (1)

where dfg,a is the dimension of vector fg,a, and parameter
γ2
fg,a

is defined as a Mahalanobis distance

γ2
fg,a

= (fg,a − f̄g,a)TΣ−1
fg,a

(fg,a − f̄g,a) (2)

with the corresponding mean vector f̄g,a and covariance ma-
trix Σfg,a . The states of fp,a are defined and p(fp,a) is pa-
rameterized similarly for the probe facial image.

The image quality qg,a for the gallery facial image can
be defined as a continuous variable or be discretized into
several discrete states. In this work, we employ discrete
image qualities for facial image samples since discrete fin-
gerprint image qualities are used. Given its parent fg,a, qg,a
is parameterized by p(qg,a|fg,a). For qg,a with Ka possi-
ble discrete states2, p(qg,a|fg,a) is defined as a multinomial
logit function defined as follows:

p(qg,a = k|fg,a) =
exp(Wgk × fg,a + bgk)∑Ka

k=1 exp(Wgk × fg,a + bg,k)
(3)

where qg,a = k means qg,a is at its kth state with k ∈
{1, ...,Ka}; Wgk and bgk are model parameters that should
be learned. Similarly, we define the states of qp,a and pa-
rameterize p(qp,a|fp,a) for the probe facial image quality.

Match scores sa and si are continuous variables
and can be parameterized by p(sa|qg,a, qp,a,match)
and p(si|qg,i, qp,i,match), respectively. However,
p(sa|qg,a, qp,a,match) and p(si|qg,i, qp,i,match) are
generally not well-modeled by parametric distributions
apparently in Figs. 6 and 7. Hence, we discretize the match
scores into discrete numbers such that sa and si have
Na and Ni discrete states, respectively. Note that in the
choice of Na or Ni there is a tradeoff between distribution
modeling accuracy and the amount of required training
data.

Given the model structure and the definitions of the
model parameters, we will learn the model parameters as-
sociated with each node given a set of training data. Since
we can obtain training data for all nodes, learning the model
parameters can be performed by Maximum Likelihood Es-
timation (MLE).

2.4. Fusion through Probabilistic Inference
Once the measurement nodes (fg,a, fp,a, qg,i, qp,i, sa,

and si) are observed, we can perform the quality-based face
and fingerprint score-level fusion through probabilistic in-
ference via the model as shown in Fig. 1. The decision for

2In this work, Ka = 3 representing three facial image quality levels,
where “3” represents the highest quality level and “1” represents the lowest
quality level.



match or no-match can be made by maximizing the proba-
bility of match given the states of the measurement nodes
p(match|fg,a, fp,a, qg,i, qp,i, sa, si).

match∗ = argmax
match

p(match|fg,a, fp,a, qg,i, qp,i, sa, si) (4)

Based on the conditional independence encoded in the
BN, p(match|fg,a, fp,a, qg,i, qp,i, sa, si) can be factored as
follows:
p(match|fg,a, fp,a, qg,i, qp,i, sa, si) (5)

=

Ka∑
kg=1

Ka∑
kp=1

p(match, qg,a, qp,a|fg,a, fp,a, qg,i, qp,i, sa, si)

=

Ka∑
kg=1

Ka∑
kp=1

c×p(fg,a)×p(qg,a|fg,a)×p(fp,a)×p(qp,a|fp,a)×p(match)

×p(qg,i)×p(qp,i)×p(sa|qg,a, qp,a, match)×p(si|qg,i, qp,i, match)

where c is a normalization factor. The factorized probabili-
ties in Eq. 5 are the conditional probabilities as discussed in
the previous section.

In addition to estimating the state of match, we can also
assess the image qualities of gallery and probe facial im-
ages by maximizing p(qg,a|fg,a, fp,a, qg,i, qp,i, sa, si) and
p(qp,a|fg,a, fp,a, qg,i, qp,i, sa, si) as follows:

p(qg,a|fg,a, fp,a, qg,i, qp,i, sa, si) (6)

=
∑

match=0,1

Ka∑
kp=1

p(match, qg,a, qp,a|fg,a, fp,a, qg,i, qp,i, sa, si)

p(qp,a|fg,a, fp,a, qg,i, qp,i, sa, si) (7)

=
∑

match=0,1

Ka∑
kg=1

p(match, qg,a, qp,a|fg,a, fp,a, qg,i, qp,i, sa, si)

where p(match, qg,a, qp,a|fg,a, fp,a, qg,i, qp,i, sa, si) is fac-
tored as in Eq. 5. Specifically, we use the Bayes Net Tool-
box for Matlab [10] to perform the BN inference.

3. Score-level Face and Fingerprint Biometric
Fusion with Facial Image Quality

Our related approach is readily adapted to other fusion
situations. Assuming that we do not have any knowledge of
the fingerprint sample quality or that the fingerprint match-
ing algorithm already takes account of the sample quality,
we can perform score-level face and fingerprint biomet-
ric fusion with only facial image qualities. In this case,
we model the causal relationships among fg,a, fp,a, sa, si,
match, qg,a, and qp,a. To do this, we use a BN model as
shown in Fig. 2, which is similar to that in Fig. 1 except that
we do not model qg,i and qp,i and that si has one parent,
match.

We define the states for the nodes in Fig. 2 exactly
the same as in Fig. 1. The model parameterization for
the nodes in Fig. 2 is similar to those described in Sec-
tion 2.3. The only difference is that si is parameterized

Figure 2. A graphical model for score-level face and fingerprint
biometric fusion with facial image qualities.

by p(si|match) given a single parent match. Learning the
model parameters is performed by MLE given the training
data. The match/no-match decision can be made by maxi-
mizing p(match|fg,a, fp,a, sa, si), given the observations of
the measurement nodes.

4. Experimental Results
4.1. Face and Fingerprint Databases

Since face and fingerprint can reasonably be regarded
as two independent resources of biometric information, we
create a face and fingerprint image database of 325 “vir-
tual subjects” [17], each of which has 7 chimeras3 consist-
ing of a facial image sample and a fingerprint image sam-
ple. Specifically, we use facial images from CAS-PEAL
face database [6] and fingerprint images from the Finger-
print Verification Competition (FVC2004) database [3]. No
real subject is paired with more than one other subject in
forming these virtual subjects.

The CAS-PEAL face database [6] contains facial images
with various facial appearance variations caused by face
pose, facial expression, accessories, and lighting (PEAL)
for a large population. It has been widely used for eval-
uating performance of face recognition algorithms. Since
the face pose variation has shown to be the most signifi-
cant factor affecting the face recognition performance [12],
we randomly select 325 subject with 7 facial images, each
of which represents one of the facial appearance variations
caused by the face pose (frontal, ±15◦, ±30◦, and ±45◦

in the horizontal direction). Fig. 3 shows a set of exemplar
facial images of a subject we used.

FVC2004 database [3] consists of 4 subsets: DB1 and
DB2 captured from different optical sensors, DB3 captured
from thermal sweeping sensor, and DB4 containing syn-
thetic fingerprints. We select 325 subjects from the three
subsets containing real fingerprint images (DB1, DB2, and
DB3). Each subject has 7 fingerprint images representing
different sources of variations including vertical positions,

3Chimera is a type of data that is generated from multiple biometric
modalities of different subjects and forms a synthetic biometric set for a
subject.



Figure 3. Exemplar facial images of a subject in the CAS-PEAL face database [6] representing the facial appearance variations caused by
different face poses: frontal, ±15◦, ±30◦, and ±45◦ in the horizontal direction.

Figure 4. Sample fingerprint images in FVC2004 database [3].
Each row contains fingerprint images from one of the three sub-
sets (DB1, DB2, and DB3 top-to-bottom) respectively; and each
column consists of fingerprint images at different quality levels
(1–5 left-to-right) defined by NIST NFIQ [16].

pressure against the sensor surface, skin distortion, rotation,
and skin humidity. Fig. 4 shows some example fingerprint
images: each row containing fingerprint images from one
of the three subsets (DB1, DB2, and DB3) respectively, and
each column consisting of fingerprint images at different
quality levels (1–5) determined by NIST NFIQ [16].

In the experiments, we divided the face and fingerprint
chimera database into ten subsets such that the subjects in
each subset are mutually exclusive. In a 10-fold testing
framework, we use one subset for testing, while the remain-
ing nine subsets are used for training the proposed fusion
frameworks.

4.2. Experiment Setup

4.2.1 Match Score Acquisition and Quantization

We use the commercial face matching engine FaceIt R© from
Identix4 to obtain match scores of facial images (sa) and a
NIST MINEX certified fingerprint matching algorithm Ver-
iFinger5 to get match scores of fingerprint images (si). The

4http://www.l1id.com/
5http://www.neurotechnology.com/verifinger.html

continuous face match score is then quantized intoNa = 40
levels and the fingerprint match score is discretized into
Ni = 50 levels in our experiments.

4.2.2 Facial Image Features

For the quality-related facial image features, we use the
PCA appearance coefficients of the image intensities en-
closed in a warped face region. For the ith facial image
in the database, the image feature vector fi is computed as
follows:

fi = PTI (Ii − Ī) (8)

where Ii is the image intensity vector obtained by warp-
ing the ith image to a common face region through a global
affine transform6. Ī and PI are the mean face and eigenfaces
representing the major facial appearance variation modes in
the dataset. Ī and PI are trained from over 3000 facial im-
ages of other subjects in the CAS-PEAL face database [6]
that are not selected to form our chimera database. The di-
mension of the eigenfaces is selected such that 50% of the
energy of the appearance variations is preserved.

4.2.3 Facial Image Quality and Fingerprint Image
Quality

In this work, we employ the NIST Fingerprint Image Qual-
ity (NFIQ) derived by Tabassi et al. [16] to obtain the qual-
ities for fingerprint samples for training and testing the pro-
posed biometric fusion models. NFIQ defines the finger-
print quality at 5 quality level (1–5 from “high” to “low”).
Since there are a few fingerprint samples that have the worst
qualities (levels 4 and 5), we combine the quality levels 4
and 5 into a single quality level. As a result, the fingerprint
quality has 4 levels in our experiments.

We use the facial quality metrics developed by Ozay et
al. [12] to obtain the image qualities for all facial images in
the training set. The continuous quality values obtained in

6In this work, the global affine transformation matrix is obtained based
on the eye positions for each facial image by using a face and eye de-
tector. Advanced face alignment techniques such as Boosted Appearance
Model [8] can be employed to extract more sophisticated image features
accounting for variations caused by face pose, facial expression, and illu-
mination.
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Figure 5. (a) Verification ROC curves for each algorithm. (b) Zoomed version of (a). On (b) error bars indicate 95% confidence intervals
in the FNMR (False Non-Match Rate). For both (a) and (b), the x-axis represents the False Match Rate (FMR), and the y-axis represents
the true matching rate (1-FNMR).

this way are further quantized into three discrete quality lev-
els (1–3 from “low” to “high”). During the testing process,
the facial image qualities for both probe and gallery images
are unknown; and we use the proposed fusion algorithms to
estimate them.

4.3. Evaluation of the Face and Fingerprint Biomet-
ric Fusion Algorithms

In this experiment, we will compare the biometric verifi-
cation performance of the proposed algorithms with several
baseline algorithms including:

• Raw face match score

• Raw fingerprint match score

• Raw match score sum:

A summation of raw match scores of face and finger-
print is used for biometric verification.

• Normalized raw match score sum:

The raw match scores of face and fingerprint are scaled
into a range of [0, 1], respectively. Their summation is
used for biometric verification.

• Z-score sum without quality assessment:

The z-score of a pair of gallery-probe biometric sam-
ples performs score normalization such that the reli-
able samples have higher scores, and is computed as
z = s−µ

σ , where s is the raw match score of a pair of
biometric samples; µ and σ are the mean and standard
deviation of the no-match match score distribution in
the training set. The summation of the z-scores of the
face and fingerprint is used for biometric verification.

• Z-score sum with face and fingerprint quality assess-
ments:

The z-score of a pair of gallery-probe fingerprint sam-
ples with the fingerprint quality assessment is com-
puted by

zqg,i,qp,i
=
si − µqg,i,qp,i

σqg,i,qp,i

(9)

where si is the raw match score of a pair of fingerprint
samples; qg,i and qp,i are the corresponding quality
assessments of gallery and probe fingerprint images;
µqg,i,qp,i

and σqg,i,qp,i
are the mean and standard devi-

ation of the no-match match score distribution corre-
sponding to the gallery-probe fingerprint quality com-
bination in the training set. zqg,a,qp,a is computed like-
wise, where qg,a and qp,a are estimated by the pro-
posed fusion algorithm with both face and fingerprint
quality metrics as described in Section 2. Then, the
summation of zqg,i,qp,i

and zqg,a,qp,a
is used for bio-

metric verification, where the higher quality and thus
more reliable sample has a larger effective weight.

In the experiments, we will evaluate our proposed bio-
metric fusion algorithms including fusion with facial im-
age quality metric as discussed in Section 3 and with
both face and fingerprint image qualities as described
in Section 2. For the biometric fusion methods, the
scores (e.g., z-scores, p(match|fg,a, fp,a, qg,i, qp,i, sa, si),
and p(match|fg,a, fp,a, sa, si)) for all 10 subsets are col-
lected together, and then a single threshold is applied for
each point on the ROC curve, for each method.

Fig. 5 shows the overlaid ROC curves for the proposed
algorithms and the baseline algorithms. The Equal Error
Rate (EER) for each algorithm is given in Table 2. From



Method EER
Raw face match score 0.2619
Raw fingerprint match score 0.0795
Raw match score sum 0.0522
Normalized raw match score sum 0.0766
Z-score sum without quality assessment 0.0476
Z-score sum with face and fingerprint quality assessment 0.0467
Face and fingerprint fusion with face quality 0.0484
Face and fingerprint fusion with face and fingerprint qualities 0.0443

Table 2. Performance comparison of the algorithms in terms of
Equal Error Rates (ERR).

Fig. 5 and Table 2, we can see that the proposed score-level
face and fingerprint fusion algorithms perform much better
than the methods based solely on the raw match score of a
single modality (face or fingerprint). That demonstrates the
effectiveness of the proposed biometric fusion models. Fur-
thermore, the method using score-level face and fingerprint
fusion with both face and fingerprint qualities achieves the
best verification performance.

From Fig. 6, we can see that the match and no-match
match score distributions are well separated when the
gallery and probe facial images have the best qualities
(Fig. 6c) and are not separated when they have the worst
qualities (Fig. 6a). This observation demonstrates that the
computed facial image quality is indicative of the perfor-
mance of the face matching algorithm. On the contrary,
even when both the gallery and probe fingerprint images
have the best qualities (Fig. 7a), the match and no-match
match score distributions are not well separated as we ex-
pected and are similar to those with lower qualities (Fig. 7b
and Fig. 7c). The reason is likely that the NFIQ metric is
built on the match and no-match distributions of the match
scores, and thus is matching algorithm dependent as de-
scribed in Section 2.1. Since we use a matching algorithm
that is different from those used for training the NFIQ, the
NFIQ cannot accurately predict the performance of the fin-
gerprint matching algorithm we used. Although the finger-
print image quality is not as informative as facial image
quality, using both face and fingerprint image qualities still
helps to improve the verification performance significantly
through the proposed biometric fusion framework.

5. Conclusion and Future Work
The purpose of this work is to investigate how multiple

biometric technologies can together be made a more effec-
tive tool for public safety. Individual biometrics often lack
the accuracy that is needed to be effective in operational en-
vironments. Our goal is to advance the state-of-the-art in
biometric fusion technology in order to provide a more uni-
versal and more accurate solution for personal identification
and verification.

To do this, we developed score-level multi-modal fu-

sion algorithms based on predictive quality metrics and
employed them for the task of face and fingerprint bio-
metric fusion. The causal relationships in the context of
each fusion scenario are modeled in a principled way by a
probabilistic framework. The recognition/verification deci-
sion is made through probabilistic inference. The experi-
ments demonstrated that the proposed score-level fusion al-
gorithms significantly improve the verification performance
over the methods based on the raw match score of a sin-
gle modality (face or fingerprint). Furthermore, the fusion
framework with both face and fingerprint image qualities
achieves the best verification performance and outperforms
the other baseline fusion algorithms.

We should note that the proposed quality-based fusion
framework is not restricted to face and fingerprint and can
be generalized to include other biometric modalities such as
iris, with or without quality metrics. Also, model parameter
learning is a data-driven process and it is to be determined
the degree to which additional training data will improve
MLE performance or reduced data will hurt performance.
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