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a b s t r a c t

Landmark annotation for training images is essential for many learning tasks in computer vision, such as
object detection, tracking, and alignment. Image annotation is typically conducted manually, which is
both labor-intensive and error-prone. To improve this process, this paper proposes a new approach to
estimating the locations of a set of landmarks for a large image ensemble using manually annotated land-
marks for only a small number of images in the ensemble. Our approach, named semi-supervised least-
squares congealing, aims to minimize an objective function defined on both annotated and unannotated
images. A shape model is learned online to constrain the landmark configuration. We employ an iterative
coarse-to-fine patch-based scheme together with a greedy patch selection strategy for landmark location
estimation. Extensive experiments on facial images show that our approach can reliably and accurately
annotate landmarks for a large image ensemble starting with a small number of manually annotated
images, under several challenging scenarios.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction proach can automatically estimate the landmark locations for the
Image annotation for training data is an essential step in many
learning-based computer vision tasks. In general there are at least
two types of prior knowledge represented by image annotation.
One is semantic knowledge, such as a person’s ID for face recogni-
tion, or an object’s name for content-based image retrieval. The
other is geometric/landmark knowledge. In learning-based object
detection [1,2], for example, the position and size of the object
(face/pedestrian/car) needs to be annotated for all training images.
For supervised face alignment [3,4], each training image must be
annotated with a set of landmarks, which describes the 2D location
of the key facial features.

This paper focuses on geometric/landmark knowledge annota-
tion, which is typically carried out manually. Practical applications,
such as object detection, often require thousands of annotated
images to achieve sufficient generalization capability. Hence, man-
ual annotation becomes labor-intensive and time-consuming for
these applications. Furthermore, image annotation is also an er-
ror-prone process due to annotator error, imperfect description
of the objectives, and inconsistencies among different annotators.

To alleviate these problems, this paper presents an approach to
automatically provide landmark annotation for a large set of
images in a semi-supervised fashion. That is, using manually anno-
tated landmark locations for a small number of images, our ap-
ll rights reserved.

by K.W. Bowyer.
entire set of images (see Fig. 1). In one example, we will demon-
strate that 15 manually annotated images may be used to automat-
ically annotate a complete set of 1176 images with the help of a
face detector. The core of our algorithm, named Semi-supervised
Least-Squares Congealing (SLSC), is the minimization of an objective
function defined as the summation of the pairwise L2 distances be-
tween warped images. Two types of distances are used: the dis-
tance between the annotated and unannotated images, and the
distance between the unannotated images. The objective function
is iteratively minimized via the well-known and efficient inverse
warping technique [5]. During the optimization process, we also
constrain the estimated landmark locations by utilizing shape sta-
tistics that are learned in an online manner, which is shown to re-
sult in better convergence of landmark position estimates and
hence improved robustness of the annotation.

Several prior work on joint alignment for an image ensemble
[6–8] estimates global affine parameters for each image. However,
most real-world objects exhibit non-rigid deformation that is not
well-modeled by the affine transformation. Estimating more realis-
tic deformations using a large set of landmarks is an important step
towards accurately characterizing the shape variation within an
object class. Motivated by this, we propose a hierarchical patch-
based approach together with a greedy patch selection algorithm
to estimating landmark positions. Starting from the whole face re-
gion, we iteratively select the patch with the greatest potential to
minimize the objective function and conduct congealing for this
patch simultaneously with its neighboring patch. These operations
are consecutively applied to patches with gradually reduced size.
In this strategy, the landmark annotation from the larger patch
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Fig. 1. Our approach takes an image ensemble as input with manually annotated landmark positions for only a small subset, and automatically estimates the landmarks for
the remaining images. The mean warped face shown in the last column is an average of all warped faces in the image ensemble generated by a piecewise affine warp in a
triangular face mesh based on the landmark positions. Note the improved sharpness in the mean warped face (the last column), an indicator of accurate landmark estimation
by our algorithm.
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can be propagated to smaller patches, which enhances the robust-
ness of the annotation. Furthermore, congealing on small patches
allows the locations of landmarks to be ultimately determined by
local appearance information, which improves the precision of
annotation. In addition, a joint congealing on two neighboring
patches is proposed to enforce the geometrical consistency be-
tween them. Our applications on facial images show that even
when manually annotating only a few images of the ensemble,
the landmarks of the remaining images can be estimated accu-
rately. An overview of the system is illustrated in Fig. 2.

Our proposed automatic image annotation framework has three
primary contributions:

(1) A core algorithm is proposed for semi-supervised least-
squares-based congealing of an image ensemble. We
describe its efficient implementation using the inverse
warping technique [5] and provide computational analysis.

(2) A statistical shape model learned online is integrated into
the congealing process to reduce outliers of landmark esti-
mation among the ensemble.

(3) A coarse-to-fine patch-based scheme together with a greedy
patch selection strategy is proposed to improve the accuracy
of landmark estimation. Furthermore, geometrical con-
straints are employed in the cost function to enforce the geo-
metrical consistency between two neighboring patches, and
thus improve the reliability of landmark annotation.
Fig. 2. System overview of the proposed landmark annotation approach. SLSC
denotes the core algorithm of semi-supervised least-squares-based congealing;
SSLSC represents the shape constrained SLSC; and patch-based SSLSC represents the
coarse-to-fine landmark annotation system that employs SSLSC in each partitioning
step.
(4) An end-to-end system is developed for automatic estimation
of a set of landmarks in an ensemble of facial images with
very few manually annotated images. Extensive experiments
that qualitatively and quantitatively evaluate the perfor-
mance and capabilities of the system and comparisons with
the state-of-the-art techniques [9,8,10] have been conducted
and are reported here.

The rest of the paper is organized as follows: After a brief
description of related work in Section 2, this paper presents the
semi-supervised least-squares-based congealing (SLSC) algorithm
in Section 3. We then describe the shape constrained semi-super-
vised least-squares-based congealing (SSLSC) in Section 4, and
the greedy patch selection scheme (i.e., patch-based SSLSC) in Sec-
tion 5. Section 6 describes our extensive experimental results. The
paper concludes in Section 7.
2. Prior work

In some notable and early work on unsupervised joint align-
ment, Learned-Miller [6,7] denotes the process as ‘‘congealing’’.
The underlying idea is to minimize an entropy-based cost function
by estimating the warping parameters of an ensemble. More re-
cently, Cox et al. [8] propose a least-squares-based congealing
(LSC) algorithm, which uses L2 constraints to estimate the warping
parameter of each image. An inverse compositional parameter
updating strategy further improves the congealing performance
in a larger database (500 images) in their updated work [11]. Ved-
aldi et al. [12] propose a joint data alignment approach based on
the concept of lossy compression, which intends to generate a
codebook optimal to the postulated structure of the data space.
Storer et al. [13] propose a mutual information based cost function
and formulate the congealing as a groupwise image registration
problem. However, these approaches estimate only affine warping
parameters for each image. Our work differs in that we estimate fa-
cial shape deformation described by a large set of landmarks,
rather than a relatively simple global affine transformation.

Additional work on unsupervised image alignment has incorpo-
rated more general deformation models, though not with the use
of a well-defined set of landmarks. Shelton [14] estimates the
dense correspondence between a pair of n-dimensional surfaces.
Through automatically establishing the correspondences between
each sample in the surface ensemble and a reference sample, a
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Morphable Surface Model is constructed. Balci et al. [15] extend
the Learned-Miller’s method [6] by including a free-form B-spline
deformation model. Vetter et al. [16] have developed a bootstrap-
ping algorithm to compute image correspondences and to learn a
linear model based on optical flow. Guimond et al. [17] perform
groupwise registration on brain images, where the affine transfor-
mation between the reference image and each image in the image
set is removed beforehand. Baker et al. [18] use iterative Active
Appearance Model (AAM) learning and fitting to estimate the loca-
tion of mesh vertices, reporting results on images of the same per-
son’s face. Kokkinos and Yuille [19] formulate AAM learning as an
EM algorithm and extend it to learning parts-based models for
flexible objects. Cootes et al. [20–23] use a group-wise objective
function to compute non-rigid registration. Sidorov et al. [24] fur-
ther improve the efficiency of the groupwise registration by incre-
mentally learning and accumulating the optimal deformation.
Torre and Nguyen [25] improve manual facial landmark annotation
based on parameterized kernel PCA. Langs et al. [26] employ an
MDL-based cost function and estimate the correspondences for a
set of control points. Asthana et al. [27] propagate the facial land-
marks from frontal view images to arbitrary pose by initially learn-
ing the correspondence between frontal and varying pose images.

In general, we argue that for the discovery of non-rigid shape
deformation using a specific set of physically defined landmarks,
semi-supervised learning is more appropriate than unsupervised
learning since prior knowledge of landmark location must be
incorporated and this can be done easily via a few manually anno-
tated examples. One could not rely upon an unsupervised learning
algorithm to locate landmarks on physically meaningful facial
features, such as mouth/eye corners or nose tip. This is the main
difference between our work and the previously mentioned
unsupervised image alignment approaches that do not utilize
well-defined landmarks. Furthermore, with the guidance of the
annotated samples, the parameter drift, which is a common issue
unsupervised congealing approaches [8] suffer from, can be allevi-
ated. Other unsupervised approaches on this topic are described by
Cootes [28].

In contrast, there is a sizable literature for supervised face align-
ment, including Active Shape Model [4], AAM [3,9], Boosted
Appearance Model [29]. Generally, a large number of annotated
training images are required to train a statistical model so that it
can generalize and fit unseen images well [30]. Hence, we are moti-
vated to develop this semi-supervised approach to produce this
training data more easily.
3. Semi-supervised least-squares congealing

In this section we will describe the objective function, detailed
derivation, and computational analysis of our core algorithm, semi-
supervised least-squares congealing (SLSC).

Similar to conventional congealing algorithms, SLSC takes an
ensemble of images as input, among which we assume that there
are K unannotated images I = {Ii}i2[1, K], each of which is associ-
ated with an m-dimensional warping parameter vector
pi = [pi1,pi2, . . . , pim]T�Ii(�) denotes a 1D vector containing the im-
age intensity values at a given set of 2D pixel coordinates for
image Ii.

Each image Ii in the ensemble warps toward a predefined com-
mon mean shape1 based on a warping function W(x;pi) that takes
1 Note that the common mean shape is defined as a reference frame of the region of
interest(e.g., the face region in the face alignment application) consisting of L discrete
image points. All images in the ensemble will warp toward the common mean shape
such that each pair of corresponding pixels can be compared for a pair of warped
images in the common mean shape. In our work, we use a pre-defined rectangular
region as the common mean shape.
x = [x1,y1,x2,y2, . . . , xL,yL]T, which is a collection of 2D coordinates
of L pixels within the common mean shape, as input, and outputs
the corresponding pixel coordinates in the coordinate space of image
Ii, according to the warping parameter vector pi. The warping func-
tion W(x;pi) can be a simple affine warp or a complex non-rigid
warp such as the piecewise affine warp [9]; and W(x;0) represents
an identical warp such that W(x;0) = x. For example, pi is defined
as a 6-parameter affine warping parameter vector with m = 6 in this
work, such that

Wðx; piÞ ¼
1þ pi1; pi2; pi3

pi4; 1þ pi5; pi6

� � x

y

1

264
375 ð1Þ

Given this warping function, Ii(W(x;pi)) denotes the corresponding
L-dimensional warped image vector obtained by bilinear interpola-
tion of the image Ii using the warped coordinates W(x;pi), following
the notation of [9,5]. The congealing process intends to iteratively
align the warped image Ii(W(x;pi)) with the other images in the
ensemble within the common mean shape.

Different from conventional congealing, our semi-supervised
congealing further assumes there is a small set of eK annotated
images eI ¼ feIng

n2½1;eK �, each with a set of manually annotated land-
marks ~sn, where ~sn is a concatenated vector of 2D landmark coor-
dinates ~sn ¼ ½xn1; yn1; xn2; yn2; . . . ; xnV ; ynV �

T defined in the original
image frame for V landmarks, which are located on biologically
meaningful facial features. These biologically meaningful land-
marks are usually of great interest and have distinguished appear-
ance such as the eye corners and mouth corners. For each manually
annotated image eIn, a warping parameter vector ~pn can be calcu-
lated from ~sn by solving a linear equation system

Wðxs1; ~pnÞ ¼ ~sn1

� � �
Wðxsv ; ~pnÞ ¼ ~snv

� � �
WðxsV ; ~pnÞ ¼ ~snV ð2Þ

where ~snv ¼ ½xnv ; ynv �
T denotes the 2D coordinates of the vth land-

marks in the original image frame, and xsv represents the 2D coor-
dinates of the corresponding landmark in the common mean shape.
From Eq. (2), we can see that the warping parameter vector ~pn is
determined by the biologically meaningful landmarks. As a result,
the content enclosed in the common mean shape represents what
the well aligned face should look like, which will be utilized as a
regulation during congealing and differentiates our proposed SLSC
algorithm from other unsupervised approaches.

We denote the collection of all warping parameters to be esti-
mated as P = [p1, . . . , pK]. The goal of SLSC is to estimate P by min-
imizing a cost function defined on the entire ensemble:

eðPÞ ¼
XK

i¼1

eiðpiÞ: ð3Þ

As we can see, the total cost e(P) is the summation of the individual
cost of each unannotated image ei(pi). We further define the indi-
vidual cost as:

eiðpiÞ ¼
1� a
K � 1

XK

j¼1;j–i

kIjðWðx; pjÞÞ � IiðWðx; piÞÞk
2

þ aeK
XeK
n¼1

keInðWðx; ~pnÞÞ � IiðWðx; piÞÞk
2
; ð4Þ

where Ii(W(x; pi)) denotes the L-dimensional warped image vector
obtained by bilinear interpolation of the unannotated image Ii using
the warped coordinates W(x; pi). Similarly, Ij(W(x; pj)) and



Table 1
The computational cost of major steps in SLSC. eIðWðx; ~pÞÞ and I(W(x; p)) represent the
image warping processes for all the annotated and unannotated images, respectively.
@eIðWðx;~pÞÞ

@~p and @IðWðx;pÞÞ
@p denote the processes of calculating the partial derivatives for

annotated and unannotated images, respectively. ~cn ¼ @eIn ðWðx;~pn ÞÞ
@~pn

and cj ¼
@Ij ðWðx;pj ÞÞ

@pj

represent the partial derivative of the nth annotated and jth unannotated images,
respectively. DP is the warping parameter updates for all unannotated images. K andeK are the total numbers of unannotated and annotated images, respectively; m is the
dimension of the warping parameter vector pi; and L is the number of pixels in the
common mean shape.

Pre-comp. eIðWðx; ~pÞÞ OðeKLÞ
@eIðWðx;~pÞÞ

@~p
OðmeKLÞ

PeK
n¼1~cT

n~cn
Oðm2 eKLÞ

Per-Iteration I(W(x; p)) O(KL)
@IðWðx;pÞÞ

@p
O(mKL)PK

j¼1;j–ic
T
j cj

O(m2KL)

Inverse Hessian H O(m2log(m)K)
Compute DP OðmKðK þ eK ÞLþm2KÞ
Total OðmKðmðLþ logðmÞÞ þ ðK þ eK ÞLÞÞ
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eInðWðx; ~pnÞÞ are the warping image vectors for the jth unannotated
image and nth annotated image, respectively.

In the cost function, ei(pi) equals the summation of the pairwise
difference between each unannotated image Ii and all the other un-
annotated images Ij in the warped image space. On the one hand,
minimizing the 1st term of Eq. (4) makes the warped image con-
tent of the ith unannotated image Ii(W(x; pi)) similar to that of
the other unannotated images Ij(W(x; pj)), without regard for the
physical meaning of the content. On the other hand, the 2nd term
of Eq. (4) constrains the warped image content of the ith unanno-
tated image Ii(W(x; pi)) to be similar to those of the annotated
images eInðWðx; ~pnÞÞ and enforces the physical meaning of the con-
tent during alignment. Thus, the annotation of the annotated
images eI are propagated to the unannotated images I. Since the
number of unannotated images is much greater than that of the
annotated images (K � eK ), a weighting coefficient a can balance
the contributions of the two terms in the overall cost.

Since the total cost e(P) is difficult to optimize directly, we
choose to iteratively minimize the individual cost ei(pi) for each
unannotated image Ii. In order to estimate the warping parameter
updates Dpi for each unannotated image Ii, instead of aligning Ii to
the other images in the ensemble, we follows the approach de-
scribed in [8], which aims to align each other images to Ii and
has shown improved alignment performance by utilizing more im-
age details of each image in the ensemble. To do this, we adopt the
well-known inverse image warping technique [5] to minimize
ei(pi). We first estimate the warping parameter updates Dpi by
minimizing the following equation:

eiðDpiÞ ¼
1� a
K � 1

XK

j¼1;j–i

kIjðWðx; pj þ DpiÞÞ � IiðWðx; piÞÞk
2

þ aeK
XeK
n¼1

keInðWðx; ~pn þ DpiÞÞ � IiðWðx; piÞÞk
2
; ð5Þ

where W(x; pj + Dpi) represents an image warping that aligns im-
age Ij to image Ii with the warping parameter update Dpi.

Then the warping function is updated by:

Wðx; piÞ  Wðx; pi � DpiÞ: ð6Þ

It is not straightforward to optimize Eq. (5) directly because the
function ei(Dpi) is nonlinear w.r.t. Dpi. We choose to approximate
this function by taking the first order Taylor expansion on Ij(W(x;
pj + Dpi)) and eInðWðx; ~pn þ DpiÞÞ:

IjðWðx; pj þ DpiÞÞ � IjðWðx; pjÞÞ þ
@IjðWðx; pjÞÞ

@pj
Dpi:

As a result, Eq. (5) is simplified to:

eiðDpiÞ �
1� a
K � 1

XK

j¼1;j–i

kbj þ cjDpik
2 þ aeK

XeK
n¼1

k~bn þ ~cnDpik
2
; ð7Þ

where

bj ¼ IjðWðx; pjÞÞ � IiðWðx; piÞÞ; cj ¼
@IjðWðx; pjÞÞ

@pj
;

~bn ¼ eInðWðx; ~pnÞÞ � IiðWðx; piÞÞ; ~cn ¼
@eInðWðx; ~pnÞÞ

@~pn
:

The minimization of Eq. (7) can be obtained by setting its partial
derivative w.r.t. Dpi to zero. We then have

Dpi ¼ �H�1 1� a
K � 1

XK

j¼1;j–i

cT
j bj þ

aeK
XeK
n¼1

~cT
n
~bn

24 35; ð8Þ
with

H ¼ 1� a
K � 1

XK

j¼1;j–i

cT
j cj þ

aeK
XeK
n¼1

~cT
n
~cn: ð9Þ

Joint alignment for an image ensemble can be a computationally
intensive task. We have analyzed the computational cost of the
SLSC method. Note that since eP ¼ f~png

n2½1;eK � are known, ~cn and part
of the Hessian matrix H can be pre-computed and remain fixed dur-
ing the iterations. As shown in Table 1, the computational cost for
solving the second term of Eq. (7) is negligible. Therefore, semi-
supervised congealing has a computational cost similar to that of
unsupervised congealing.

4. Shape-constrained SLSC

In this section, we will introduce a shape-constrained SLSC,
which improves the robustness of the congealing process by reduc-
ing outliers. Given the warping parameters for all images
fP; ePg ¼ ½p1; . . . ;pK ; ~p1; . . . ; ~peK �, and their corresponding landmark
locations fS; eSg ¼ ½s1; . . . ; sK ;~s1; . . . ;~seK �, where s is a concatenated
vector of 2D landmarks s = [x1, y1, x2, y2, . . . , xV, yV]T for V land-
marks, there are two ways of mapping between each pair of the
warping parameter vector pk 2 fP; ePg and its corresponding land-
mark locations sk 2 fS; eSg for the kth image in the ensemble. First,
the warping parameter pi can be obtained given the corresponding
landmark locations si as described in Eq. (2). Consequently,
improving the localization of the landmarks by a method indepen-
dent of SLSC such as a PCA model can refine the estimation of the
warping parameters obtained by SLSC. Second, the landmarks si

can be obtained from the warping parameter pi via si = W(xs; pi),
where xs is a vector containing the coordinates of the target land-
marks in the common mean shape. As a result, an incorrect warp-
ing parameter, which can result from an outlier in the congealing
process, would produce a landmark set that is not a valid shape in-
stance. Motivated by this, we develop an approach denoted Shape-
constrained SLSC (SSLSC), which integrates the shape constraints
into each iteration of the appearance-based congealing process to
improve the robustness of the SLSC.

Given that the objects in the ensemble have the same topolog-
ical structure, we assume that the shape deformation of si satis-
fies a Point Distribution Model (PDM) [4]. Since only a few
annotated images are available, the PDM is learned from both
the annotated landmarks and an automatically selected low-error
subset of the estimated landmarks in an online manner.
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Specifically, since ei(Dpi) defined in Eq. (5) indicates the degree of
misalignment between the ith unannotated image and the other
images in the ensemble, we can rank e1(Dp1), . . . , eK(DpK) in an
ascending order and select the first KM

2 images as a low-error sub-
set, each of which has the corresponding landmark positions calcu-
lated as si = W(xs; pi) for i 2 [1,KM]. Then, we can form a training set
SeKþKM

¼ ½~s1; . . . ;~seK ; s1; . . . ; sKM �
T for online PDM learning. Next, the

other poor estimates, i.e., the other images with higher ei(Dpi),
can be ‘‘corrected’’ through a PCA reconstruction as follows:

ŝi ¼ �sþ Qzi; ð10Þ

where ŝi is the reconstructed shape vector for the ith image; �s and Q
are the mean shape and the shape basis learned through the online
PDM training; zi is the projection of si on the PCA basis and is re-
stricted in some range [4]. In this work, the number of shape basis
vectors is automatically determined such that 90% shape variations
in the training set are preserved. Finally, a new warping parameter
vector p̂i is computed from the refined landmark positions ŝi by
solving the inverted warping of ŝi ¼Wðxs; p̂iÞ. By doing so, the out-
liers of the congealing process are identified and constrained in a
principled way.

Algorithm 1. Shape-constrained SLSC (SSLSC)

Input; I;eI;P0; eP; x, and xs

Output: Pt, St, and e
t 0;
Compute ~pn from ~sn by solving the inverted warping of
~sn ¼Wðxs; ~pnÞ for n 2 ½1; eK �;
repeat

for i = 1 to K do

eiðDpiÞ;ptþ1
i  SLSCðI;eI;Pt ; eP;xÞ;

end for
Rank e1(Dp1), . . . ,eK(DpK) in ascending order and select

the first KM images;
Compute stþ1

i ¼Wðxs; ptþ1
i Þ for i 2 [1,KM];

�s;Q ; k PCA on SeKþKM
¼ ½~s1; . . . ;~seK ; stþ1

1 ; . . . ; stþ1
KM
�T ;

for i = KM + 1 to K do
Reconstruct stþ1

i as ŝtþ1
i ¼ �sþ Qzi, where zi is restricted

by some predefined range;
Compute ptþ1

i from stþ1
i by solving the inverted warping

of stþ1
i ¼W xs; ptþ1

i

� �
;

end for

Ptþ1  ptþ1
1 ; . . . ;ptþ1

K

� �
; Stþ1  ½stþ1

1 ; . . . ; stþ1
K �

T ;

e 
PK

i¼1eiðDpiÞ; t t + 1.
until Converge

The SSLSC algorithm is summarized in Algorithm 1, where P0 is
the initial warping parameter set for I. The annotated landmarks
are fully utilized in the sense that they not only contribute to the
cost function minimization in Eq. (5), but also provide guidance
for plausible shape deformation.
5. Iterative patch-based landmark annotation

Having dealt with the outliers during congealing process, we
should improve the accuracy of the landmark annotation, which
is crucial for practical applications. Since the shape deformation
of a real-world object is often non-rigid due to inter-subject varia-
2 In this work, KM is set as 50% of the unannotated images since we believe that the
percentage of outliers is low.
tions, object motions, and camera views, estimating the global and
rigid transformation of the object is not sufficient to characterize
the object. However, joint estimating the non-rigid transformation
is difficult to solve since the warping parameter vector pi resides in
a high dimensional space.

In this section, we propose a patch-based approach to achieve
an accurate estimate of the landmarks by searching for the optimal
patch for congealing in the common mean shape. In the SSLSC
algorithm, the warping function W(x; p) can be a simple global af-
fine warp to model rigid transformation, or a piecewise affine warp
to model non-rigid transformation. However, from our experience,
the SSLSC algorithm does not perform satisfactorily when directly
setting W(x; p) to be a piecewise affine warp. We attribute this dif-
ficulty to the high dimensionality of the warping parameter pi in a
piecewise affine warp.

To understand this issue, let us look at the piecewise affine
warp closely. We note that in this case the warping function W(�)
is a concatenation of multiple affine transformations, each operat-
ing within a small triangular patch. On the one hand, the patch al-
lows us to work in a space whose dimension is much smaller than
the original space, and thus makes the problem easier to solve. On
the other hand, directly applying the SSLSC on the small patches is
not reliable due to poor initialization and limited information en-
coded in a single patch. Motivated by these observations, we devel-
oped a coarse-to-fine patch-based scheme to improve the precision
of landmark annotation, where an affine warp is performed on
each patch independently.

Our previous work [10] employs a brute-force partitioning
method, which repeatedly partitions the common mean shape
for a selected patch with the maximal congealing error (�). Two
equal-size and overlapped child patches are generated by each par-
titioning; and then two congealing processes are performed on the
generated child patches, individually. Since the landmarks in the
overlapped region may have inconsistent estimations caused by
two different warping functions, [10] simply averages the esti-
mated landmarks resulted from two individual SSLSC processes ap-
plied on the two patches independently. However, this brute-force
partitioning strategy does not guarantee that the selected patch
has the greatest potential to decrease �. As a result, the process
is stopped after a limited number of congealing rounds; and hence
the accuracy of landmark annotation is limited.

In this work, we propose a novel greedy patch selection strategy
by estimating the optimal region for alignment such that the con-
gealing error (�) decreases most significantly. To this end, we esti-
mate the gradient of the congealing error w.r.t. the warping
parameters for the image ensemble at the lth pixel of the common
mean shape:

@�l

@P
¼
@
XK

i¼1

el
iðpiÞ

@P

¼ 2
XK

i¼1

1� a
K � 1

XK

j¼1;j–i

@IjðWðxl; pjÞÞ
@P

� @IiðWðxl; piÞÞ
@P

� 	
bjðxlÞ

"

� aeK
XeK
n¼1

@IiðWðxl; piÞÞ
@P

~bnðxlÞ

35; ð11Þ

where xl is the coordinates of the lth pixel in the common mean
shape; bj and ~bn are defined accordingly as in Eq. (7). There is sim-
ilar prior work [31] where patch locations are searched in the opti-
mization process of an objective function.

The process takes place in a series of congealing rounds. Starting
from the whole common mean shape x, the process is conducted,
in each round, by searching for the square patch xk�� �

in the whole
common mean shape for congealing, which has the maximal value



Fig. 3. An example shows patch selection for 12 congealing rounds in the common
mean shape. The red rectangle encloses the region that has the maximal value of

1
Lr

PLr
l¼1

@�l

@P




 


2
; and the blue rectangle is its selected neighbor. Note the improved

sharpness in the patches that have been aligned: nose and mouth are sharper in (2)
than those in (1); the left eye is clearer in (7) than that in (2); and the right eye is
sharper in (12) than that in (7).

Fig. 4. Illustration of the geometric constraints in Eq. (12). In both the common
mean shape (right) and the original image Ii (left), the solid and dashed rectangles
represent the two patches being aligned. The crosses represent the target
landmarks in the common mean shape with 2D coordinates denoted by xs, which
are warped to the dots and triangles in the original image Ii according to two
different warping functions W x1

s ; p1
i

� �
and W x2

s ; p2
i

� �
, respectively. In the over-

lapped area of the two patches in Ii, the green dots denoted by s1
i and green

triangles denoted by s2
i are not overlapped. The geometrical constraints employed

in Eq. (12) enforce s1
i and s2

i to be overlapped since they correspond to the same set
of landmarks x1;2

s ¼ x1
s \ x2

s

� �
in the common mean shape.
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, where Lr is the total number of pixels within the

patch for the current congealing round. Once Eq. (11) is computed
for all pixels within the common mean shape, the aforementioned
searching can be efficiently implemented by the integral image
technique [32]. If the same patch is selected after congealing, we
will search for and operate congealing on a new patch with a re-
duced patch size. In this work, the patch size is initialized to the
size of the whole common mean shape and reduced by a factor
of 2/3 in each dimension when no further improvement can be
made at the current patch size. The process is stopped when the
size of the patch reaches a limit. Here, the patch reaches its size
limit if the number of target landmarks in the selected patch is less
than the number of landmarks required for computing pi in Eq. (2).

However, it is not reliable and robust to perform the congealing
on a single patch alone, since the geometric relationships between
the patch and the global context are neglected. In this work, be-
sides performing congealing on the optimal patch xk�, an additional
patch is chosen for alignment such that it overlaps with xk�, i.e.,
some target landmarks reside in both patches, and has the maxi-

mal value 1
L0r

PL0r
l¼1

@�l

@P




 


2
among all possible neighbors3 of xk�. We

should note that the additional patch may have smaller size than
Lr especially for the first several congealing rounds due to the bound-
ary limit of whole common mean shape. An example of patch selec-
tion over multiple congealing rounds is shown in Fig. 3. In this work,
we further enforce the geometric consistency between the two se-
lected patches, i.e., the landmarks in the overlapped region should
have consistent estimations under the two warping functions with
the two patches. In order to utilize this geometrical constraint, the
warping parameters of the ith unannotated image for the two
patches are estimated simultaneously using a single cost function:

ei Dp1
i ;Dp2

i

� �
¼ eiðDp1

i Þ þ ei Dp2
i

� �� �
þ b s1

i � s2
i



 

2
; ð12Þ

where Dp1
i and Dp2

i represent the warping parameter updates for
the two patches, respectively. As shown in Fig. 4, x1;2

s ¼ x1
s \ x2

s is
a subset of xs and consists of the 2D coordinates of the landmarks
in the overlapped region in the common mean shape.
s1

i ¼Wðx1;2
s ; p1

i � Dp1
i Þ contains the estimated landmark coordinates

in the image Ii corresponding to x1;2
s with the warping parameter p1

i

and warping parameter updates Dp1
i for the first patch.

s2
i ¼Wðx1;2

s ; p2
i � Dp2

i Þ is defined accordingly for the second patch.
The first term of Eq. (12) is the summation of the congealing errors
of the two patches, and the second term is a constraint to enforce
the geometric consistency between the two patches. By doing this,
the overlapped landmarks play a role as a joint connecting two
patches, and directly contribute to the estimation of warping
parameters for these two patches. Parameter b is a weighting coef-
ficient that adjusts the strength of the constraint.

Since W x1;2
s ; p1

i � Dp1
i

� �
is nonlinear w.r.t. Dp1

i , we take the first
order Taylor expansion on Wðx1;2

s ; p1
i � Dp1

i Þ:

W x1;2
s ; p1

i � Dp1
i

� �
�W x1;2

s ; p1
i

� �
�
@W x1;2

s ; p1
i

� �
@p1

i

Dp1
i : ð13Þ

Substituting Eqs. (7) to (12), the cost function becomes:
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; ð14Þ
3 In this work, 4 neighbors are considered for four positions (left, right, up, and
down) to the optimal patch.
where d1
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The warping parameter updates Dp1
i and Dp2

i are estimated by
solving a linear equation system as:
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Substituting Eqs. (12) to (15), we have:
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; ð16Þ
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Compared to congealing on the two patches separately based on
Eq. (7), performing congealing jointly in this manner requires
the computation of ei; eT

i ei, d1
i , and d2

i additionally. Note that
since x1;2

s is known for each congealing process, ei and eT
i ei can

be computed in advance. Since the dimension of x1;2
s is small

(less than the total number of target landmarks), the cost for
computing d1

i and d2
i can be neglected. Furthermore, as we men-

tioned before, L0r may be smaller than Lr, and thus, congealing at
each round using the greedy patch selection method has a lower
computational cost than performing congealing on two equal-
size patches.

The partitioning strategy is summarized in Algorithm 2, where
Sinit is the initial guess of the landmark positions for the unanno-
tated images I. In the algorithm, besides the notation mentioned
previously, size represents the size of the patches to be aligned in
the current partition level; d represents the index of the patch
being aligned. Starting from the initial common mean shape space
x1, the process is conducted by repeatedly searching an optimal
patch xk�� �

, which has the maximum potential to decrease the
misalignment error (e), in the common mean shape space. A
second patch xk��� �

is selected such that it can decrease e the most
significantly among the neighboring patches of xk�� �

. The patch
will be shrunk by a factor of 2/3, if xk� is the same as the one in
the previous congealing run. Then, the SSLSC is applied on two
selected patches simultaneously based on Eq. (12) to obtain the
corresponding landmark positions. This process is stopped when
the size of the patch is too small. Here, the patch reaches its size
limit if the number of target landmarks in the patch is less than
the number of landmarks required for computing pi in Eq. (2).
One example of multiple-level partition is shown in Fig. 3.

Our top-down congealing strategy performs a coarse-to-fine
alignment for the entire image ensemble. The congealing on larger
patches focuses on aligning the features that have the greatest var-
iation in appearance among the image ensemble such as the facial
boundary, whereas other features such as eyes are neglected.
Hence, the landmark estimation on larger patches is often coarse,
but provides a good initialization for the smaller patches. As the
process progresses, finer details of the target object are revealed
and aligned. As a result, the estimate of the landmark locations be-
comes more and more precise.
Algorithm 2. Landmark annotation by partition
Input: I;eI; Sinit;
~S; sizeinit

Output: S
lmin minimum number of landmarks in a patch;
d 1;
S = Sinit;

Compute x1 and x1
s from ~S; xs  x1

s ;
while d < maximum number of patches do

if d = 1 then

Calculate Pinit
1 and ~P1 from ðS1

init;x
1
s Þ and ð~S;x1

s Þ,
respectively;

P1; S1  SSLSCðI;eI;P1
init;

~P1;x1; x1
s Þ; // for the alignment

on the whole common mean shape based on Eq. (7);
else

Ŝ ¼ S n Sd
init
S

Sdþ1
init ; // Obtain the landmarks that

will not be updated in this congealing round;

Calculate Pd
init and ~Pd from ðSd

init; x
d
s Þ and ~S;xd

s

� �
,

respectively;

Calculate Pdþ1
init and ~Pdþ1 from Sdþ1

init ;x
dþ1
s

� �
and ~S;xdþ1

s

� �
,

respectively;

Pd; Sd;Pdþ1; Sdþ1  SSLSC2

I;eI;Pd
init;

~Pd;xd; xd
s ;P

dþ1
init ;

~Pdþ1;xdþ1;xdþ1
s

� �
; // for the

simultaneous alignment on the two child patches
based on Eq. (12);

end if

Compute @�l

@P for each pixel l 2 xs;
if d=1 then
size size ⁄ 2/3; //reduce the patch size by a ratio of 2/3;
end if
Find a region xk� with maximum 1

Lr

PLr
l¼1

@�l

@P




 


2
;

if xk� ¼ xd then
size size ⁄ 2/3; //reduce the patch size by a ratio of 2/3
if no new patch can be found at current patch size;

Find a region xk� with maximum 1
Lr

PLr
l¼1

@�l

@P




 


2
;

end if
for each neighboring region of xk� do

Find a region xk�� with maximum 1
Lr

PLr
l¼1

@�l

@P




 


2
;

end for

S ¼ Ŝ
S

Sd S Sdþ1;
xd+2 xk⁄;xd+3 xk⁄⁄

Calculate xdþ2
s from xs and xdþ2;

Calculate xdþ3
s from xs and xdþ3;

Calculate Sdþ2
init from xdþ2 and S;

Calculate Sdþ3
init from xdþ3 and S;

if sizeðxdþ2
s Þ < lmin or sizeðxdþ3

s Þ < lmin then
return S;

end if
d d + 2

end while
6. Experiments

In order to demonstrate the effectiveness of the proposed
algorithm, we have performed extensive validation studies for
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Fig. 5. Performance comparison for SSLSC (blue line with circles) and patch-based SSLSC (black line with crosses) in terms of (a) accuracy (NRMSE of landmarks excluding
outliers) and (b) robustness (SOF). The results in each row correspond to a noise level (gmax = 10, 20, and 30 from top to bottom), respectively. The performance is evaluated on
the first data set by varying the number of annotated images eK and the noise level gmax from an average of 5 random trials, where 200 unannotated images are used.

Table 3
Performance comparison of SLSC and shape-constrained SLSC in terms of accuracy (NRMSE) and robustness (SOF) under varying noise levels. eK ¼ 1 annotated images and K = 200
unannotated images from the first data set are used.

Noise Level

gmax = 10 gmax = 20 gmax = 30

NRMSE (%) SOF (%) NRMSE (%) SOF (%) NRMSE (%) SOF (%)

SLSC 9.22 3.4 9.81 11.2 9.84 27.1
Shape constrained SLSC 9.16 1.7 9.69 9.3 9.83 22.9

Table 2
Performance comparison of patch selection strategies: brute-force partitioning method [10] and the proposed greedy patch selection method in terms of accuracy (NRMSE),
robustness (SOF), efficiency (time), and number of congealing rounds. eK ¼ 1 annotated images and K = 200 unannotated images from the first data set are used with the noise
level gmax = 30.

NRMSE (%) SOF (%) Time (s) Congealing rounds

Tong, et al. [10] 7.05 1.5 3683 5
Greedy patch selection method 6.83 1.5 3262 7

Y. Tong et al. / Computer Vision and Image Understanding 116 (2012) 922–935 929



Fig. 7. Landmark annotation results for three noise levels. For each cell, the three rows illustrate the initial landmark positions, the round-1 results, and the final annotation
results, respectively. In each row, the mean warped face region and two example images are shown.
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Fig. 6. Performance analysis by varying congealing rounds in terms of (a) accuracy (NRMSE) and (b) robustness (SOF) using eK ¼ 1 annotated images and K = 200 unannotated
images with the noise level gmax = 30 from the first data set. The results of round-0 correspond to the initialization, and those of round-1 represent the congealing results on
the whole common mean shape by SSLSC.
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the application of annotating facial landmarks. It is desirable to
find results from a previous state-of-art approach to compare with
ours. A fair comparison with supervised methods such as AAM [9]
would be to train AAM using the same set of annotated images pro-
vided to our approach. In contrast, we aim to automatically anno-
tate a set of specific landmarks around the facial features (i.e., eyes,
eyebrows, nose, mouth, and facial boundary) for a large image set,
given a few annotated example images. To the best of our knowl-
edge, there is little prior work addressing this challenging problem,
so we compare with [10], which uses a brute-force partitioning
strategy for patch selection, [8], which is similar to our SLSC algo-
rithm without using the annotated images, and an AAM-based
supervised method [9].

For the experiments, we employed three test data sets: the
first data set contains 400 images from the Notre Dame (ND1)
database [33] with more than 100 subjects; the second data set
consists of 255 images from Caltech 101 face database [34] and
50 images from the ND1 database; and the third data set contains
1176 images from FERET database [35] and ND1 database. We
manually annotated 33 landmarks for each image in the first
and the third data sets to establish a ground truth and to enable
a quantitative evaluation for the automatic annotation perfor-
mance. The experiments on the first data set aim to quantitatively
evaluate the proposed annotation algorithm on various aspects
including the robustness to the noise in initialization and the
parameter setting, and to enable a quantitative comparison with
other aforementioned methods [10,8]. The experiments on the
other two data sets intend to demonstrate that the proposed
annotation algorithm can generalize to a large population and
deal with real-world challenges such as cluttered background
and various illuminations (the second data set), and high dimen-
sionality of the image ensemble (the third data set). Furthermore,
the experiment on the third data set also provides a quantitative
comparison with the supervised method [9] with same amount of
training data.

Throughout the experiments, a six-parameter affine transfor-
mation is employed in each of the SLSC processes; and thus, each
patch has an individual warping parameter vector with six ele-
ments in the partition-based SSLSC. To accommodate illumination
changes, the warped face region undergoes a common normaliza-
tion procedure, where we subtract the mean intensity, then divide
by the standard deviation of intensity.

Our algorithm performance is evaluated by two criteria: (1)
Normalized Root Mean Squared Error (NRMSE) of landmarks de-
fined as the RMSE w.r.t. the ground truth divided by the eye-to-
eye distance qi, and expressed as a percentage; and (2) Sample
‘‘Outliers’’ Fraction (SOF) defined as the number of images, of
which the NRMSE exceeds a threshold (10%), versus the number
of unannotated images. A smaller NRMSE indicates a higher anno-
tation accuracy, and a smaller SOF represents greater robustness.
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6.1. Experimental evaluation on the first data set

In the following, we will demonstrate that with only a few
annotated images, robust and accurate landmark annotation can
be obtained with the proposed algorithm. The images in the first
data set are scaled to the same size (256 � 256) based on the
ground-truth eye positions such that the face region of each image
has nearly the same size and is located at approximately same
position. We then divide the 400 annotated images into two
non-overlapping sets: an annotated set with eK images and an
unannotated set with 200 images. A 72 � 72 square region, which
encloses all the target landmarks, is used as the common mean
shape in the experiments.

For quantitative evaluation, the initial value of the jth element of
si is generated by adding uniformly distributed random noise
g 2 [�gmax, gmax] to the ground-truth value ŝi;j as follows,

si;j ¼ ŝi;j þ
gqi

�q
; ð22Þ

where qi is the interocular pixel distance of Ii, and �q is the average
of qi for all unannotated images (�q � 105 pixels in our experi-
ments). By doing so, the level of deviation in the initialization is pro-
portional to the interocular distance and face size.

In practical applications, the initial landmark positions can be
obtained by placing a configuration of landmarks within a rectan-
gular box returned from a face detector4. Hence, the proposed algo-
rithm is fully automatic given a few annotated samples. This
initialization strategy is employed in the experiments of the second
and third data sets.

6.1.1. Evaluation on patch selection strategy
Table 2 compares the annotation performance by using the

brute-force partitioning method as in [10] and the greedy patch
selection method described in Section 5 in terms of accuracy
(NRMSE), robustness (SOF), efficiency (computational complexity),
and number of congealing rounds when eK ¼ 1 and gmax = 30. We
ensure that both algorithms are compared under the same condi-
tion and only differ in their patch selection strategies. For example,
they use the same randomly selected annotated set and the same
initialization. Note that, for this result, outliers are excluded from
the computation of NRMSE. It can be seen that the greedy patch
selection method slightly improves the annotation accuracy with
the same performance of robustness. Furthermore, the greedy
patch selection method is more efficient even with more congeal-
ing rounds, which is extremely important for annotating large im-
age ensembles. In the remaining experiments we use the greedy
4 gmax � 15 when a commercial face detector developed by Pittsburgh Pattern
Recognition [36] is used in our experiments.

of this article.
6 Here, the mean warped face region is different from the common mean face x

used in the congealing process. It is generated by piecewise affine warp in a triangular
face mesh based on the landmark positions and only used for visualization purpose
patch selection method with b = 0.225 determined empirically.

6.1.2. Results of shape-constrained SLSC
Table 3 shows the comparison of SLSC and SSLSC under the ef-

fects of different noise levels gmax 2 {10,20,30}, in terms of accu-
racy (NRMSE) and robustness (SOF). Note that, for this result,
outliers are excluded from the computation of NRMSE. The results
are computed from an average of five trials, where eK ¼ 1 anno-
tated images are randomly selected as the annotated set for each
trial. Again we ensure that both algorithms are compared under
the same conditions.

Comparing the results of SLSC and SSLSC in Table 3, we see that
the shape constraints are effective in reducing the outliers signifi-
cantly, especially when the congealing performance of SLSC is poor
due to high initialization noise and a small number of annotated
images. For example, the SOF decreases from 27.1% (SLSC) to
22.9% (SSLSC) with eK ¼ 1 and gmax = 30, which is equivalent to
removing 8.4 outliers. Since the shape constraints are not applied
on those low-error estimations, there is no obvious improvement
in the NRMSE excluding outliers.

6.1.3. Results of patch-based SSLSC
In this experiment, we demonstrate the improvement of anno-

tation accuracy by patch-based SSLSC. Fig. 5 shows the comparison
of SSLSC and patch-based SLSC under the effects of varying number
of annotated images eK 2 f1;5;10;20;50;100;200g and different
noise levels gmax 2 {10,20,30}, in terms of NRMSE and SOF. Similar
to the previous experiment, outliers are excluded from the compu-
tation of NRMSE and the performance is evaluated from an average
of 5 random trials.

Comparing the results of SSLSC (blue5 line with circles) and
patch-based SSLSC (black line with crosses) in Fig. 5, it is clear that
the patch-based approach further improves both precision and
robustness in terms of reducing the NRMSE and SOF. For example,
the SOF decreases from 22.9% (45.8 outliers) with SSLSC to 14%
(28) with patch-based SSLSC, and the NRMSE decreases from 9.83%
(�10.32 pixels) using SSLSC to 8.58% (�9.01 pixels) using patch-
based SSLSC with eK ¼ 1 and gmax = 30. In summary, an average of
1.1% (�1.16 pixels) reduction of NRMSE is achieved for all noise lev-
els, and an average of 3.2% (6.4 outliers) decrease of SOF is obtained
for gmax = 30. From Fig. 5, we can see that there is no remarkable
improvement when eK P 20, which means that even with only 9%
(20/220) of the data manually annotated, we can estimate the land-
mark locations accurately and robustly.

Fig. 6 illustrates the performance improvement across different
congealing rounds when eK ¼ 1 and gmax = 30. The results of round-
0 correspond to the initialization, and those of round-1 represent
the congealing results on the whole common mean shape by SSLSC.
We can see that as the number of congealing rounds increases,
both the NRMSE and SOF decrease and converge at the last con-
gealing round.

In Fig. 7, we also show exemplar annotation results under three
initialization noise levels, respectively. To compare the overall
annotation performance, a mean warped face region6 is also dis-
played. It can be observed that the first round of the congealing
(middle row) can roughly localize the landmarks, but fail to handle
subtle facial appearance changes caused by individual difference, fa-
cial expression, and face pose. These round-1 results are basically the
performance of the previous LSC approach [8] with additional shape
constraints and annotated images. In contrast, the landmark annota-
.
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Fig. 10. Annotated images with the (a) lowest, (b) median, and (c) highest
annotation confidences using eK ¼ 10 annotated images and K = 200 unannotated
images with the noise level gmax = 30 from the first data set.
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Fig. 11. Annotation confidence (ei) versus landmark annotation error (NRSE) usingeK ¼ 10 annotated images and K = 200 unannotated images with the noise level
gmax = 30 from the first data set. The Pearson correlation coefficient between these
two variables is 0.632.
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tion in the final congealing round (last row) show a significant
improvement of accuracy under slight changes in face pose (com-
pare the noses and mouths in the 3rd, 5th, and 6th images of the last
two rows) as well as individual differences (compare the noses and
mouths in the 2nd, 8th and 9th images of the last two rows). This
again shows the accuracy of our approach when compared to [8].

6.1.4. Analysis on different facial components
From Fig. 7, we see that the mean warped face regions in the

last row have a much sharper appearance around the nose and
mouth, compared with those in the second row. We can even see
the philtrum clearly in the last row. However, the improvement
around the facial boundary is not obvious. Therefore, we have con-
ducted an analysis to study performance improvement using the
patch-based approach for different facial components.

Using the case eK ¼ 10 and gmax = 20 as an example, Fig. 8 shows
that the patch-based algorithm improves the annotation accuracy
on the different facial components at various degrees. On the one
hand, the improvement on the facial boundary is the smallest
among the facial components (a 0.99% reduction in terms of
NRMSE), since the facial boundary has the most significant varia-
tions across images and attracts the most attention in the first
round of congealing. On the other hand, the improvement on the
inner-face components such as nose and mouth are significant,
e.g., a 3.62% reduction for the nose and a 1.8% reduction for the
mouth, since these inner-face components are involved in more
congealing rounds as shown in Fig. 3. As the number of congealing
rounds increases, more details of these facial components are re-
vealed and contribute to the congealing process. This property of
the proposed algorithm is valuable for practical applications, since
an accurate estimation of landmarks for the inner-face component
(eyes, eyebrows, nose, and mouth) are extremely useful for many
applications such as face recognition and facial expression analysis.

6.1.5. Analysis of the weighting coefficient
Besides studying the effect of noise level and the number of

annotated images on the congealing performance, we also analyze
how the selection of the weighting coefficient a in Eq. (5) affects
performance of the proposed algorithm. The larger a is, the more
the algorithm relies on the annotated data.

In the extreme case, a = 0 implies an unsupervised congealing,
and a = 1 is supervised. Fig. 9 illustrates the performance with var-
ious values of a with eK ¼ 10 and gmax = 30. Although using a large
a improves the accuracy of the algorithm, it tends to result in more
outliers, especially with only a few annotated samples. This is be-
cause the shape/appearance variations in the large image ensemble
cannot be well represented by only a small number of annotated
samples. A good trade-off can be achieved by balancing the
weights of the annotated and unannotated data. We used a = 0.5
in the experiments reported in the previous discussions.

6.1.6. Annotation confidence
Often in computer vision, knowing when the algorithm fails is

as important as how the algorithm performs. Hence, a confidence
score is desirable for practical applications in order to evaluate
the quality of annotation without ground truth. For this we use ei



Fig. 12. Annotation results on the second data set: (a) the initialization of our algorithm and (b) the landmark annotation results. A face detector [36] is employed to detect
the face region for initialization.
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Fig. 13. Histogram of ei for the third data set.

Fig. 14. Exemplar annotated images of the third data set at 5 annotation confidence leveK ¼ 15 annotated images and K = 1161 unannotated images from the third data set are
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in Eq. (5). A smaller ei indicates a higher-confidence in annotation.
Fig. 10 shows annotated images with the lowest, median, and high-
est confidence scores, in an image ensemble (eK ¼ 10 and
gmax = 30), where the annotation is improving from the top to bot-
tom row. Fig. 11 also illustrates the distribution of the estimated ei

versus the real landmark annotation error represented by the Nor-
malized Root Squared Error (NRSE) of landmarks. With the increase
of the ei, the landmark annotation error increases significantly.
Hence, it is clear that the confidence score is indicative of annota-
tion performance. The linear correlation between ei and NRSE can
also be shown by the computed Pearson correlation coefficient be-
tween them, 0.632. Similar phenomena have been observed for
experiments on the other two data sets. In practice, after annota-
tion, one can use this confidence score to select only well-anno-
els corresponding to 5 bins in Fig. 13: ei decreases from the top to the bottom row.
used with the detected face region for initialization.



Table 4
Performance comparison with supervised method [9] using eK ¼ 15 annotated images
and K = 1161 unannotated images from the third data set. A face detector [36] is
employed to detect the face region for initialization.

NRMSE (%) SOF (%)

Method of [9] 6.94 17.09
Proposed method 7.63 0.85
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tated samples for a training set, or to select samples for other
appropriate additional processing.

6.2. Cross-database validation

Here, using the second and the third data sets, we will demon-
strate the generalization capability of the proposed algorithm
when dealing with an unseen imaging environment. It can be as-
sumed that a face detector can perform reasonably well for the
imaging conditions we are dealing with (i.e., the face occupies a
large portion of the image and the face pose variation is moderate).
For initialization of these two data sets, we first obtain the location
of the face with a commercial face detector developed by Pitts-
burgh Pattern Recognition [36]. Then, as shown in Fig. 12a, the ini-
tial positions of landmarks are generated by adapting the target
landmark coordinates on the common mean shape (xs) to the de-
tected face region. Therefore, given a few annotated images, we
can perform the landmark annotation in an automatic fashion.

For the second data set, we aim to automatically annotate the
33 landmarks on 255 images from Caltech 101 face database [34]
with the help of 50 manually annotated images from the ND1
database. Since we do not have ground-truth landmark positions
for this database, we can only perform qualitative evaluation by vi-
sual observation. Fig. 12b illustrates sample annotation results.
Although the congealing on the Caltech 101 images is much more
difficult than that of the first data set (ND1 images) due to clut-
tered backgrounds and challenging illumination conditions, our
algorithm can still achieve satisfactory annotation performance.

Furthermore, we also obtain excellent annotation results on the
third data set. We have manually annotated 33 landmarks on this
combined database such that we can perform quantitative evalua-
tion on the database.

As shown in Table 4, a 7.63% NRMSE of landmarks (excluding
outliers) with 0.85% of SOF (10 outliers) is achieved for 1176 total
images with only 15 (=1.3%) annotated images. Compared with the
supervised method [9], which was trained using the same set of
data and tested with the same initialization, the proposed method
achieves similar annotation accuracy, and more importantly im-
proves the robustness dramatically: the SOF decreases about
16.24%, equivalent to reducing 191 outliers. This further demon-
strates that our system can accommodate a vast amount of data,
without noticeable sacrifice in performance; while the conven-
tional supervised alignment algorithms cannot handle the case
with very few annotated training data. Fig. 13 shows the distribu-
tion of estimated ei after convergence for the third data set. We can
see that the majority of the annotated images has high annotation
confidence (low value of ei). Fig. 14 also gives some samples of
annotated images selected from each of the five bins in Fig. 13.

Even though the main purpose of this work is the one-time
off-line annotation of training data, the efficient run-time is still
desirable for practical usage. Our method has very acceptable com-
putational complexity. As shown in Table 2, a patch-based SSLSC
experiment to produce 200 annotated images with a 72 � 72 com-
mon mean shape takes less than 1 h using a MatlabTM implemen-
tation with a 2 GHz CPU. In comparison, for an experienced human
annotator, it takes at least 3 h to annotate 33 landmarks for 200
images. It is expected that the savings in time will be even greater
when dealing with a larger ensemble.
7. Conclusions

Shape deformation of images of a real-world object is often
non-rigid due to inter-instance variability, object motion, and
changing camera view point. Automatically estimating non-rigid
deformations for an object class is a critical step in characterizing
the object and learning statistical shape models. Our proposed ap-
proach facilitates such a task by automatically producing anno-
tated data sets with only a small number of manually annotated
examples. Extensive experiments demonstrate that our system
has achieved impressive annotation results on face images with
nearly frontal view and moderate changes in expression, useful
for many practical applications.

There are several future directions in which to extend this
framework. First, although we have only applied our approach to
facial images, no domain knowledge of faces is used in our work.
Hence, the approach can be immediately applied to the task of
annotating landmarks in images of other classes of objects such
as vehicles, pedestrians, or objects in medical imaging. Second,
we expect to extend our methods to handle large facial variations,
such as face pose. Third, features such as Histogram of Oriented
Gradients (HOG) [2] can also be utilized in our congealing ap-
proach in order to achieve improved robustness w.r.t. lighting
and color. Finally, in this work, we intend to minimize the summa-
tion of the pairwise image difference among the image ensemble
caused by deformation of the target region, while the illumination
change and appearance variations within the target region are ig-
nored. Since the illumination variation is not modeled in the cost
function, the proposed SSLSC algorithm and the annotation confi-
dence for evaluating the annotation performance will be affected
by the illumination change especially the skin color variation and
a high contrast between the face skin and the background. In the
future, we are interested in extending the cost function to include
the appearance variation parameters, which leads to a better mod-
eling of the pairwise image difference.
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