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Fusing Geometric Features for Skeleton-Based
Action Recognition using Multilayer LSTM

Networks
Songyang Zhang, Yang Yang, Jun Xiao, Xiaoming Liu, Yi Yang, Di Xie, and Yueting Zhuang

Abstract—Recent skeleton-based action recognition approaches
achieve great improvement by using RNN models. Currently
these approaches build an end-to-end network from coordinates
of joints to class categories and improve accuracy by extending
RNN to spatial domains. First, while such well-designed models
and optimization strategies explore relations between different
parts directly from joint coordinates, we provide a simple
universal spatial modeling method perpendicular to the RNN
model enhancement. Specifically, according to the evolution of
previous work, we select a set of simple geometric features,
and then seperately feed each type of features to a 3-layer
LSTM framework. Second, we propose a multi-stream LSTM
architecture with a new smoothed score fusion techinique to
learn classification from different geometric feature streams.
Furthermore, we observe that the geometric relational features
based on distances between joints and selected lines outperform
other features and the fusion results achieve state-of-the-art
performance on four datasets. We also show the sparsity of
input gate weights in the first LSTM layer trained by geometric
features and demonstrate that utilizing joint-line distances as
input require less data for training.

Index Terms—action recognition, skeleton, geometric feature,
LSTM, score fusion.

I. INTRODUCTION

ACTION recognition is an intensively researched topic,
aiming to identify human actions from input sensor

streams. Three common types of input in this task are RGB [1],
[2], depth [3], [4] and skeleton [5], [6]. Specifically, RGB
videos are the most popular input and have been widely
studied due to its convience of data capturing. Nontheless,
capturing information in the 3D space, where human ac-
tions happens, still has advantages in some aspects since its
representation is much richer. For instance, motion capture
systems extract accurate 3D joint positions using markers and
high precision camera arrays. Admittedly, it is not designed
for recognizing actions in daily life. In that, Kinect sensor
provides a cost-effective daily living solution, which generates
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Fig. 1. Evolution of geometric relation modeling for RNN-based action
recognition. Orange points are joints, gray dotted lines connect several joints
represent body parts, blue bidirectional arrows represent relations between
parts or joints. (a) relations between adjacent parts [5]; (b) relations among
all parts [6], [8]; (c) relations between adjacent joints [9]; (d) relations among
all joints (ours).

relatively reliable skeletons from depth maps. In this paper, we
focus on recognizing actions from skeleton inputs rather than
RGB or depth for three reasons. First, skeletons are invariant
to viewpoint or appearance, thus they suffer less intra-class
variances compared to RGB or depth. Second, skeletons are
high-level information describing human’s movement only.
Without the interference of some irrelevent signals, the learn-
ing of action recognition itself can be greatly simplified.
Third, it is demenstrated by Yao et al. [7] that skeleton-based
features outperform appearance-based features by using the
same classifier on the same dataset.

Recent exploration of recurrent neural network (RNN) [10]–
[12] made a great influence on processing video sequences.
Several works [5], [6], [8], [9] successfully built well-designed
multilayer RNNs for recognizing action based on skeletons.
However, while promising recognition performances are ob-
served using these methods, they have three common lim-
itations: (1) their inputs are limited to the coordinates of
joints; (2) the RNN models are sophisticated and have a high
complexity; and (3) the relations learned from these models
are rarely self-explanatory and intuitive to human.

In this paper, considering that LSTM is suitable for model-
ing dependence in the temporal domain, we focus on feeding
LSTM with rich spatial domain features by exploring geo-
metric relations between joints. Our method is inspired by
the evolution of recent skeleton-based action recognition using
RNN models. Du et al. [5] model the relations of neighboring
parts (two arms, two legs and torso) with handcrafted RNN
subnets and ignore the relations between non-adjacent parts
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(Fig. 1(a)), which is remedied by two methods in different
ways. Zhu et al. [6] add a mixed-norm regularization term to
the fully connected LSTMs cost function which can exploit
relations between non-adjacent parts (Fig. 1(b)). Another so-
lution is introduced by Shahroudy et al. [8], who separate the
memory cell to part-based sub-cells and the non-adjacent parts
relations are learned over the concatenated part-based memory
cells (Fig. 1(b)). Admittedly, these two methods successfully
explore relations between body parts, but dividing body into
parts might not be well funded. A more elaborate division
is proposed by Liu et al. [9]. They focus on adjacent joints
and design a sophisticated model traversing skeleton as a tree
(Fig. 1(c)). However, Liu et al. [9] ignore the relations be-
tween non-adjacent joints. The evolution of geometric relation
modeling indicates that adding relations between non-adjacent
joints may further enhance the performance.

Based on this intuition, we enumerate eight geometric fea-
tures to describe relations among all joints inspired by several
previous work [13]–[15] (Fig. 1(d)). This kind of feature
describes geometric relations between specific joints in a
single frame or a short frame sequence, which is typically used
for indexing and retrieval of motion capture data. We evaluate
their performances on LSTM. Experimentally, we find joint-
line distances outperform others on four datasets. To further
understand our deep LSTM network, we visualize the weights
learned in the first LSTM layer and find the weight of the
input gate is sparse, which means a small subset of joint-line
distances is sufficiently representative. Our method has three
advantages. First, our simple geometric feature is superior
than the joint coordinates in all evaluations, which implies
future work shall pay attention to this type of geometric
features. Second, the fact that we achieve the state-of-the-art
performance using the standard LSTM model [16] indicates
that our finding is applicable to perpendicular development
in RNN models. Third, the geometric features describing
relations between joints, lines and planes are easy for human
to comprehend.

Feeding LSTM with a single type of feature is effective
in some cases. Such features only describe raw data from
one aspect and the complete semantics might be carried by
a set of features. Thus, the fusion of multiple feature streams
may boost the classification performance. Similar research has
been conducted in recognizing actions in RGB videos. Karen
et al. [17] first adapt a two-stream convolutional network to
this task and evaluate the performance on three simple score
fusion methods. Ng et al. [18] and Christoph et al. [19] further
explore different feature-level fusing strategies in combining
two CNN architectures during training. Wu et al. [20] propose
a new score fusing strategy utilizing the class relationships
in the data after the network training. Shi et al. [21] adapt
previous architecture to a three-stream CNN network by in-
troducing an additional feature. Inspired by the above research,
we concatenate two LSTM networks trained by different
geometric features in different layers during training. We also
test the performance of average score fusion after training.
Experimentally, we find that fusing during training is inferior
for skeleton-based action recognition while the average score
fusion outperforms any single network. However the average

score fusion is still not well funded, since it ignores the
different score distributions in each stream. Thus we propose a
new score fusion strategy where the distribution of each stream
is first smoothed with a hyperparameter, and then the weights
of each stream are learnt in a joint framework. Furthermore,
our method alleviates the overfitting problem occured in the
single stream.

It should be mentioned that this paper is an extension of
our conference paper [22]. Compared to the previous version,
we achieve better performance by integrating all individually
trained models with a smoothed score fusion technique. The
main contributions of our work are summarized as follows:

1. We introduce an integrated system combing the ad-
vantages of geometric features and stacked LSTM model
for skeleton-based action recognition. We demonstrate the
proposed JL d requires less training samples than using joint
coordinates.

2. We propose a novel score fusion method to effectively
fuse the outputs of the individual networks. The method first
smoothes the confidence scores and then learns the weights of
individual network streams adaptively.

3. Our model is simpler than many well-designed LSTM
architectures, and yet it achieves state-of-art action recognition
accuracy in widely used four benchmark datasets.

The remainder of the paper is organized as follows. In
Section II, we introduce the related work on skeleton based
action recognition. In Section III, we model human spatial
information via eight types of geometric relational features.
Experimental results and discussions are presented in Sec-
tion IV. Finally, we conclude the paper in Section V.

II. RELATED WORK

In this section, we briefly review the existing works that
closely relate to the proposed method, including two categories
of approaches representing relational geometric features and
skeleton-based action recognition.

A. Geometric features

Many prior works recognize actions from direct measures
of joint parameters of the human body, e.g., angles, position,
orientation, velocity, acceleration [23]–[26]. Muller et al. [27]
introduce a class of Boolean features expressing geometric
relations between certain body points of a pose. Yao et al. [7]
develop a variety of pose-based features including distance be-
tween joints, distance between joints and planes, and velocity
of joints, etc. Yun et al. [13] extend [7]’s idea and modify pose-
based features that are suitable for two persons’ interaction.
Chen et al. [14] enumerate 9 types of geometric features and
concatenate all of them as pose and motion representations.
Vinagre et al. [28] propose a relational geometric feature
called Trisarea, which describes the geometric correspondence
between joints by means of the area of the defined triangle.
Vemulapalli et al. [29] utilize rotations and translations to
represent the 3D geometric relationships of body parts in Lie
group. In contrast, our work extends geometric features to
action recognition via deep learning methods.
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B. RNN for skeleton-based action recognition

Recently, several RNN models have also shown promising
performance in this task. Du et al. [5] propose an end-to-end
hierarchical RNN with handcrafted subnets, where the raw
positions of human joints are divided to five parts according
to human structure, and then are separately fed into five
bidirectional RNNs. As the number of layers increases, the
representations extracted by the subnets are hierarchically
fused to a higher-level representation. Zhu et al. [6] find
such methods ignore the inherent co-occurrences of joints, and
thus design a softer division method. They add a mixed-norm
regularization term to fully connected LSTMs cost function,
which is capable to exploit the groups of co-occurring and
discriminative joints for better action recognition. An internal
dropout mechanism is also introduced for stronger regulariza-
tion in the network, which is applied to all the gate activations.
Shahroudy et al. [8] separate the memory cell to part-based
sub-cells and push the network towards learning the long-
term context representations individually for each part. The
output of the network is learned over the concatenated part-
based memory cells followed by the common output gate.
Liu et al. [9] focus on adjacent joints in a skeleton, which
split body into smaller parts than prior work. They extend
LSTM to spatial-temporal domains with a tree-based traversal
method. Compared to learning features with well-designed
LSTM networks, we show that properly defining hand-crafted
features for a basic LSTM network can be superior.

C. Fusion methods in RGB-based action recognition

Several studies made their efforts on fusing multiple features
in RGB-based action recognition tasks. Yang et al. [30] design
a hierarchical regression model to exploit the information
derived from each type of feature, which is then collabora-
tively fused in order to obtain a multimedia semantic concept
classifier. Simonyan et al. [17] evaluated three fusion methods
on fusing two-stream ConvNets: training a fully-connected
layer on top of two streams, averaging the softmax scores
and training a linear SVM using softmax scores. They found
that SVM-based fusion are superior to the average fusion,
while the fusion with fully-connected layers is impracticable
due to the overfitting problem. Wu et al. [20] tested more
methods, including SVM-based early fusion, SVM-based late
fusion, multiple kernel learning, early fusion with neural
networks, late fusion with neural networks, multimodal deep
Boltzmann Machines, RDNN, and their proposed Regularized
Feature Fusion Network. Shi et al. [21] propose a novel
feature and further evaluate the late fusion performance of
the combination among different features. To the best of our
knowledge, our approach is the first work evaluating fusion
methods on skeleton-based action recognition task. Also, The
proposed method provides another solution in adjusting the
score distribution of fusion problem.

III. OUR APPROACH

Many traditional computer vision systems rely on
hand-crafted features and well-designed optimization algo-
rithm [31]–[35]. However, recent deep learning-based systems
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Fig. 2. The structure of a LSTM layer. The input xt of the first layer is the
geometric feature. For higher layers, the input xt is the output ht from the
previous layer at the same time instance.

utilizing features learned from raw data have demonstrated
great success on various vision tasks, e.g., video classifica-
tion [1], [18], [36], [37] and image description [1], [38]. Such
data-driven features, without the guidance of domain knowl-
edge, may run into the overfitting problem, especially in the
cases of small amount of training data, or the difference data
distributions between training and testing data. To this end, we
hypothesize that properly designed hand-crafted features could
be valuable to deep learning-based methods, in contrast to the
typical raw data input. Specifically, our skeleton-based action
recognition approach utilizes a set of relational geometric
features. Similar features have been used in motion retrieval
applications [14].

A. Learning with A Single Type of Feature

In order to put our proposed approach into context, we first
review Long-Short Term Memory neuron (LSTM). LSTM is
an advanced structure which overcomes the RNN’s vanishing
gradient problem [39] and is able to model long-term depen-
dencies. Different from RNN’s simple neuron, a LSTM neuron
contains an input gate, an output gate, a cell and a forget gate
that determines how the information flow into and out of the
neuron. One LSTM layer is shown in Fig. 2. In our approach,
we do not use in-cell connections [16] (also called peepholes)
as no improvement has shown in recent experiments [40].
In summary, components in LSTM neurons are calculated as
follows:

it = σ(Wxixt +Whiht−1 + bi),

ft = σ(Wxfxt +Whfht−1 + bf ),

ut = tanh(Wxuxt +Whuht−1 + bu),

ct = it ◦ ut + ft ◦ ct−1,
ot = σ(Wxoxt +Whoht−1 + bo),

ht = ot ◦ tanh(ct),

(1)

where W and b are the weight matrices and bias vectors
respectively. The symbol σ is the sigmoid function. The
operation ◦ is an element-wise multiplication.
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Fig. 3. The LSTM architecture in our approach, where each orange dot is
one LSTM layer as Fig. 2.

Taking advantage of multilayer LSTM (a.k.a. the stacked
or deep LSTM) architectures, we build our model shown
in Fig. 3. Specifically, the first LSTM layer takes geometric
features as the input xt, and the upper LSTM layer takes the
output ht from the lower LSTM layer as the input xt. This
variation of LSTM enables the higher layers to capture longer-
term dependencies of the input sequence. For the purpose of
providing confidence scores at the last time step n, a softmax
layer is placed on the highest LSTM layer L to estimate the
probability of a sequence X belonging to the class Ck as:

p(Ck|X) =
exp(zk)∑C
i=1 exp(zi)

, (2)

z = Wzh
L
n + bz. (3)

B. Spatial Modeling via Geometric Feature

In this section we consider spatial modeling using geometric
features in a single frame. We adopt a typical human skeleton
model with 16 joints for illustration. Any two of joints form
a line and any three of joints form a plane. Thus, there
are C2

16 = 120 lines and C3
16 = 560 planes in total.

The pair-wise combination of joints, lines, and planes form
geometric features. Figure 4 (a) shows the skeleton model.
Tab. I summarizes the numbers of all possible features, where
duplicated features are removed when identical lines or planes
are determined by the same set of joints.

Joint Line Plane
Joint 120 1, 680 7, 280
Line 7, 140 65, 520
Plane 156, 520

TABLE I
NUMBER OF ALL POSSIBLE FEATURES WHEN USING THE HUMAN MODEL

WITH 16 JOINTS.

Since the number of combinations is extremely large, using
all of them in the learning could be very time consuming.
Therefore, we need to select several important lines and planes
in order to reduce the computational cost. Specifically, we

Head 

NeckRShoulder
LShoulder

Chest
LElbow

RElbow
RHand

LHand
LHipRHip Hip

RKnee LKnee

RFoot

LFoot

(a) (b) (c)
Fig. 4. (a) A skeleton model. Orange dots represent joints and green lines
represent limbs. (b) Lines. 15 Green, 5 blue and 10 red lines are three types
of lines. (c) Planes.

select the following joints, lines and planes on the 16-joint
human skeleton, as shown in Fig. 4. The reason we select
these joints are explained in IV-D1.
• Joint. Each joint J is encoded with its coordinate

(Jx, Jy, Jz).
• Line. LJ1→J2 is the line from joint J1 to J2, if one of

the following three constraints is satisfied:
1. J1 and J2 are directly adjacent in the kinetic chain.
2. If one of J1 and J2 is at the end of skeleton chain
(one of Head, L(R)Hand or L(R)Foot), the other one can
be two steps away in the kinetic chain (Head→Chest,
RHand→RShoulder, LHand→LShoulder, RHip→RFoot,
and LHip→LFoot). This produces five lines.
3. If both J1 and J2 are at the end of skeleton chain,
LJ1→J2 is a line. This produces ten lines.

• Plane. PJ1→J2→J3 is the plane determined by the triangle
with vertices J1, J2, and J3. We only consider five
planes corresponding to the torso, arms and legs, namely:
PChest→Neck→Head, PLShoulder→LElbow→LHand,
PRShoulder→RElbow→RHand, PLHip→LKnee→LFoot and
PRHip→RKnee→RFoot.

As LSTM are designed to learn variation in time, we
enumerate eight types of geometric features that are encoded
in one pose and are independent of time, as shown in Fig. 5.
In contrast, features like joints velocity and acceleration con-
sider spatial variations over the time. Specific definitions of
the features are shown in Tab. II. In addition, we remove
duplicated features due to symmetry or degeneration. For
example, JJ d(J1, J2) is symmetric to JJ d(J2, J1), and
JL d(J, LJ1→J2) degenerates to zero if J is the same as J1
or J2.

C. Integrating Models via Smoothed Score Fusion
In order to take advantages of multiple trained models and

further improve the recognition performance, we propose a
model fusion method. We begin by introducing the findings
from several exploratory experiments including input fusion,
fully-connected fusion and average fusion. These methods
inspired us to propose our smoothed score fusion method.
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Name Symbol Definition Description
Joint Coordinate J c J c(J) = (J x, J y, J z) The 3D coordinate of the joint J .

Joint-Joint Distance JJ d JJ d(J1, J2) =
∥∥∥−−→J1J2∥∥∥ The Euclidean distance between joint J1 to

J2.
Joint-Joint Orienta-
tion JJ o JJ o(J1, J2) = unit(

−−→
J1J2)

The orientation from joint J1 to J2, repre-
sented by the unit length vector

−−→
J1J2.

Joint-Line Distance JL d JL d(J, LJ1→J2) = 2SMJJ1J2/JJ d(J1, J2)
The distance from joint J to line LJ1→J2 .
The calculation is accelerated with Helen
formula.

Line-Line Angle LL a
LL a(LJ1→J2 , LJ3→J4)

= arccos(JJ o(J1, J2)
T � JJ o(J3, J4))

The angle (0 to π) from line LJ1→J2 to
LJ3→J4 .

Joint-Plane
Distance JP d

JP d(J, PJ1→J2→J3)

= (J c(J)− J c(J1))� JJ o(J1, J2)⊗ JJ o(J3, J4)

The distance from joint J to plane
PJ1→J2→J3 .

Line-Plane Angle LP a
LP a(LJ1→J2 , PJ3→J4→J5)

= arccos(JJ o(J1, J2))� JJ o(J3, J4)⊗ JJ o(J3, J5)

The angle (0 to π) between line
LJ1→J2 and the normal vector of
plane PJ3→J4→J5 .

Plane-Plane Angle PP a

PP a(PJ1→J2→J3 , PJ4→J5→J6)

= arccos(JJ o(J1, J2)⊗ JJ o(J1, J3)

� JJ o(J3, J4)⊗ JJ o(J3, J5))

The angle (0 to π) between the nor-
mal vectors of planes PJ1→J2→J3 and
PJ4→J5→J6 .

TABLE II
DEFINITIONS OF EIGHT GEOMETRIC FEATURES. NOTE THAT HIPS COORDINATE IS EXCLUDED AS IT IS FIXED AS (0, 0, 0). ON THE OTHER HAND, THE y

COORDINATE OF HIP IN THE WORLD COORDINATE FRAME REFLECTS THE ABSOLUTE HEIGHT OF BODY AND IS INFORMATIVE IN SOME CASES (E.G.,
DISCERNING JUMPING IN THE AIR), AND HENCE IS INCLUDED. � IS THE DOT PRODUCT. ⊗ IS THE CROSS PRODUCT OF TWO VECTORS.

J c(J) JJ d(J1, J2) JJ o(J1, J2) JL d(J, L)

LL a(L1, L2) JP d(J, P ) LP a(L,P ) PP a(P1, P2)

Fig. 5. Eight feature types. Note that for each feature only the relevant joints, lines, and planes are drawn in red.

1) Exploratory findings: As shown in Fig. 6, a common
way to fuse two streams is to concatenate their layers. In order
to find the best fusion strategy, we concatenate the layers of
different depths and evaluate their performance. As shown in
Tab. III, we analyze the results as following:

First, input fusion is worse than any single stream. Previous
work that combines multiple kinds of geometric features as
input also shows no improvement compared to a single type of
feature [13]. This may be caused by the weak ability of LSTM
in distinguishing useful information from many different types
of, and somewhat less discriminative, features.

Second, the fully-connected fusion has almost the same
performance as the single stream. In our opinion, the low
accuracy is due to the over-fitting problem of the single
network, which will be shown in the experiment section. Since

two overfitted networks generate very low loss values, adding
an extra fully connected layer may not improve its overall
performance. The similar phenomena has also be resported in
recognizing RGB videos in [17], [20].

Third, the average fusion of softmax scores produces much
better results than the input fusion and fully-connected fusion,
and it is the only method outperforms any single stream. It
is reasonable since this method does not require a training
process and thus avoids over-fitting.

2) Our smoothed score fusion: According to the explo-
ration above, we find that when fusing multiple streams, we
should limit the information exchanging among streams. This
means we shall avoid fusion of final features or predictions
during training. To fulfill this, each stream should have their
own softmax and loss layers. A simple and widely used score
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Fig. 6. The illustration of three exploration fusion methods. The input fusion
concatenates two features before feeding to network. The fully-connected
fusion utilizes a fully-connected layer to combine the two outputs of last
LSTM layers. The average fusion computes the average scores of all streams
and selects the label with the highest score as prediction.

Method JL d LL a Fusion
input fusion 70.26% 66.90% 64.79%

fully-connected fusion − − 68.70%
average fusion − − 72.44%

TABLE III
COMPARISON OF THREE FUSION METHODS. THE NETWORKS ARE

TRAINED IN THE NTU-RGB+D CROSS-SUBJECT SETTING, BY FUSING
THE JL d AND LL a FEATURES.

𝐽𝐽_𝑑

𝐽𝐽_𝑜

𝐽𝐿_𝑑

𝐿𝐿_𝑎
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𝐽_𝑐

LSTMInput Softmax

𝑆𝑐𝑜𝑟𝑒	
𝑓𝑢𝑠𝑖𝑜𝑛

Fig. 7. Illustration of the proposed framework, where each stream represent
a 3-layer LSTM as Fig. 3.

fusion strategy is to assign average weights to confidence
scores of each feature [17], [18]. However, since different
features may not contribute equally to the final decision, they
should have different weights. Taking the cross-subject task
in NTU-RGB+D dataset as an example, Tab. IV shows the
accuracy of models trained from some geometric features, re-
spectively. For the action “jumping”, the feature J c achieves
the best prediction performance, and is much better than other
relational features, because“jumping” is highly relevant to the
height between floor and the center of body. On the other
hand, for the action “clapping hands”, relations corresponding
to two hands are more discriminative, and therefore J c
has worse performance than others. Similarly, other features
achieve good performance for some actions while performs
worse for others. This example shows that different features
do not contribute equally to the final predictions and their
weights should not be identical.

Label J c JJ d JL d LL a
Jumping up 94.95% 79.50% 83.03% 72.46%

Clapping hands 20.44% 33.94% 41.88% 58.76%
Taking off shoes 30.91% 39.78% 33.09% 43.22%

TABLE IV
THE ACCURACY BY FEATURE TYPES AND CLASSES.

Label J c JJ d JL d LL a
Jumping up 0.9091 0.8622 0.9078 0.8711

Clapping hands 0.5707 0.7687 0.8509 0.8052
Taking off shoes 0.6453 0.8201 0.8715 0.8515

TABLE V
THE MAX SCORE maxi tij BY FEATURE TYPES AND CLASSES.

Another issue in the score fusion is the difference of
smoothness among the score distributions from different mod-
els. tij is the confidence score of each of the 16, 506 testing
samples according to feature i and class j, as shown in
Equation 4,

tij =
1

Mij

∑
X∈Cij

(pi(Ck|X)), (4)

where Cij is the set of samples that are predicted as class j
by model i, Mij is the number of samples in the set Cij ,
pi(Ck|X) is the softmax value of class k when input the
sample X to model i, which is defined in Equation 2.

Tab. V demonstrates that maxi tij vary widely among
different classes and features. Though JL d has higher con-
fidence scores than others in general, it does not show better
performance in some actions, such as “Clapping hands” and
“Taking off shoes”. In order to alleviate the consequence
in such conditions, we consider to use a smoothed score
distribution in the final fusion algorithm.

To solve the problem, a weighted fusion with a special factor
T is given below. The outputs of log-softmax from different
models are denoted as (z1, z2, ...zN ). Here N is the number
of models and each zi equals to (zi1, zi2, ..., ziC) where C
is the number of classes. qij in Equation (5) is a processed
probability distribution over classes using a scalar T , where
T is normally set to 1. Using a larger value of T produces a
softer probability distribution over classes. (α1, α2, ...αN ) is a
set of weights which average the softmax score from different
streams by their value. o is the final probability weighted by
α1, α2, ...αN .

qij =
exp(zij/T )∑C
k=1 exp(zik/T )

, (5)

o =

N∑
i=1

αiqi. (6)

The objective of network training is to minimize the cross
entropy shown below, where i is the ground-truth index:

min
α1,α2,...αN

− log(
exp oi∑N
j=1 exp oj

). (7)

A general framework is shown in Fig. 7. It should be
mentioned that the weights of each LSTM network are static
and they are not adjusted in this part of training. This can be
seen as a simple way to alleviate the overfitting problem.
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SBU-Kinect NTU-RGB+D UT-Kinect Berkeley MHAD
(1) - X - -
(2) X - - -
(3) - - - X
(4) - X X -
(5) - X - -

TABLE VI
COMPARISON OF DIFFERENT DATASET CHARACTERIS. WE CHOOSE THESE
DATASETS BASED ON THE FOLLOWING CONSIDERATIONS, INCLUDING: (1)

SINGLE (-) OR MULTI-VIEW ACTION DATASET (X), (2) SINGLE (-) OR
MULTI-PERSON ACTION DATASET (X), (3) CAPTURED BY KINECT (-) OR

MOTION CAPTURE SYSTEM (X), (4) THE MODEL IS TESTED USING
DIFFERENT SUBJECTS (X) OR NOT (-), (5) THE MODEL IS TESTED IN A
DIFFERENT VIEW POINT (X) OR NOT (-). THOUGH NTU-RGB+D HAS

BOTH SINGLE AND MULTI-PERSON ACTIONS, PRIOR WORK [2], [8] TREAT
THEM AS SINGLE-PERSON ACTIONS, AND WE FOLLOW THIS DESIGNATION.

D. Implementation Details

Joint coordinates are preprocessed in a way similar to the
scheme in Shahroudy et al. [8], which transforms all joint
coordinates from the camera coordinate system to the body
coordinate system. The original point of the body coordinate
system is translated to the “center of hips”, and then rotates the
X axis parallel to the 3D vector from “right shoulder” to “left
shoulder” and Y axis towards the 3D vector from “center of
shoulders” to “center of hips”. The Z axis is fixed as the new
X × Y . After that, we normalize all 3D points based on the
summation of skeletal chains distances. Since other features
such as distances and angles are invariant to the coordinate
system, they are calculated in the camera coordinate system
in order to reduce the deviation introduced by the coordinate
transformation.

In our system, we use a 3-layer LSTM implemented by
torch7 bindings for NVIDIA CuDNN. The learning rate is set
to 0.01 with a classic momentum of 0.9 [41]. We set an upper
bound on the L2 norm of the incoming weight vector for each
individual neuron [42]. We also adopt common techniques
such as adding weight noises and early stopping. Though
there are variations in terms of the sequence length, joint
number, and data acquisition equipment for different datasets,
we use the same parameter settings above. This demonstrates
the robustness of our method to the parameter settings, as it
achieves promising results on all the datasets with the same
configuration.

IV. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to demon-
strate our action recognition algorithm based on geometric
relational features. In order to conduct a convincing evaluation,
the algorithm should be tested from different perspectives.
Following this view, four datasets are selected including NTU-
RGB+D dataset [8], SBU-Kinect dataset [13], UT-Kinect
dataset [23], and Berkeley MHAD dataset [43]. A preview
of each dataset is shown in Tab. VI. Then, we visualize and
analyze the learned weights of the first LSTM layer. We
also demenstrate the relation between the performance and
the amount of training samples in using different geometric
features. Furthermore, we discuss about the overfitting issue
of the proposed model.

A. Dataset description
SBU-Kinect dataset [13]. The SBU Kinect dataset is a

Kinect captured human action recognition dataset depicting
two-person interaction. In most interactions, one person is
acting and the other person is reacting. The entire dataset has
a total of 282 sequences belonging to 8 classes of interactions
performed by 7 participants. Each person has 15 joints. The
smoothed positions of joints are used during the experiment.
The dataset provides a standard experimental protocol with
5-fold cross validation.

NTU-RGB+D dataset [8]. To the best of our knowledge,
NTU-RGB+D dataset is the largest RGBD database for action
recognition, which is captured by Kinect v2 in various views
containing 4 different data modalities per sample. It consists of
56, 880 action samples of 60 different classes including daily
activities, interactions and medical conditions performed by
40 subjects aged between 10 and 35. The large intra-class and
view point variations make it very challenging to distinguish
its actions. Due to the large amount of samples, this dataset is
suitable for applying deep learning based methods. In order to
evaluate the effectiveness of scale-invariant and view-invariant
features, it provides two evaluation protocols, cross-subject
and cross-view. A 25-joint human model is provided.

UT-Kinect Dataset [23]. The UT-Kinect dataset is captured
by a single stationary Kinect containing 200 sequences of
10 classes performed by 10 subjects in varied views. Each
action is recorded twice for every subject and each frame in a
sequence contains 20 skeleton joints. We follow the half-vs-
half protocol proposed in [44], where half of the subjects are
used for training and the remaining for testing.

Berkeley MHAD [43]. Berkeley MHAD is captured by a
motion capture system. Skeleton joint coordinates provided
by this type of equipment are of high precision and can
accurately represent the performer’s movements. It contains
659 sequences of 11 classes. Actions are performed by 7 male
and 5 female subjects in the 23-30 years of age except for
one elderly subject. All the subjects performed 5 repetitions
of each action, which correspond to about 82 minutes of
total recording time. There are 35 joints accurately extracted
according to the 3D marker trajectory. We follow the protocol
in [5], in which 384 sequences corresponding to the first
7 subjects are used for training and 275 sequences of the
remaining 5 subjects are for testing.

B. Dataset Related Parameters
1) Feature Dimension: Since the number of joints are not

the same among different datasets, we list the dimension of
each feature in Tab. VII. Also, we do not follow the definition
of J c in SBU-Kinect. Because two persons’ skeletons are
recorded simultaneously, we transform the camera coordinates
to the person with the largest joint’s variance in location.

2) Smooth Filtering: Many previous works [5], [6] use
specific designed filters to smooth the joint coordinates since
they are estimated by primitive pose estimation algorithms
with noise. However, during our experiments, filtering does
not appear to improve performance. Thus, for simplicity,
all reported results of our algorithm do not involve smooth
filtering.
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J c JJ d JJ o JL d LL a JP d LP a PP a
SBU-Kinect 86 435 1305 1624 1653 270 550 45

NTU-RGB+D 73 300 900 897 741 110 180 10
UT-Kinect 58 190 570 612 561 85 155 10

Berkeley MHAD 103 595 1785 1551 1081 160 230 10

TABLE VII
DIMENSIONS OF GEOMETRIC FEATURES IN FOUR DATASETS.

J c JJ d JJ o JL d LL a JP d LP a PP a
SBU-Kinect 128 512 512 512 512 256 512 64

NTU-RGB+D 73 300 512 512 512 110 180 10
UT-Kinect 58 190 570 612 561 85 155 10

Berkeley MHAD 128 512 1024 1024 1024 256 256 32

TABLE VIII
THE NUMBER OF NEURONS IN FOUR DATASETS.
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Fig. 8. The action recognition rates of the JL d feature on NTU-RGB+D,
with different numbers of neurons.

3) Sequential Downsampling: The frame rate of Microsoft
Kinect is about 30 FPS, which is adequate for daily usage.
The frame rate of motion capture systems is even higher,
which achieves 480 FPS, in order to capture accurate human
movement for specialized usage, e.g., animation. Considering
that actions can be recognized by human in a much lower
frequency, according to the Nyquist sampling theorem, we
can downsample the sample rate with a fixed interval to reduce
the computational cost as well as avoid losing effective motion
information. The downsampling rates of different datasets vary
according to their original sampling rates. For instance, one
frame is sampled in every 16 frames in Berkeley MHAD and
every 8 frames in NTU-RGB+D. Since UT-Kinect and SBU-
Kinect limit their original frame rates to 15 FPS, downsam-
pling is not necessary. For a fair comparison, our proposed
models are trained with the same downsampling rate as the
respective previous works.

4) Hidden Layer Size: We evaluate how the number of
neurons in LSTM influences the performance. We find that
the neuron size has little influence on the final results, as
long as the number of neurons is roughly proportional to the
input feature dimension. For example, the relation between
JL d-based performance and the number of neurons is shown
in Fig. 8, where the action recognition rate changes very
little despite the large change of the number of neurons.
The numbers of neurons used in the experiment are listed in
Tab. VIII. All three layers of LSTM contain the same number
of neurons.

Another noted difference is that the lines between wrist and

hand are ignored for simplicity in Berkeley MHAD, since the
markers of these two joints may be sticked so close that they
always appear to have the same position.

C. Performance Comparison

We summarize the comparison of the action recognition
rates on all four benchmark datasets in Tab. IX. We choose
the baseline algorithms that are widely reported in prior work,
such as [6], [8], [9]. ST-LSTM [9] achieves the highest
accuracy in four datasets among all previous works. Each
ST-LSTM neuron contains two hidden units, one for the
previous joint and the other for the previous frame. Each
ST-LSTM neuron corresponds to one of the skeletal joints.
During training, neurons’ states are transformed in a tree
structure based on skeletal connections. A new gating mech-
anism within LSTM is developed to handle the noise in raw
skeleton data. Contrast to the comprehensive design in ST-
LSTM, our approach further improves the performance on
all datasets, except the already saturated Berkeley MHAD.
This improvement is especially remarkable in the context that
we simply use geometric features on top of the conventional
LSTM architecture. Meanwhile, we make further improvement
by fusing the softmax scores of eight individually trained
networks, which means our proposed fusion method provides
an effective solution for integrating different models in action
sequences.

1) SBU-Kinect: We follow the experimental protocol pro-
posed in [13] and perform 5-fold cross validation on this
dataset. We compare our proposed method with Yun et al. [13],
Ji et al. [45], Li et al. [46], Du et al. [5], Zhu et al. [6], Liu
et al. [9] as well as eight proposed features and their fusion
results. As shown in Tab. IX, we achieve superior performance
over other methods by a large margin in this dataset. Since
there are more relations in two persons’ interaction than action
performed by a single person, using hand-crafted geometric
feature is easier to discover relations than using joint coor-
dinates. A slight improvement is achieved after applying our
score fusion methods.

2) NTU-RGB+D: We follow the experimental protocol
proposed in [8] on this dataset. Different from our previous
paper, since NTU-RGB+D involves both single person actions
and two person actions, we adopt a two-person model same
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Method SBU-Kinect NTU-RGB+D UT-Kinect Berkeley MHADcross-subject cross-view
Yun et al. [13] 80.3% − − − −
Ji et al. [45] 86.9% − − − −

CHARM [46] 83.9% − − − −
Li et al. [15] 94.12% − − − −
HOG2 [24] − 32.24% 22.27% − −

Super Normal Vector [3] − 31.82% 13.61% − −
Skeleton Joint Features [44] − − − 87.9% −

HON4D [47] − 30.56% 7.26% − −
Skeletal Quads [48] − 38.62% 41.36% − −

FTP Dynamic Skeletons [49] − 60.23% 65.22% − −
Elastic functional coding [50] − − − 94.9% −

Kapsouras et al. [51] − − − − 98.18%
Chaudhry et al. [25] − − − − 100%

Ofli et al. [26] − − − − 95.37%
Lie Group [29] − 50.08% 52.76% 93.6% 97.58%
HBRNN-L [5] 80.35% 59.07% 63.97% − 100%
P-LSTM [8] − 62.93% 70.27% − −

Co-occurrence LSTM [6] 90.41% − − − 100%
ST-LSTM [9] 93 .3% 69.2% 77.7% 95 .0% 100%

JTM [52] − 73.4% 75.2% − −
Liu et al. [53] − 75 .97% 82 .56% − −

J c 77.55% 59.32% 70.01% 90.91% 98.18%
JJ d 97.54% 67.41% 80.39% 87.88% 97.45%
JJ o 95.13% 73.23% 80.18% 84.85% 96.00%
JL d 99.02% 71.88% 85.09% 95.96% 100%
LL a 84.74% 66.77% 81.00% 94.95% 98.18%
JP d 71.92% 58.05% 69.29% 74.75% 67.64%
LP a 64.43% 58.64% 61.82% 78.79% 34.18%
PP a 21.52% 28.57% 30.21% 27.27% 31.64%
Max 95.28% 74.46% 85.28% 93.94% 98.91%

Average 98.30% 76.13% 87.37% 94.95% 100%
Linear SVM 97.50% 74.87% 86.37% 94.95% 100%

RBF-kernel SVM 97.50% 75.86% 87.48% 95.96% 100%
weighted average(T = 1) 98.30% 76.20% 87.46% 94.95% 100%
weighted average(T = 4) 99.33% 76.43% 87.69% 95.96% 100%
weighted average(T = 9) 99.33% 76.42% 87.66% 95.96% 100%

weighted average(T = 16) 99.33% 76.27% 87.58% 95.96% 100%
weighted average(T = 25) 99.33% 76.20% 87.48% 95.96% 100%
weighted average(T = 36) 99.33% 76.18% 87.47% 95.96% 100%

TABLE IX
PERFORMANCE COMPARISON. THE PERFORMANCES OF BASELINE SKELETON-BASED METHODS ARE OBTAINED FROM [8], [9].

as SBU-Kinect. For single person performing actions, the first
person joints are copied to the second person. Lines and planes
are selected within each individual, no additional lines or
planes are added. We compare our proposed method with
Ohn-Bar et al. [24], Yang et al. [3], Oreifej et al. [47],
Evangelidis et al. [48], Hu et al. [49], Vemulapalli et al. [29],
Du et al. [5], Shahroudy et al. [8], Liu et al. [9] as well as
eight proposed features and their fusion results. As shown in
Tab. IX, some network trained by a single feature achieves
better performance than previous work, for example, the new
JJ o shows best performance in the cross-subject setting,
while the new JL d shows best in the cross-view setting.
After smoothing the softmax scores of each trained model and
averge them with weights, our method significantly surpasses
the state-of-the-art precision by 0.46% in cross-subject setting
and 5.13% in the cross-view setting. Given the scale of this
large benchmark dataset, we like to point out that these are
substantial margins and they demonstrate that our proposed
method provides an effective scale-invariant and view-invariant
model.

In order to evaluate each kind of feature, Tab. X lists the
top 10 accuracy per class of four typical features. We find that

Rank J c JJ d JL d LL a
1 falling wear jacket take off

jacket
take off
jacket

2 jump up stand up wear jacket wear jacket
3 stand up take off

jacket
stand up stand up

4 wear jacket cross hands hugging pickup
5 take off

jacket
cheer up falling falling

6 hopping falling pickup sitting down
7 pickup pickup cross hands cheer up
8 sitting down hugging sitting down hugging
9 cross hands salute salute cross hands

10 nod
head/bow

sitting down fold hands handshaking

TABLE X
TOP 10 MOST ACCURATELY RECOGNIZED ACTIONS FOR EACH FEATURE.

J c outperforms other features in some actions such as “jump
up” and “hopping”. Because the height from the floor to the
center of body is a discriminative factor in this case and only
J c contains such information. We also find that the ranks of
features like JJ d, JL d and LL a are quite similar, since
they all reflect relations among joints. Each kind of feature
describes human’s movement from different aspects, thus it
explains why integrating multiple streams can make further
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Fig. 9. The confusion matrix of JL d in the NTU-RGB+D cross-subject
setting.

improvement.
As shown in Tab. IX, some common score fusion methods

as well as our proposed smoothed fusion are evaluated. Aver-
age fusion and RBF-kernel SVM achieve competitive results
in both settings. Weighted average fusion gains little benefits
compared to the average fusion. We observe a noticeable
improvement when changing the smooth factor T from 1 to
4 and further increase of T has little influence on the final
results. When T equals 4, we achieve the best performance in
both the cross-subject setting and the cross-view setting.

The confusion matrix of JL d in the cross-subject setting
is shown in Fig. 9. We can see that our model performs well
on most of the actions. the misclassification is not avoidable
in two kinds of situations: inaccurate skeleton estimation and
human-object interaction. First, inaccurate skeleton estimation
may cause some tiny body movement indistinguishable. For in-
stance, the action “rub two hands together” (Action 34) is often
misclassified to “clapping” (Action 10) , since Kinect provides
rough hand coordinate estimation. Second, some human-object
interactions are innately indistinguishable. For example, the
action “wear a shoe” (Action 16) is often misclassified to “take
off a shoe” (Action 17) while the action “wear on glasses”
(Action 18) is misclassified to “take off glasses” (Action 19).
Distinguishing such actions is very difficult without using
RGB or other informations.

3) UT-Kinect: We follow the experimental protocol pro-
posed by Zhu et al. [44] on this dataset. We compare our
proposed method with Zhu et al. [44], Anirudh et al. [50],
Vemulapalli et al. [29], Liu et al. [9] as well as eight proposed
features and their fusion results. Similar to NTU-RGB+D,
this dataset is recorded in a variety of view angles and is
evaluated in a cross-subject setting, but with less classes. As
shown in Tab. IX, JL d outperforms all other methods. It is
worth noting that the averge fusion may not be benefital in all
situations. According to our observation, in this dataset, JJ d
and LL a usually generate peaky distribution. On the contrary,
J c and JL d provide much smoother distribution. A typical
score distribution is shown in Fig. 10. Due to the peaky
distribution of LL a, the average fusion performs the same as
LL a. After smoothing all features’ scores, the performance
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Fig. 10. A typical score distribution in UT-Kinect dataset where the true
label is “throw”. Average fusion will misclassify the label “throw” as the
label “push”.

is improved.
4) Berkeley MHAD: We follow the experimental protocol

proposed in [43] on this dataset. We compare our proposed
method with Kapsouras et al. [51], Chaudhry et al. [25],
Ofli et al. [26], Vemulapalli et al. [29], Du et al. [5], Zhu
et al. [6], Liu et al. [9] as well as eight proposed features
and their fusion results. As shown in Tab. IX, using JL d
can achieve the 100% accuracy, the same as several previous
works [5], [6], [9], [25]. Other features such as J c, JJ d,
JJ o and LL a also achieve competitive results. Since this
dataset is already saturated, we use it for the completeness of
the experiments, rather than demonstrating the advantages of
the proposed fusion method.

D. Discussion

1) Joint Selection Analysis: The selection is primarily
based on the assumption that the body joint’s variance of
locations is indicative to its representativeness or discrim-
inativeness. For example, the end sites(head, hands, foots)
are more variant than the nonterminal sites. The average
variance of each joint in Figure 4 is calculated in NTU-
RGB+D in a body coordinate system. In order to validate
our assumption, we partition all joints into three groups by
ranking the location variance of each joint and test their
performance in a JL d model with a cross-view setting. The
ranking and grouping results are shown in Table XI. The
performance results are shown in Table XII. This shows that
indeed the more variance in locations (e.g., group 1), the better
the recognition performance is.

Group 1 Group 2 Group 3
Right Arm RHand(1) RElbow(5) RShoulder(10)
Left Arm LHand(2) LElbow(8) LShoulder(9)
Right Leg RFoot(3) RKnee(7) RHip(12)
Left Leg LFoot(4) LKnee(6) LHip(13)

Torso Head(11) Neck(14) Chest(15)

TABLE XI
SORTED JOINTS IN A DESCENDING ORDER, WHERE THE NUMBER IN

PARENTHESES IS ITS RANK. HIP IS IGNORED SINCE IT IS THE ORIGINAL
POINT.

2) Feature Discriminative Analysis: To further understand
the effect of different features on the deep LSTM network, we
visualize the weights learned in the first LSTM layer using
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Group 1 Group 2 Group 3
Accuracy 82.39% 81.50% 80.42%

TABLE XII
THE ACCURACY OF EACH VARIANCE-BASED GROUP

0.0 0.2 0.4 0.6
0.00

0.05

0.10

0.15

0.20
J c

0.15 0.25 0.35
0.00

0.05

0.10

0.15

0.20
JJ o

0.0 0.2 0.4
0.00

0.15

0.30

0.45

0.60

JJ d

0.045 0.075
0.0
0.1
0.2
0.3
0.4
0.5
0.6

JL d

0.04 0.12 0.20
0.00

0.15

0.30

0.45

0.60

LL a

0.05 0.25
0.0

0.1

0.2

0.3

0.4
JP d

0.0 0.3 0.6
0.0

0.1

0.2

0.3

0.4

0.5
LP a

0 1 2 3
0.0

0.1

0.2

0.3

PP a

Fig. 11. The histogram of si calculated by Eqn. (8). x axis represents the
value of si and y axis represents the percentage of si with the same value.
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Fig. 12. Action recognition rates with different top JL d feature numbers
on NTU-RGB+D.

histograms. All experiments in this section are conducted on
NTU-RGB+D dataset with the cross-subject setting. As shown
in Fig. 11, each element represents the average weight among
LSTM neurons calculated by Eqn. (8),

si =
1

N

N∑
i=1

‖Wxi(i, j)‖ (j = 1, 2...M), (8)

where Wxi(i, j) is essentially Wxi corresponding to the ith
neuron and jth input in the first LSTM layer shown in Eqn. (1),
N is the number of neurons in the first LSTM layer, and M
is the dimension of the input feature.

From Fig. 11, we observe that the weight distributions of
JJ d, JL d, LL a, JP d and LP a are relatively sparse. In
contrast, J c, JJ o, and PP a do not show such a sparsity
because they have a lower level of abstraction and more intra-
dependencies among feature elements compared to features
such as JL d. Given the sparsity, we hypothesize that only a
small set of geometric features is sufficiently discriminative.

To verify our hypothesis, we rank all feature elements in
JL d based on si and test their recognition rates on the se-
lected top 16, 32, 64, 128, 256 and 512 elements with the high-
est average weight, respectively. We find that the recognition
rate increases rapidly when the feature number is small (<64),
and after that the increasing is slowed down. The results are
shown in Fig. 12. When the feature number is above 500, the
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Fig. 13. performance under different number of missing joints. The model
is trained in NTU-RGB+D cross-view setting.
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Fig. 14. performance under different noise level. The model is trained on
JL d in the NTU-RGB+D cross-view setting.

performance does not show notable improvement with the in-
creasing feature number. Therefore, this shows that a small set
of features is effective. In practice, if there is a validation set,
we could learn the feature subset and only use it for testing. In
addition, four JL d feature elements with the highest weights
are: Jhead to Lbase of spine→middle of spine, Jleft wrist to
Lleft hand→left thumb, Jright wrist to Lleft wrist→left ankle,
and Jmiddle of spine to Lhead→neck. This is reasonable since
most of actions in the NTU-RGB+D dataset correspond to
hands and head. Taking an example of “drinking water”, the
distance from the hand to spine and the distance from the head
to spine change simultaneously.

3) Feature Robustness Analysis: Kinect often presents
some miss detected or wrong posture estimated skeletons. In
order to investigate whether the proposed method is robust
also in the case where the skeleton is not given for granted, we
randomly select N joints as missing joints. Each missing joint
is completed by the average coordinate value of its connected
joints. Experimentally, we find that as the number of joints
increase, our smoothed fusion method can still outperforms
the average fusion, which is shown in Figure 13.

we also add white gaussian noise to each joint in the testing
set with different standard deviation, std(std is the same for all
directions) from 0.01L to 0.09L, where L is the average length
of bones connecting to the joint. As shown in Figure 14, while
there is performance drop as the noise increases, the amount
of drop is small and this shows the noise-resistance of our
algorithm.

4) Smoothing Factor: The smoothing factor(T ) is not com-
puted, but a constant number. By testing several different T
values, we found that T = 4 achieves the best performance in
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Method SBU-Kinect NTU-RGB+D UT-Kinect Berkeley MHADcross-subject cross-view
J c 0.99 7.31 6.96 0.54 1.62
JJ d 1.02 7.23 7.17 0.54 1.65
JJ o 1.02 7.67 7.16 0.53 1.65
JL d 1.02 7.66 7.20 0.54 1.65
LL a 1.02 7.65 7.24 0.55 1.65
JP d 1.01 7.23 6.78 0.52 1.65
LP a 1.00 5.79 5.78 0.52 1.54
PP a 0.99 5.87 5.79 0.52 1.62

TABLE XIII
THE RESULTANT WEIGHTS OF ALL STREAMS AFTER TRAINING, ON EACH DATASET.
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Fig. 15. Influence of training data samples. The performance of the LSTM
model using JL d decreases slower than using J c, with decreasing training
samples.
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Fig. 16. Performance of four features in the NTU-RGB+D cross-subject
setting. Solid and dashed lines represent the training and testing accuracies
respectively.

most cases. Futhermore, for T > 4, the performance are quite
similar, so designing an algorithm to optimize T seems not
necessary.

5) Data Sample Size: Most hand-crafted features demand
fewer data samples for training than the raw data input. This is
also true when we use LSTM as a learning model. We observe
that using JL d requires fewer samples for training compared
to J c as shown in Fig. 15.

6) Overfitting Problem: Experimentally we observe that
our hand-crafted features suffer from the overfitting problem
in large datasets such as NTU-RGB+D, despite achieving
the state-of-the-art performance. We compare three overfitted
features (JJ d, JL d and LL a) with J c and show their
training and testing accuracies in Fig. 16. As we can see,
these features achieve higher accuracies than J c in both the
training set and testing set, which confirms that geometric

features are more discriminative than J c. Due to J c’s weak
discriminative ability, optimization is rather difficult, which is
the potential reason why J c is less overfitted than others.

7) Score Fusion: Tab. XIII shows the weight α of different
streams trained by different datasets. We find that the higher
weight mostly comes from streams with better performance.
Noted that the little difference of weights in SBU-Kinect,
UT-Kinect and Berkeley MHAD are caused by their small
amount of training samples. Because only 8 parameters are
updated during training, we observe that the training accuracy
stop increasing after 2 or 3 epochs, thus we simply stop
training after 10 epochs. Since the learning rate is also fixed,
the magnitude of weights only depends on the number of
updates and the changing value in each update, thus it explains
the different magnitudes among different datasets. Take an
example of NTU-RGB+D dataset, which has a large number
of samples and low accuracy compared to other datasets, the
weights are updated many times with large changing value in
one epoch. It explains the large average weight and the large
variance of weights in NTU-RGB+D dataset.

V. CONCLUSIONS

In this paper, we summarize the evolution of previous
work on RNN-based 3D action recognition using skeletons
and hypothesize that exploring relations among all joints may
lead to better performance. Following the intuition, we design
eight geometric relational features and evaluate them in a 3-
layer LSTM network. Extensive experiments show the distance
between joints and selected lines outperforms other features.

In order to integrate all individual networks, we explore
several fusion methods and find that information exchanging
between streams during training has a negative impact to
the performance. On the other hand, simply averaging scores
ignore the score distribution and contribution of different
streams. Based on previous two reasons, we propose a new
smoothed score fusion. The state-of-art performance on four
selected publicly available datasets demonstrate the effective-
ness of the proposed methods. Moreover, we show that using
a subset of joint-line distances can achieve comparative results
and using joint-line distances as input requires fewer samples
for training compared to joint coordinate input.
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