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Abstract

Global motion compensation (GMC) removes intentional and unwanted camera mo-
tion. GMC is widely applicable for video stitching and, as a pre-processing module, for
motion-based video analysis. While state-of-the-art GMC algorithms generally estimate
homography satisfactorily between consecutive frames, their performances deteriorate
on real-world unconstrained videos, for instance, videos with predominant foreground,
e.g., moving objects or human, or uniform background. Since GMC transformation of
frames to the global motion-compensated coordinate is done by cascading homographies,
failure in GMC of a single frame drastically harms the final result. Thus, we propose a
robust GMC, termed RGMC, based on homography estimation using keypoint matches.
RGMC first suppresses the foreground impact by clustering the keypoint matches and
removing those pertaining to the foreground, as well as erroneous matches. For homog-
raphy verification, we propose a probabilistic model that combines keypoint matching
error, consistency of edges after homograhy transformation, the motion history, and prior
camera motion information. Experimental results on the Sports Videos in the Wild, Hol-
leywood2, and HMDB51 datasets demonstrate the superiority of RGMC.

1 Introduction
The objective of global motion compensation (GMC) is to remove intentional (due to camera
pan/tilt/zoom) and unwanted (e.g., due to hand shaking) camera motion. GMC is utilized in
applications such as video stitching, or as pre-processing for motion-based video analysis.
Effective motion analysis is the gist of many vision problems, e.g., action recognition, video
annotation and video surveillance. For instance, in action recognition, motion analysis via
dense trajectories has shown superior performance [15, 23, 24]. However, the moving cam-
era often interferes with the motion of human, thus it is desired to compensate for camera
motion. Note that a related problem is video stabilization, which aims to remove unwanted
camera motion, while GMC removes both intentional and unwanted camera motion [5].

Normally, GMC estimates the homography transformation between two consecutive
frames by matching keypoints on the frames, and maps the second frame to a global co-
ordinate. To remedy outliers in keypoint matches, robust techniques are proposed for ho-
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mography estimation, e.g., RANSAC [7], by assuming the number of outliers to the correct
homography is much less than inliers. However, in the presence of predominant foreground,
i.e., moving objects and people, a larger proportion of the putative matches are mismatches.

Predominant foreground may result from a higher percentage of coverage by foreground
pixels, or occlusion, textureless and non-informative background, blurred background (e.g.,
camera following the foreground motion), or a combination of these reasons. In presence of
predominant foreground, the common variations of RANSAC have little chance of selecting
a minimal set of background keypoints by random sub-sampling in a limited number of it-
erations. Despite its importance, the predominant foreground problem has been overlooked
in both video stabilization and GMC algorithms. Even for algorithms designed explicitly for
robustness to foreground motion [5, 6, 12], predominant foreground is reported to cause fail-
ure. Since GMC estimates homography between consecutive frames and then uses a cascade
of homographies to map the current frame to the global motion-compensated coordinate,
failure in GMC at a single frame affects all the subsequent frames. This renders the predom-
inant foreground problem very common and significant. Thus, GMC robustness is highly
desirable. GMC problem is also aggravated as speed of foreground motion increases, e.g.,
in sports videos. We qualitatively investigate 500 videos from Sports Videos in Wild (SVW)
dataset [16], and observe 35% failure, i.e., background instability, by the baseline method of
MLESAC [20], in contrast to 5.1% failure for the proposed method. This demonstrates that
the robustness problem is very common and severe for real-world videos.

The main contribution of this paper is a robust GMC (RGMC) method for suppressing
foreground keypoint matches and mismatches, enabling a reliable homography estimation
in presence of predominant foreground and textureless background. Also, we propose a
novel and efficient probabilistic model for homography verification that considers keypoint
matching error and consistency of the image edges after warping, and benefits from motion
history gleaned from prior matched frames. We demonstrate the superiority of RGMC on
challenging videos from three video datasets, when compared with state-of-the-art methods.

1.1 Previous Work

Due to existence of outliers, robust techniques are widely used for homography estimation,
e.g., RANSAC [7] and its variants such as Locally-Optimized RANSAC [4], MLESAC [20]
and Guided-MLESAC [19]. While RANSAC aims to maximize the number of inliers, MLE-
SAC searches the best hypothesis that maximizes the likelihood via RANSAC, assuming that
the inliers are Gaussian distributed and outliers are distributed randomly. To handle the same
outlier issue, [10] directly rejects unreliable keypoint matches. However, in case of predom-
inant foreground, problematic matches from the foreground are not unreliable in terms of
appearance. Recent works focus on estimating the best or multiple homographies in case of
multi-plane background [1, 13, 18, 21, 27]. For instance, Uemura et al. [21] segment each
frame to multiple regions denoting different planes in the background and find the domi-
nant plane for homography estimation. In contrast, we segment the frame to foreground and
background regions by analyzing motion vector clusters, and remove foreground for robust
GMC.

Yan et al. [26] propose a probabilistic framework to combine keypoint matching and
appearance similarity to enhance estimation robustness. To model the latter, correlation co-
efficient between pixels is used. Despite the improved estimation accuracy, for textureless
background the performance deteriorates. For large foreground, [26] tends to remove fore-
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Figure 1: RGMC algorithm flowchart: (a) color indicates various motion vector clusters, (b) the
merged cluster of background, (c) the motion history, and (d) the motion compensated video.

ground, instead of background, motion. In contrast, we use edge matching as an appearance
similarity measure with a higher sensitivity and lower computational costs. Motion history-
based foreground suppression minimizes its interference with homography estimation.

If camera motion is modeled as 2D translation, simpler methods can be used for GMC.
In [3], video stabilization is conducted using the cross-correlation between horizontal and
vertical projection of the consecutive frames, by assuming that the largest variation between
frames is due to 2D translation. [5] uses the same idea to estimate 2D translation. To improve
the robustness to moving foreground, a RANSAC-like approach on projections of bands of
the image is utilized. However, [5] fails if the foreground object is too large or the back-
ground is textureless, and the simplistic model of 2D translation is easily violated in real-
world videos. Thus, we design our RGMC algorithm to minimize the effect of textureless
background and large foreground on homography estimation.

2 Proposed Method
The main objective of Robust Global Motion Compensation (RGMC) algorithm is to be ro-
bust to the presence of predominant foreground. Thus, it is critical to suppress the foreground
and rely on keypoint matches of the background for global motion estimation. We perform
foreground suppression by clustering motion vectors computed from keypoint matches and
identifying potential clusters corresponding to the background, which are merged to pro-
vide a set of background keypoints for final homography estimation. As a key enabler for
RGMC, a novel and reliable homography verification model is presented to consider key-
point matching error and consistency of the edges of images after transformation, and benefit
from motion history gleaned from previous frames. Fig. 1 shows the flowchart of the RGMC
algorithm, with details presented in the following two subsections.

2.1 Foreground Suppression

We use SURF [2] algorithm for keypoint detection and description. To detect sufficient back-
ground keypoints, the Fast-Hessian keypoint detection threshold, τs, is decreased drastically.
This helps in the cases of nearly uniform and textureless background, or blurred background
due to rapid camera motion (e.g., videos shot by smartphones). However, this also implies
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Algorithm 1: Robust Global Motion Compensation

Data: Frames It and It−1 and keypoints matches D, prior homography θt−1 and CFV f (θt−1)
and f (θt−2)

Result: Estimated homography θt and motion history Mt
1 Compute the set of motion vectors V from D;
2 repeat
3 Cluster D into Di (i ∈ {1, ..,K}) based on V, set fi = ∞;
4 for i=1 to K do
5 while Number of iterations < TC do
6 Randomly select four matching keypoints Q from Di ;
7 if H(Q)> pH,0.9 then
8 Find homography θ̂t ;
9 if At least λ% of keypoints in Di are inliers for θ̂t then

10 Calculate the cost function f̂ via Eqn. 10;
11 fi←min( f̂ , fi).

12 Regularize Di to D̄i by randomly selecting a maximum of C matches for each cluster;
13 Sort the fi’s in an ascending order and find the sorting index j(i), set

mi = ∞,(i ∈ {0, ..,K}), i = 0;
14 repeat
15 i← i+1 and merge the top i clusters: Mi =

⋃ j(i)
k= j(1) D̄k;

16 while Number of iterations < TM do
17 Randomly select four matching keypoints Q from Mi ;
18 if H(Q)> pH,0.9 then
19 Find homography θ̂ and calculate the cost function f̂ via Eqn. 10;
20 if f̂ < mi, then θi← θ̂ and mi← f̂ .

21 until mi > mi−1∧ i < K;
22 θt = θi−1, f (θt) = mi−1;
23 until f (θt)< η( f (θt−1)+ f (θt−2))/2 ∨ Number of iterations < TE ;
24 Update motion history via Eqn. 6 and output θt and f (θt).

that more keypoints will reside on the foreground, which calls for an effective foreground
suppression.
Cluster analysis For foreground suppression, the motion vectors resulting from keypoint
matches between consecutive frames are clustered. Since motion vectors on the background
result from camera motion and are more consistent than foreground motion vectors, cluster-
ing will likely lead to some candidate regions from the background (see Fig. 1 (a)). Each
cluster is analyzed separately by random subsampling of matches in that cluster and evalu-
ating the resultant homography against the cost function, discussed in Sec. 2.2.
Merging background clusters Due to the zooming or motion corresponding to different
planes of the background, and not knowing the optimal number of clusters a priori, we allow
an over-clustering of K clusters. Thus, background motion vectors may be assigned to mul-
tiple clusters. To merge background clusters, based on the estimated homography and cost
function value (CFV) of each cluster, a subset of the best clusters are selected to be merged
in a greedy algorithm (Fig. 1(b)). Prior to merging, the set of keypoints belonging to each
cluster are regularized by randomly selecting a maximum of C pairs for each cluster. Given
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that the keypoint matches in background cluster are similar, the regularization has negligible
impact on the RGMC accuracy, but remedies the case when part of the foreground (generally
with a higher number of matches) is mistakenly merged to the background clusters.
Error handling For GMC applications such as video stitching or pre-processing for motion
analysis, failed compensation and homography estimation for a single frame deteriorates
the overall performance drastically. Since the context in consecutive frames are similar, we
utilize the historical values of the cost function to assist the error handling. If the minimum
CFV of homography estimation at the current frame pair is significantly higher than those
of previous pairs, we repeat the estimation process with the hope that the randomness in the
algorithm will recover the error.

Note that the significance of foreground suppression would be more obvious when plenty
of keypoints belong to the foreground, while a few belong to the background. For instance,
if foreground has 200 keypoints and background has 10, a RANSAC-like algorithm needs
to run 450,000 iterations to ensure a 90% probability of selecting a quadruplet of keypoints
from background. However, by analyzing each cluster separately, RGMC efficiently focuses
on background matches. Algorithm 1 summarizes the proposed RGMC algorithm. Details
of the homography verification model used in the algorithm will be presented next.

2.2 Homography Verification Model

To evaluate the estimated homography from a quadruplet of keypoints matches, we derive a
cost function that unifies the keypoint matching score, edge matching score, and the infor-
mation from compensating previous frames. Denote the matching frames as It−1 and It , their
candidate homography as θt , and the set of keypoint matches under study as D. In Bayesian
framework, similar to [26], θt can be estimated by maximizing

p(θt |D,It ,It−1,θt−1) =
p(D,It ,It−1|θt ,θt−1)p(θt |θt−1)

p(D,It ,It−1|θt−1)
, (1)

where θt−1 is the obtained prior homography of frames It−1 and It−2. The p(θt |θt−1) is the
conditional probability of θt given the prior homography θt−1. The denominator of Eqn. 1 is
constant w.r.t. θt . By expanding the likelihood term, the homography can be verified using

p(θt |D,It ,It−1,θt−1) ∝ p(D|It ,It−1,θt ,θt−1)p(It ,It−1|θt ,θt−1)p(θt |θt−1). (2)

The term p(D|It ,It−1,θt ,θt−1)= p(D|It ,It−1,θt) and represents how well the keypoint matches
D extracted from It and It−1 are matched by θt . Knowing It is independent from θt−1, the
term p(It ,It−1|θt ,θt−1) = p(It ,It−1|θt), and reflects how well the frame It transformed un-
der θt , denoted as It|θt , matches It−1. Thus, the homography is estimated by minimizing,

θ
∗
t = argmin

θt

[−ln(p(D|It ,It−1,θt))− ln(p(It ,It−1|θt))− ln(p(θt |θt−1))]. (3)

Keypoint matching error Based on the analysis of Yan et al. [26], the keypoint match-
ing error for inliers, p(Din|It ,It−1,θt), is better represented by a Laplacian model than the
conventional Gaussian model. Denote (xi

R,y
i
R) and (xi

T ,y
i
T ) as the ith matching keypoint co-

ordinates of It and It−1 respectively, transformation of (xi
R,y

i
R) under θt as (xi

RT ,y
i
RT ), trans-

formation of (xi
T ,y

i
T ) under θ

−1
t as (xi

T R,y
i
T R) , and di ← |xi

T R− xi
R|+ |yi

T R− yi
R|+ |xi

RT −
xi

T |+ |yi
RT − yi

T |. We use the same method as [26] to compute the keypoint matching error,

p(Din|It ,It−1,θt) =
Nin

∏
i=1

1
16b4 e−

di
b (4)
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(a) (b) (c) (d)

Figure 2: (a) Motion history Mt , (b) Mask M = I(Mt > τ), (c) edge matching for an accurate θt that
matches the background, (d) edge matching for an inaccurate θt that matches the foreground.

where Nin is the number of inliers and the scale b is the Laplacian distribution parameter.
Denoting γi as an indicator variable for inlier/outlier and considering that an outlier has a
uniform distribution over the entire area of the frame, which is denoted as S, we have

p(D|It ,It−1,θt) =
|D|

∏
i=1

[γi
1

16b4 e−
di
b +(1− γi)

1
S2 ]. (5)

Appearance consistency The appearance consistency under θt transformation, p(It ,It−1|θt),
is normally computed via pixel-based correlation [26]. We propose edge-based matching for
multiple reasons. First, the pixel-based matching score is not sensitive enough for textureless
background, e.g., a homography with error of few pixels displacement leads to similar scores
as a perfect match. In contrast, the tolerance for error is much lower by matching the edges,
which results in more accurate homography models. Although low-texture images produce
few and generally noisy edge pixels, our experiments show that edge matching outperforms
pixel-based correlation, even in low-texture conditions, similar to the results reported in [25].
Second, when stitching video frames based on global motion compensation, errors typically
occur in mis-matched edges at the boundary of the frames. These errors are very distract-
ing for viewers’ visual perception, and they are more likely to be remedied by edge-based
appearance matching. Finally, in pixel matching, time-consuming image warping is needed
for computing It|θt . Edge matching only needs to warp edge pixels in It , leading to a typical
10× speed-up over pixel matching.

To assure that the edge matching score reflects how well the background, not foreground,
of the two frames match, we iteratively update a motion history Mt (see Fig. 1 (c)) as,

Mt ← αMt−1 +(1−α)|It−1− It|θt |, (6)

where α is a weighting scalar within 0 and 1, and |.| denotes the element-wise absolute value
operator. We define the edge matching score (EMS) as,

E(I1,I2,R) =
2‖Φ(I1)

⊙
Φ(I2)

⊙
R‖1

‖Φ(I1)
⊙

R‖1 +‖Φ(I2)
⊙

R‖1 + c
, (7)

where Φ is edge detection operator,
⊙

is element-wise multiplication, R denotes the mask
specifying the region of interest for EMS calculation, ‖·‖1 computes the L1 matrix norm, and
c(= 0.001) is a constant to avoid division by zero. E(I1,I2,R) ranges between 0 and 1 with
1 representing a perfect match. In Eqn. 3, we use E(It−1,It|θt ,M), where M = I(Mt > τ) is
obtained by thresholding the motion history and I(·) is an indicator function. Fig. 2 shows a
motion history and edge matching results for two candidate θt ’s. We will later discuss how
the probability model for E is obtained.
Conditional homography distribution Based on our experiments, and also prior work [5]
on YouTube Action Dataset [11], the largest variation between consecutive video frames is
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(a) (b) (c) (d)

Figure 3: (a-b) Two consecutive frames and the matched quadruplet by the labeler, (c) the absolute
difference of two frames matched via the quadruplet in (a,b), (d) manually labeled foreground mask.

due to 2D translation. Thus, to utilize the prior information of θt−1 for a stable homography
estimation, we decompose the homography model into translation, scale, and rotation mod-
els [22]. Denote the absolute difference in components of θt and θt−1 after decomposition
as tx and ty for translation, ∆s for scale and ∆α for rotation angle. Assuming independence
among components, we define

p(θt |θt−1) = p(tx)p(ty)p(∆s)p(∆α). (8)

Quadruplet filtering RGMC evaluates a large number of quadruplets of keypoint matches,
and computes their EMS. To improve the efficiency, we filter the candidate quadruplets be-
fore the optimization of Eqn. 3. Intuitively, if the keypoint in the quadruplet are spatially
close to each other, it is less likely to have an accurate estimate of θt , because homography
estimation is more sensitive to the accuracy of keypoint locations. Also, background key-
points have generally a higher spatial dispersion than the foreground keypoints. Thus, only if
the entropy (or dispersion) of a candidate quadruplet is above a threshold, we fully evaluate
the cost function. Specifically, we use m-spacing estimate of entropy [9], similar to [5], as

H =
1
n

n−m

∑
i=1

ln(
n
m
(xi+m− xi)), (9)

where m is the spacing parameter (set to 1) and n is number of points. We first sort the x val-
ues prior to using them in Eqn. 9. Entropy estimates of x and y coordinates of the quadruplet
are calculated separately and the minimum of them is the entropy of the quadruplet.
Model training Having presented the Bayesian framework, we now introduce our empirical
approach to learn the various probability models. For this learning, we manually stitch 250
pairs of consecutive frames to find the best homography estimate. The labeler uses our
developed GUI to match four background keypoints in two consecutive frames and fine tune
the matches to visually minimize the background stitching error. The labeler also specifies a
foreground mask, representing the region resulted from foreground movement. Fig. 3 shows
two consecutive video frames and the manually matched quadruplets. From the manually
labeled sequences, we find the empirical distribution of E, tx, ty, ∆s, ∆α , and H. As shown in
Fig. 4, E, ∆s, ∆α , and H are well approximated by a normal distribution. For H distribution,
10% percentile (pH,0.9), reflecting the value that 90% of observed point entropies are larger
than, is also shown. For tx and ty, Laplacian distribution is more appropriate. By plugging
the probability models to Eqn. 3 and ignoring the constants, the final cost function is,

f (θt) =
∑

Nin
i=1

di
b +∑

Nout
i=1 ln(S2)

Nin +Nout
+

(E(It−1,It|θ ,M)−µE)
2

2σ2
E

+

b (∆s−µ∆s)
2

2σ2
∆s

cT + b (∆α−µ∆α)
2

2σ2
∆α

cT + b |∆tx−µ∆tx |
btx

cT + b
|∆ty−µ∆ty |

bty
cT , (10)
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Figure 4: Empirical and fitted distributions for (a) E ∼ N(0.52,0.04), (b) ∆s ∼ N(0,2× 10−5), (c)
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Figure 5: Sample frames of the test videos in (a) SVW, (b) HMDB51, and (c) Holleywood2 datasets.

where Nout is number of outliers and bxcT = min(x,T ) restricts the impact of prior informa-
tion. Since keypoint matching error is dependent on the number of keypoints, we normalize
it with the total number of keypoints. The homography θt is estimated by

θ
∗
t = argmin( f (θt)). (11)

3 Experimental Results
This section presents the experimental results of RGMC, and its comparison with our imple-
mentations of the RANSAC variation called MLESAC [20] and the HEASK method [26].
Dataset We select 50 videos from SVW dataset [16], where 24 videos are used for model
learning in Sec. 2.2, and the rest for testing. SVW contains videos of amateurs practicing
a sport, shot using smartphone by ordinary people. Thus, highly unconstrained SVW is an
excellent example of user-generated videos with predominant foreground of humans. We
also use 10 videos from Holleywood2 [14] and 15 videos from HMDB51 [8] datasets1. In
total, 51 videos are used for quantitative evaluation with sample frames shown in Fig. 5.
Parameters In all the experiments, we have the same fixed parameter setting, i.e., τ = 0.5,
C = 50, TC = 50, TM = 100, TE = 2, K = 10, η = 1.5, α = 0.5, λ = 70%, and T = 100.
Our experiments show that RGMC is robust to variation of parameters. The most important
parameter is K. Large values of K increase the computational cost. On the other hand, K
should be large enough so that foreground, background, and erroneous matches are mapped
to different clusters. As a trade-off, we use K = 10.
Evaluation metric For accuracy evaluation, we have manually matched a quadruplet of
keypoints and found the ground truth homography θ0 for a total of 350 pairs of consecutive

1For these two datasets, videos are temporally trimmed around the signature motion in the video, practically
disabling effect of our motion history module. In HMDB51, similar to many existing datasets such as UCF101 [17],
the video resolution is only 320×240, thus GMC suffers from both video content and the low resolution.
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Algorithm Ground Truth MLESAC HEASK RGMC
Setting – DT LT DT LT (20,50) (50,100) (100,200) D-M D-E

BRE (×10−3) 7.59 15.65 18.59 17.33 14.24 11.77 10.11 10.02 11.60 11.25

Table 1: Impact of different settings on average BRE for each algorithm. DT and LT denote default
(τs = 1000) and lowered (τs = 100) detection threshold in SURF algorithm, respectively. For RGMC
τs = 100 is used and 3 different setting of (TC,TM) are reported. D-M and D-E denote default setting
of (TC,TM) = (50,100) with motion history and error handling turned off, respectively.

(a) (b) (c) (d)

Figure 6: Each row shows GMC results of two consecutive frames from video ID S17, S19, and S9 by
(a) manual labeling, (b) MLESAC, (c) HEASK, and (d) RGMC. In (a), colorful pixels show the pixels
that are different between overlaid frames. In (b-d), the pixel brightness indicates the difference.

frames in challenging periods in 51 test videos. The same GUI described in Sec. 2.2 is used
to obtain θ0 and the foreground mask. We denote the intersection of the complement of this
mask, i.e., the background mask, and the region covered by It|θ0 , as B. We quantify the
consistency of frames It and It−1|θ (grayscale frames with pixels ranging between 0 and 1)
using the background region error (BRE), ε = 1

‖B‖1
‖|(It−1− It|θt )|

⊙
B‖1.

Accuracy assessment Table 1 represents the average BRE on test videos for different algo-
rithms. Due to random nature of algorithms, we repeat each experiment 5 times and report
the average performance. To ensure that comparisons are fair, we decrease the keypoint de-
tection thresholds also for baseline methods. HEASK has better performance with lowered
threshold and thus we use this setting for the experiments. We also report results for different
iteration numbers TC and TM for RGMC and as a trade-off between accuracy and efficiency,
select (TC,TM) = (50,100) as default values for RGMC. In addition, we turn off the modules
of Motion History and Error Handling in RGMC alternatively, to verify that their existence
is helpful. Fig. 6 shows two consecutive frames of three sample videos matched by different
algorithms, along with the ground truth matching. As shown, RGMC produces very accurate
background matching. Fig. 7 represents the average per-video BRE, sorted by the BRE of
ground truth matching. As shown, RGMC performance is very robust and in most videos
RGMC matching error is very close to the ground truth value. Finally, Fig. 8 compares
stitching results on a sample video using different algorithms. It is worth noting that since
a cascade of homographies are used for GMC and stitching of video frames, propagation
of errors of matching consecutive frames, gives rise to inaccuracy as the length of the input
video increases. Also, coexistence of textureless background and large foreground (in terms
of the total number of pixels covered by the foreground), may cause failure in the RGMC
algorithm, especially if the foreground motion exists starting the initial frames.
Computational cost For the comparison with baseline methods, we test Matlab implemen-
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Figure 7: Per-video BRE using the optimal setting for each algorithm compared with ground truth
(GT) matching BRE. Video ID is according to Fig. 5 and 6.

(a) (b) (c)

Figure 8: A 40-frame sequence of gymnastics backflips in textureless background stitched using
(a) MLESAC, (b) HEASK, and (c) RGMC. Consistency of the background shows the superiority of
RGMC. For HEASK, stitching up to frame #10 is shown, after which the stitching drastically fails.

tations of algorithms on a PC with Intel i5-3470@2GHz CPU. The average time for matching
frame pair of size 720×1,280 (480×854) by MLESAC, HEASK, and RGMC is 2.0 (0.3),
53.1 (21.3), and 4.3 (2.3) seconds, respectively. We also have a C++ implementation of
RGMC using the OpenCV libraries, which takes 1.4 (0.7) seconds for matching frame pair
of size 720×1,280 (480×854)2.
Qualitative evaluation In addition to the aforementioned quantitative study, we also per-
form the qualitative evaluation on unlabeled videos to demonstrate the severity of the pre-
dominant foreground issue in real-world videos, and the superiority of RGMC on a large
scale dataset. For each video, we run a GMC algorithm, visually observe the motion-
compensated videos, and claim a failure if an instable background is observed (e.g., Fig. 8
(a,b)). We observe a failure rate of 32% by the MLESAC method among 225 videos from
three categories of cartwheel, dive and dribble in HMDB51 dataset. Further, a 35% failure
rate by MLESAC is observed from 500 videos of SVW dataset; in contrast on the same data
our RGMC has merely a 5% failure rate.

4 Conclusions
We presented a robust global motion compensation (RGMC) algorithm that delivers reli-
able results in the presence of predominant foreground and textureless or blurry background,
enabling its application to real-world unconstrained videos. By foreground suppression,
RGMC is able to tolerate large foreground and occlusion. Also, the proposed method suc-
cessfully handles keypoint matching with a very low matching threshold, required for GMC
in low texture background. This is achieved by clustering motion vectors, and analyzing
each cluster to identify matches pertaining to the background. A novel homography verifica-
tion model is proposed to support the RGMC. Extensive experiments and comparison with
manually matched ground truth and baseline methods demonstrate the superiority of RGMC.

2Source code is available at http://www.cse.msu.edu/∼liuxm/RGMC
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