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Abstract—The goal of this paper is to determine if keystroke
sound can be used to recognize a user. In this regard, we analyze
the discriminative power of keystroke sound in the context of
a continuous user authentication application. Motivated by the
concept of digraphs used in modeling keystroke dynamics, a
virtual alphabet is first learned from keystroke sound segments.
Next, the digraph latency within pairs of virtual letters, along
with other statistical features, are used to generate match
scores. The resultant scores are indicative of the similarities
between two sound streams, and are fused to make a final
authentication decision. Experiments on both static and free text-
based authentication on a database of 50 subjects demonstrate
the potential as well as limitations of keystroke sound.

Index Terms—Keystroke sound, keystroke dynamics, keyboard
typing, continuous authentication.

I. INTRODUCTION

Given the role of the keyboard in contemporary society, a
number of research directions have been developed around
it. First, motivated by the telegraph in the 19th century,
researchers discovered that the keystroke timing information
varies across users. This led to the development of keystroke
dynamics, which utilizes the keystroke timing information for
user authentication [2], [12], [28]. Second, computer secu-
rity researchers have used the keystroke sound for acoustic
cryptanalysis. For example, Asonov and Agarwal presented a
learning-based approach to identify the pressed keys using the
keystroke sound [1] which was furthered by Zhuang et al. [29].

In this work, we consider another pertinent question: What
is the discriminative capability of keystroke sound? Besides
academic curiosity, an answer to this question can result in
incorporating keystroke sound as an additional biometric cue
in an active authentication framework. Furthermore, forensic
applications can be developed based on preliminary analysis
of keystroke sound.

However, in order to answer the aforementioned question,
we need to first address the following issues: (a) How do
we design an automated approach to extract discriminative
information from keystroke sound? and (b) How do we utilize
this approach to verify the identity of a subject using a
keyboard?
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Fig. 1. Studying the discriminative power of keystroke sound. The sound of a
user typing on the keyboard is captured by a simple microphone attached to the
PC and is the input to the proposed system, which matches the characteristic
of the acoustic signals to that of the claimed identity.

Therefore, motivated by both scientific curiosity and po-
tential applications, we present a systematic study on the
discriminative power of keystroke sound. A basic overview is
shown in Figure 1. Given the sound of the keys as a user types
recorded by a microphone, our proposed system performs
feature extraction and matching, and verifies the identity of
the user. The subject of our study, keystroke sound, has a
number of benefits. First, while it does require an external
sensor, microphones are inexpensive and standard peripheral
devices readily available in many PCs, laptops, monitors, and
webcams. Second, the capture and analysis of keystroke sound
does not interfere with a user’s normal computer operation.
Third, unlike keystroke dynamics, keystroke sound avoids the
explicit logging of keys and hence the text being typed cannot
be easily divulged. Finally, in our experiments, we demonstrate
that in the unconstrained typing scenario keystroke sound has a
shorter verification time, i.e., the time required to make an au-
thentication decision [10], than keystroke dynamics. Keystroke
sound can be confounded by environmental noise, but the use
of appropriate audio filtering or a directed microphone can
mitigate this problem.

Our technical approach to match two keystroke sound
signals is inspired by a combination of prior work in keystroke
dynamics and acoustic emanations [1]. One of the most popu-
lar features in keystroke dynamics is digraph latency [3], [14],
[15], which calculates the time difference between pressing
the keys of two letters in succession. It has been shown that
word-specific digraphs are more discriminative than a generic
digraph, which is computed without regard to which letters
were typed [22]. Assuming that the acoustic signal from a
keystroke does not explicitly carry the information of what
letter is typed, we propose a novel approach to employ the
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digraph feature by constructing a virtual alphabet. Given the
acoustic signals from all training samples, we first detect
segments of keystrokes, whose Mel-Frequency Cepstral Coef-
ficients (MFCC) [4] are fed into a K-means clustering routine.
Each resultant cluster centroid is considered as a virtual letter
and their collection is considered as a virtual alphabet, which
enables us to compute the most frequent digraphs (a pair
of cluster centroids) and their statistical attributes for each
subject. Based upon the virtual alphabet, we can also compute
the histogram of keystrokes within an acoustic stream, which
is very similar to the popular Bag-of-Words (BOW) approach
in the computer vision community [6], [23]. In addition, we
consider a number of other feature representation and scoring
schemes. Eventually a score level fusion scheme is employed
to determine whether a probe stream matches with the gallery
stream. We collect a keystroke sound database of 50 subjects
in a static text session where subjects type a fixed collection
of text four times, and a free text session where subjects
type an impromptu mail letter. Although most prior work on
keystroke dynamics focus on static text, we study the matching
of keystroke sound signals in both the static and free text
sessions. A preliminary result of 11% Equal Error Rate (EER)
on a test set of 35 subjects, where the remaining 15 subjects
are used for training, indicates the potential to conduct future
research to study this novel aspect of the keyboard.

A preliminary version of this work was published in the
International Conference on Biometrics 2013 [21]. We have
extended it in a number of ways: (i) focused on the discrimina-
tive analysis of the keystroke sound signal; (ii) proposed a new
score function (histogram of virtual letters) that performs best
among all four functions; (iii) performed sound matching using
the free text session of our database; (iv) substantially reduced
the EER of matching performance from 25% to around 11%
on our database, despite the increased number of subjects.

In summary, this paper has three main contributions:
� We investigate the discriminative power of keystroke

sound, which has potential applications in forensics and bio-
metric authentication.
� We collect a first-of-its-kind sound database of users

typing on a keyboard. The database and the experimental
results are made publicly available so as to facilitate future
research and performance comparison on this research topic.
� We propose a novel virtual alphabet-based approach to

learn various score functions from acoustic signals, and a
score-fusion approach to match two sound streams.

II. PRIOR WORK

In this section, we present a brief survey of keystroke
dynamics as well as other applications of keystroke sound.

Keystroke dynamics, the habitual patterns and rhythms a
user exhibits while typing on a keyboard, has a long history
dating back to the use of telegraphs in the 19th century and
Morse Code in World War II, but most of the prior work still
focus on static text [2], [12], [28], i.e., all subjects type the
same text. Only a few recent efforts have addressed the sce-
nario of free text, i.e., a subject can type arbitrary text, which
is necessary for continuous authentication [16], [24]. However,

free text keystroke dynamics still has a number of drawbacks.
First, it requires long probe sequences to make a decision since
the limited information from its digraph features requires a
large number of pairs common to both the gallery and probe.
For example, the work of Xi et al. [26] requires at least 700
characters which corresponds to more than three minutes of
typing. This long verification period poses a security risk to
continuous authentication since during this period the system
is unsure of the identity of the typist. Second, everything
the user types is explicitly recorded via key-logging. These
limitations motivate us to explore other complementary means
of user authentication based on interaction with the keyboard.

Typing behavior, the distinctive hand movements made by a
user while typing, has been recently explored [20]. This work
utilized a webcam pointed at the keyboard while the user types,
and extracts dynamic shape information from the hands over
time. While keystroke dynamics studies the temporal aspects,
typing behavior studies the visual aspects; in this paper, we
study the acoustic aspects of keyboard usage.

To the best of our knowledge, there are only two prior pub-
lications from one research group exploring the discriminative
power of keystroke sound [5], [17]. They used a combination
of keystroke dynamics with sound information to authenti-
cate users typing the password “kirakira”. The only feature
extracted was the maximum sound level occurring for each
key press. Our work differs from this in that we automatically
estimate the key press timing without key logging and we do
not impose any constraints on the keyboard, where users may
type any text freely.

There has been a series of work on acoustic cryptanalysis
in the computer security community. In their seminal work,
Asonov and Agarwal [1] exploited keystroke sound to eaves-
drop on a subject typing. They identified key presses and
used a Fast Fourier Transform (FFT) feature-based classifier
to recognize new key presses. Their system required extensive
training of 100 presses per key, but still failed to identify the
correct keys when trained and tested on different subjects. This
type of error suggests that keyboard sound can potentially
differentiate between subjects. Zhuang et al. [29] used an
unsupervised method that clusters the keystroke sounds and
uses English orthography and word frequency rules to recover
the text in a 10-minute audio recording. They demonstrated the
superiority of MFCC features over FFT features. Kelley [11]
re-implemented the aforementioned technique and also fo-
cused on the effects of errors made while typing. He noted
two sources of errors in recovering text: the predominance
of typing errors, which requires the usage of the backspace
key to correct, and extraneous sounds produced by keyboard
interactions that do not result in physical key presses. While
these errors may present difficulties for recovering the typed
text, they provide additional useful information for subject
discrimination, which is not present in keystroke dynamics
alone.

The focus of previous keystroke sound research has been on
designing signal processing and machine learning algorithms
to recover the typed letters. One of their main assumptions
is that, when pressed, each key will emit a slightly different
acoustic signal dependent upon the user. This motivates us to
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Fig. 2. Architecture of a biometric authentication system based on keystroke sound, where the boldface indicates the output of each one of the three stages:
training, enrollment, and authentication.

cluster sample keystroke sounds to learn a virtual alphabet for
the proposed approach. Assuming the continued success of this
line of work in the future, it can be leveraged to combine the
best of both worlds: keystroke dynamics-based authentication
using recovered keys, and enhanced discrimination due to
additional 1-D acoustic signals that are not present in key-
logging.

III. KEYSTROKE SOUND ALGORITHM

To examine the discriminative ability of keystroke sound,
we propose a system to match two sound streams in a
continuous authentication application. Here we present a high
level overview of the proposed system, ranging from audio
recording to the authentication decision. Then we present in
detail the various algorithmic components, which are used in
the three stages of the system. We discuss the motivation and
techniques used, as well as the input and output from each
component.

A. System Overview

We formulate our algorithm as a pattern matching problem
that takes gallery and probe sound streams as inputs and
returns a similarity score between them. The gallery sound
stream has its features pre-computed and stored as a user
template during the enrollment stage. The probe sound stream
is produced by the current user of the system who has to be
recognized. Both sound streams are recorded with the subject
typing in the same environment, which is described in detail
in Section IV.

We briefly summarize the process in Figure 2. From [1], we
know that keys produce unique sounds when pressed by the
same user, but that different users produce slightly different
sounds. In order to process the audio stream from typing, we
must first identify the key presses from the background noise
and extract frequency-based audio features describing each
key press. To suppress some of the random noise effects we
assign each press a virtual letter, which is simply the closest
representative cluster of key press sounds. Then, all features

are passed to a set of classifiers that jointly make a decision
on whether the typing sounds are from the same user.

There are three different stages of operation for the system:
training, enrollment, and authentication. During the training
stage, a set of pre-recorded sound streams from multiple sub-
jects is used to learn the various parameters of the algorithm
suitable for the given environment. During the enrollment
stage, a new subject types a pre-defined text while the system
records the sound stream. It then estimates when keys were
pressed, extracts the features from the stream, and creates and
stores a user template for the subject. During the authentica-
tion stage, a subject claims his or her identity (e.g., with a
simple password) and the system then proceeds to continu-
ously record the sound stream. The system extracts features
from the sound stream in real-time and, after a sufficient length
of time, compares them with the user template of the claimed
identity to output a similarity score. If the computed similarity
score is high enough, the subject is accepted and can continue
operating the computer. Otherwise the subject is deemed an
impostor and logged out of the system. In the following
subsections, we present each component of this architecture
in detail.

B. Temporal Segmentation & Feature Extraction

Let a raw acoustic typing signal, g(t), be composed of
keystroke acoustics interspersed with silent periods, which has
muted non-deterministic background noise occurring through-
out. g(t) is recorded via a microphone at a specified sampling
rate of fs, where fs = 48 kHz in this work. It is generally
assumed that the keystroke acoustics and timing information
carry all of the discriminative information about the typist,
while the silent periods contain only background noises.
Hence, before we extract features from the acoustic signal,
we must first perform temporal segmentation of the keystroke,
i.e., estimating the times at which a keystroke occurs.

A keystroke is defined as the entire activity corresponding
to a user pressing a key down, holding it, and releasing it
to the upright position. A key press refers to the action of
moving the finger down, striking the key, and the key striking
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Fig. 3. The raw acoustic signal of a keystroke including key press and key
release.

the plate in the keyboard. A key release refers to the moving of
the finger back into the upright position and the key snapping
into its default location. Figure 3 shows a sample audio wave
of a single keystroke. We see a clear peak at the key press,
and a smaller, rougher peak at the key release. The sound
of the key press is composed of the sound of the finger
striking the key and the key striking the plate, but in practice,
these sounds overlap each other in most cases. We denote a
keystroke as ki, with a start time of ti and a duration of L.
Similar to prior work [29], we assume the keystroke duration is
constant for all keys and subjects, because of the difficulty in
precisely estimating the specific duration for each keystroke.
Specifically, we set L to be 40 ms, since it covers the full
length of most observed keystrokes.

Motivated by the work of Zhuang et al. [29], we conduct
the temporal segmentation based on the observation that the
energy of a keystroke is concentrated in the frequencies
between 400 Hz and 12 kHz, while the consistent background
noises (e.g., hum of lights, computers, and HVAC systems)
occupy mainly the lower frequency ranges. We compute the
5-ms windowed FFT of the acoustic signal g(t) using a sliding
window of a displacement of 2.5 ms, where the magnitudes of
outputs in the range of 400 Hz and 12 kHz are summarized
to produce an aggregate curve of the FFT power p(u). By
setting a threshold θ for p(u), we can find the times ui where
p(ui − 1) < θ ∧ p(ui) > θ, as shown in Figure 4. Thus, we
identify the start of keystrokes as ti = 2.5ui, where 2.5 is the
sliding window displacement. In this work, we do not have the
ground truth locations of when key presses occur to help guide
the value of θ. We instead determine θ based on the number of
key presses required to enter the static text without errors such
that on average we recognize the correct number of key presses
in the training data while rejecting superfluous background
noise. In the future, an adaptive thresholding scheme could
be employed to improve the segmentation for a given audio
stream. Ideally this temporal segmentation should detect all
keystrokes, instead of the background noise.

Once the start of a keystroke ti is determined, we convert
the acoustic signal within a keystroke segment, g(ti, ..., ti +
L), to a feature representation fi for future processing. The
standard MFCC features have demonstrated effectiveness in
key recovery [29], even though they were initially developed
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Fig. 4. Temporal segmentation by thresholding the FFT power. Black line is
the power between 400Hz and 12 kHz. The red lines indicate the duration L
of the detected key press. Blue line is the power of the background noise at
the lower frequencies (< 400Hz).

for speech applications. Our MFCC implementation uses the
same parameter setup as the work of Zhuang et al. [29]. That
is, we have 32 channels of the Mel-Scale Filter Bank and use
the first 16 resultant coefficients with 10-ms windows that are
shifted by 2.5 ms. The resultant feature of a keystroke ki is a
256-dimensional vector fi.

C. Virtual Alphabet via Clustering

Most prior work of keystroke dynamics use digraph statis-
tics - the time delay between two individual keys or two groups
of keys, or trigraphs - the delay across three keys. In keystroke
dynamics, such key information is readily available since key
logging records the letter associated with each keystroke.
However, this is not the case with the keystroke acoustic
signal. We have estimated the timing of each keystroke, and
now we need to estimate the label or the letter pressed at each
keystroke. However, as shown in acoustic cryptanalysis [11],
precisely recognizing the typed key from acoustic signals itself
is an ongoing research topic.

Hence, we take a different approach by aiming to associate
each keystroke with a unique label, with the hope that different
physical keys will correspond to different labels, but also
allowing different typists to generate different labels when
pressing the same key which incorporates differing sound
information. We call each label a virtual letter, the collection
of which is called a virtual alphabet. Learning the virtual
alphabet is accomplished by applying K-means clustering to
the MFCC features of all keystroke segments in the training
set. An acoustic signal is represented as a collection of
key presses K = {ki}, where each key press is a triplet
ki = {ti, fi, li} and li is the corresponding virtual letter.

D. Score Functions

Given the aforementioned feature representation scheme,
we next investigate a set of score functions to compute the
similarity measure between two sets of features from the
gallery and probe streams, as follows:

1) Digraph statistic: Our first score function is based on
early work on keystroke dynamics. We use statistical features
from only the digraph information, ti and li. Since the virtual
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Fig. 5. (a) Heatmap of digraph occurrences in the training data. (b) Percentage
of digraphs contained within the top N digraphs.

alphabet bears resemblance to the real letters within the same
user, we expect high scores for genuine users and low scores
for impostors. A digraph refers to the latency between presses
of a pair of letters. There are two types of digraphs: word-
specific digraphs and generic digraph [22]. Each word-specific
digraph depends on one particular pair of letters, whereas the
generic digraph is computed from all possible pairs of letters.
We study both types of digraphs in this work.

With a virtual alphabet of K letters, we may generate up
to K2 unique word-specific digraphs and a single generic
digraph. But as there are certain pairs of letters that do not
follow each other in English, we expect the digraphs of virtual
letters to follow an uneven distribution as well. During the
training stage, we count the frequency of each digraph by
passing through adjacent keystrokes, lji−1 and lji , in the entire
training set. Figure 5 (a) illustrates the occurrences of all
possible digraphs in a set of training data. Then we generate
a list of the top N most frequent digraphs, each denoted as
dn = {kn1, kn2}, with corresponding digraph frequency as
wn1 . We set N based on a pre-defined constant D such that∑N
n=1 w

n
1 ≥ D, i.e., we incorporate the top D percent of

most frequent digraphs in the score function. The relationship
between N and D is displayed in Figure 5 (b). Section V will
present the influence of D on the authentication performance.

Given the K representation of an acoustic signal, for each
word-specific digraph dn, we compute the mean, mn, and the
standard deviation, σn, of the time difference variable ∆t =
ti − ti−1 where li = kn2 and li−1 = kn1. Finally, the word-
specific digraph similarity score between two arbitrary length
signals, K and K′, is computed using the following equation:

S1d(K,K′) =

N∑
n=1

wn
1

[∑
∆t

√
N (∆t;mn, σ2

n)N (∆t;m′
n, σ′

n
2)

]
,

(1)
which basically sums up the overlapping region between two
Gaussian distributions of the same digraph, weighted by wn1 .
The overlapping region is computed via the Bhattacharyya
coefficient.

The generic digraph score function, on the other hand, is
much simpler to compute. We compute the mean, m, and the
standard deviation, σ, of the time difference variable ∆t =
ti − ti−1,∀i, and the corresponding score function is,

S1i(K,K′) =
∑
∆t

√
N (∆t;m,σ2)N (∆t;m′, σ′2). (2)

Algorithm 1: Feature extraction algorithm.
Input: A stream g(t), top digraphs dn, cluster centroids

mf (k).
Output: A feature set F.
Locate keystrokes t = [t1, ..., ti, ...] at times of high
energy p(u),
foreach keystroke time t i do

fi = MFCC(g(ti, ..., ti + L)),
li = arg mink ‖mf (k)− fi‖2,

m = mean({ti − ti−1}),
σ = std({ti − ti−1}),
foreach digraph dn do

Compute histogram of digraphs hn via Eqn. (3),
foreach letter k do

Compute histogram of virtual letters ηk via Eqn. (5),
Compute f̄k via Eqn. (7),

return F = {m,σ,ηηη,h, f̄k}.

Using the same experimental setup as Figure 9 on the
database presented in Section IV, we find that S1d is signif-
icantly slower to compute and also performs worse with an
EER of 45%, compared to the EER of 30% based on S1i.
Therefore we choose to use the generic digraph statistic and
denote its score as S1. Note that this is different than what
is observed in keystroke dynamics where the word-specific
digraphs demonstrate superior performance than the generic
digraph [22]. We hypothesize that keystroke segmentation
errors and a greater possible number of unique digraphs than
keystroke dynamics result in the better performance of the
generic digraph.

2) Histogram of digraphs: If subjects produce different
virtual letters when typing the same text, they are also likely to
generate different digraphs. Hence, we can use the frequencies
of popular digraphs as the score function. In the previous
subsection we describe the approach to compute the top
N digraphs based on the frequency of occurrence within
the training data. Given that, we compute the histogram,
h = [h1, h2, ..., hN ]T , of the top N digraphs, for each acoustic
signal. That is,

hn =

∑
i δ(li = kn2)δ(li−1 = kn1)

|K| − 1
, (3)

where δ is the indicator function and the numerator is the
number of digraphs dn = {kn1, kn2} within a sequence of
length |K|. The similarity score between two signals is simply
the inner product between two histograms of digraphs,

S2(K,K′) = hᵀh′. (4)

3) Histogram of virtual letters: When different subjects
press the same key, different sounds may be produced. While
trying to predict the text typed from the acoustic emanations,
Asonov and Agrawal identified lower recognition rates when
comparing between subjects [1]. This means that subjects
produce different sounds while typing the same text and,
therefore, examining the distribution of these sounds could
discriminate among subjects. Motivated by this observation,
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Fig. 6. The mean MFCC features f̄k of each of 20 subjects within virtual
letters, plotted along the top-2 principle components reduced from the original
256-dimensional space. The symbol represents a virtual letter and the color
in (a) indicates a subject (best viewed in color).

we compute the histogram, ηηη = [η1, η2, ..., ηK ]T , of the K
virtual letters as observed in each acoustic signal. That is,

ηn =

∑
i δ(li = kn)

|K|
, (5)

where the numerator is the number of keystrokes assigned to
virtual letter kn. For this score function, the similarity score
between two signals is the inner product between the two
histograms,

S3(K,K′) = ηηηᵀηηη′. (6)

4) Intra-letter distance: We use the virtual letter to repre-
sent similar keystrokes emerging from different keys pressed
by different subjects. Hence, within a virtual letter, it is very
likely that different subjects will have different distributions.
Figure 6 provides evidences for this observation by showing
the mean MFCC features of 20 training subjects within virtual
letters. It can be seen that 1) there is distinct inter-letter
separation among virtual letters; 2) within each virtual letter,
there is intra-letter separation due to individuality. Hence, we
would like to utilize this intra-letter separation in our score
function. For an acoustic signal, we compute the mean of fi
associated with each virtual letter, which results in K mean

Algorithm 2: Authentication algorithm.
Input: A probe stream g′(t), a user template F, top

digraphs dn, cluster centroids mf (k), score
distributions msv, σsv , a threshold τ .

Output: An authentication decision d.
Compute feature set F′ for probe g′(t) via Alg. 1,
Compute digraph statistic score S1 via Eqn. (2),
Compute histogram of digraphs score S2 via Eqn. (4),
Compute histogram of virtual letters score S3 via
Eqn. (6),
Compute intra-letter distance score S4 via Eqn. (8),
Compute normalized score S via Eqn. (9),
if S > τ then

return d = genuine.
else

return d = impostor.

MFCC features, as follows:

f̄k =
1

|li = k|
∑
li=k

fi. (7)

Given two acoustic signals K and K′, we use Equation (8)
to compute the Euclidean distance between the corresponding
mean MFCC features and sum using a weight wn3 , which is
the overall frequency of each virtual letter among all keystroke
segments and is pre-computed from the training set. The sign
−1 is to ensure that, on average, the genuine probe has a larger
score than the impostor probe.

S4(K,K′) = −
K∑
k=1

wn3 ||̄fk − f̄ ′k||2. (8)

So far we have constructed a feature set for one acoustic
signal, denoted as F = {m,σ,ηηη,h, f̄k}, where k ∈ [1,K]. We
summarize the feature extraction algorithm in Algorithm 1.
If the acoustic signal is from the gallery stream, we call the
resultant feature set as a user template of the gallery subject,
which is computed during enrollment and stored for matching
with a probe stream.

E. Score Fusion & Authentication Decision

Once the four scores are computed, we fuse them to
generate one value that indicates the similarity between two
sound streams. In this paper, we only consider fusion across
multiple scores, since we focus on the ability of an individual
probe to be matched with the correct user. In the future,
a more rigorous continuous authentication score fusion will
take temporal information into consideration, by integrating
the previous score functions from the same computer session.
In our system, we use a simple score-level fusion where the
four normalized scores are reduced to a single score function
through linear discriminate analysis (LDA) [13]. The optimal
LDA projection vector [c1, c2, c3, c4 ]T is learned on the scores
of probes in the training set, such that the between-class scatter
is maximized while minimizing the within-class scatter. The
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final score is computed as follows:

S =

4∑
v=1

cv
Sv −msv

σsv
. (9)

To normalize the score functions, we use the mean msv and
standard deviation σsv of the score distribution learned from
the impostor examples in the training data, such that the
normalized scores for the impostors will fall in a standard
normal distribution and the genuine scores should be outliers
on the positive side. We chose to only normalize based on
the impostor scores because they follow a clear Gaussian-like
distribution and according to [9], the z-score normalization
can be used only when the data is Gaussian distributed. To
make an authentication decision, a simple threshold τ is used
to classify the user as genuine when S > τ . We summarize
the algorithm for the authentication stage in Algorithm 2.

IV. DATABASE

In this section, we present an overview of the database
that we collected for this work, which is designed to help
with other typing-based research as well. We present both the
technical setup as well as the motivation behind the protocols
for data collection. We have three main considerations when
developing our protocol: 1) the text the subjects type, 2) the
equipment on which they type, and 3) the environment in
which they type.

Type of Text: When developing the protocol, our first
goal is to be able to study the differences and dependencies
of keystroke sound on static text and free text. Static text
refers to typing of the exact same text during enrollment
and authentication, which models typing of a password or a
commonly repeated phrase such as an e-mail signature. Free
text refers to allowing the subject freedom to choose the words
and topics for typing, which models generic computer usage.
For continuous authentication, the ability to work on free
text is essential, but it could be more challenging due to the
inherent differences in characters typed and keyboard activity.
The question of static versus free text is pertinent to keystroke
dynamics as well, where its research started with static text
and substantially more efforts have been made on static text
over free text in the past few years [2].

In order to answer this question with keystroke sound,
we design our protocol to include two sessions. In the first
session, we have the subject type static text by copying the first
paragraph from “A Tale of Two Cities” by Charles Dickens,
which is displayed on the monitor directly above the input
text area. We further break the first session into four sub-
sessions by asking the subject to repeat this typing exercise
four times with a 2-3 second break between trials. Subjects are
requested to remove their hands from the keyboard between
sub-sessions in order to reset their position as well as frame of
mind. Multiple typing instances of the same paragraph enable
the study of static text-based authentication. In the second
session, the subject is requested to type a half-page email to
their family with no instructions on the content of the letter.
We observe in this session, that subjects make spontaneous
pauses during typing while they think of material to write,

TABLE I
AGE DISTRIBUTION OF SUBJECTS.

Age 10–19 20–29 30–39
Number of subjects 11 34 5
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Fig. 7. Distribution of subjects’ experience with keyboard.

adjust their hands without pressing keys, and exhibit other
real-world typing anomalies. This second session allows for
research on free text-based authentication. Most subjects take
between 5-8 minutes to type each session, depending on their
typing ability and speed.

Equipment: Our second consideration is the equipment
and setup. While we do not have complete control over the
background environment, we could maintain the same physical
equipment across all data collections. As demonstrated in the
work of keyboard acoustic emanation [1], training on one
keyboard and recognizing on a different keyboard, with the
same brand and model, has adverse effects on the accuracy.
For this reason, we use the same U.S. standard QWERTY key-
board for data collection. Although there are many available
options for microphones, we decide to utilize an inexpensive
webcam with an embedded microphone, which is centered on
top of the monitor and pointed toward the keyboard. This
setup uses commodity equipment and allows us to capture
both the video of hand movement and the audio recording of
the keyboard typing. Thus, a multi-modal (visual and acoustic)
typing behavior analysis system can be developed in the future
based on this database. The sound is captured at 48 kHz in
dual channel, but based on our observations, these channels
are almost identical and hence we combine them into a single
channel, by simply averaging the two channels.

Environment: Our third consideration while collecting
the database is the recording environment. The background
noises present in the audio recording play an important role
in the usability of the stream. Background noises can refer to
voices, low frequency pitches from heaters, lights, or comput-
ers, other people typing, and any other sound not originating
from the subject typing on the keyboard. These noises can
both affect the sound of normal key presses, when they occur
in sync with the subject typing, as well as pose difficulties in
distinguishing between key press and background noise, when
they are louder than the key presses themselves.

To mitigate background noises during collection, we direct
the camera and microphone at the keyboard so the sounds
from key presses are made prominent; we also communicate
instructions to the subjects fully ahead of time and use non-
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Fig. 8. Distribution of the individual score functions, S1, S2, S3, and S4, and the fused score S, for genuine and impostor probes.

verbal communication during the session to reduce the inter-
ference of our voices on the audio. In the algorithm design, we
filter out the constant low frequency pitches when performing
temporal segmentation to further remove background noise.
We also attempt to maintain consistency in the background
noise present in the recording by using the same table,
chair, and position of keyboard, monitor, and webcam for all
subjects. Nevertheless, some standard workplace noises exist
in the background, e.g., doors opening, people walking, and
chairs rolling across the floor.

Subjects: Our subject pool consists of 50 individuals
from different backgrounds. All subjects are either students or
faculty members of Michigan State University, and were re-
cruited through a broad announcement to engineering students
or through personal referrals by other participants. Although
the number of subjects (50) is preferred to be larger, it is
on par with the number of subjects (51) in the well-known
CMU benchmark keystroke database [12], which has been
extensively tested on various keystroke dynamics studies. To
study the various factors that may affect distinctiveness of
keystroke sound, each subject is asked to finish a survey with
four questions, viz., the age group, years of experience in using
keyboard, major type of keyboard, and years of experience
in using QWERTY keyboards. The distribution of typing
experience is reported in Figure 7, and the age distribution
is summarized in Table I.

In order to facilitate further research on typing-based bio-
metrics or to permit performance comparison between various
approaches, we have released this database1 for research pur-
poses. This includes the four sub-sessions of the first session
along with the training and testing set divisions as used in the
experimental results.

1http://www.cse.msu.edu/~liuxm/typing

V. EXPERIMENTAL RESULTS

The goal of this section is to provide a comprehensive
analysis of the discriminative power of keystroke sound,
using extensive experiments. The paper expands upon the
experimental results presented in [21] by examining the effects
of the new score function, searching the parameter space,
and studying the unconstrained setting, i.e., keystroke sound
matching with free text. When a new biometric modality is in-
troduced, it is a common practice to first evaluate its efficacy in
constrained environments and then, as the technology matures,
to consider operational unconstrained scenarios. For example,
face recognition algorithms were initially tested on highly
constrained databases such as FERET [19] and FIA [7], but are
more recently being evaluated on unconstrained datasets such
as LFW [8] and YouTube Faces [25]. From the acoustic realm,
there is also text-dependent and text-independent speaker
recognition, which is analogous to static and free text typing.
Similarly, research on keystroke dynamic has mostly focused
on static text for the past few decades and is progressing to
free text in recent years. Following this research methodology,
we mainly use the static text portion of our dataset, but also
include experiments on the free text portion, which allows for
true continuous authentication.

A. Setup

We refer to the four sub-sessions from the static text of
the database as S11, S12, S13, and S14 and the free text
session as S2. The proposed algorithm requires a separate
training dataset for the purpose of learning a virtual alphabet,
top digraphs, and the score distribution statistics. Hence, we
randomly partition the database into 15 subjects for training
and the remaining 35 subjects for testing our algorithm. We
repeat this partitioning process 5 times to validate our results.
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Fig. 9. The ROC curves of individual score functions as well as final fused
score with error bars for K = 60 and D = 20%.

Gallery and Probe: For each subject, we use the first
typing trial, S11, as the gallery stream and portions of S12,
S13, and S14 as the probe streams. For the probe streams,
we need to balance two considerations. Firstly, we want to
use as many probes as possible to enhance the statistical
significance of our experiments, which requires that we use a
partial sequence. Shorter probe sequences also allow for faster
verification time to identify impostors quicker. Secondly, we
want to use longer probe streams to allow accurate calculations
of features for a given subject. We decide to form 7 continuous
probe streams from each sub-session for each subject by using
70% of the paragraph starting at the 0%, 5%, 10%, 15%,
20%, 25%, and 30% mark of the paragraph. This overlap
of text streams allows us to balance both considerations,
while also simulating a continuous environment where the
algorithm works with an incoming data stream and the results
of the current probe build on the prior results. Although such
overlapping creates dependency among testing probes, this
fulfills both the requirement of periodic authentication, and
the need to use a window of past observations to make an
authentication decision. Note that the same gallery and probe
partition is applied to both the training and testing set.

The average gallery and probe length is 94 and 62 seconds
respectively. The total number of probe streams for training is
315 (= 15×3×7) with 4725 (= 315×15) different cases. The
total number of probe streams for testing is 735 (= 35×3×7)
with 25725 (= 735× 35) different cases.

Evaluation Metrics: We use the standard Receiver Op-
erating Characteristic (ROC) curve, as the main performance
metric. The ROC curve has two axes: False Positive Rate
(FPR), the fraction of impostor pairs incorrectly deemed
genuine, and True Positive Rate (TPR), the fraction of genuine
pairs correctly deemed genuine. A good biometric produces
a low FPR at high values of TPR. To succinctly summarize
the ROC curve, we use the Equal Error Rate (EER) which
is the FPR when it equals 1−TPR. In order to compare
the performance of the score functions, we also plot the
probability distributions of the genuine and impostor scores.

TABLE II
EER OF PARAMETER SEARCH FOR K AND D.

D K 20 30 45 60 75
10% 16.3 13.7 12.8 12.7 12.3
20% 17.7 14.3 12.5 11.0 14.9
50% 16.3 15.7 14.0 13.4 14.4
70% 16.9 15.8 12.9 12.3 14.1
90% 17.2 15.4 14.3 12.9 15.0

B. Score Function Comparison

Figure 8 presents the distributions of the four score func-
tions and the overall fused score on one partition of the testing
data. Figure 9 displays the authentication performance with
tuned parameters after evaluating the algorithm on all five
partitions, with each one of the score functions, the approach
in our earlier work [21], and the fused score proposed in this
paper. We can make a number of observations. Firstly, the
individual score function distributions all display significant
overlap between the genuine and impostor pairs. The task of
identifying a single feature representation to discriminate users
via keystroke sounds is challenging. Intra-letter distance, di-
graph statistic, histogram of digraphs, and histogram of virtual
letters provide 34%, 33%, 30%, and 13% EER, respectively.
Secondly, despite the overlap, there is still some separation
between the genuine and impostor probes. Furthermore, by
using fusion, we create a new fused score, which produces
the best result and indicates that the individual score functions
capture different aspects of the subject’s typing sound. The
result with the fused score has an EER of 11.0%. Finally, we
have achieved substantially better performances compared to
our earlier approach presented in [21], which has an EER of
24.2%.

C. Parameter Tuning

There are two different parameters for our algorithm, which
are not deduced from the training set. First, the number of
virtual letters, K, which has implications on the mapping of
real keys on the keyboard. If K is less than the number of keys
on the keyboard, it forces multiple real keys to be mapped onto
the same virtual letter which can make the virtual digraphs
meaningless. If K is greater than the number of keys, it forces
different users pressing the same key to map to different virtual
letters, which increases the total number of digraphs and could
require longer probe sequences to make a reasonable decision.
We seek to find a good balance for K by looking at 20, 30,
45, and 60 with the realization that about 30 keys are used
on a keyboard in normal typing. Second, the number of top
digraphs N is changeable. We set N based on the top D =
{10%, 20%, 50%, 70%, 90%} of all digraphs that are included
in the calculation. For example, when D = 70%, we use the
top N = 797 digraphs.

From Table II, it can be seen that as the number of virtual
letters K increases, the authentication performance improves
with decreasing EER, which is consistent with our intuition
that a virtual letter represents the sound of a unique key
pressed by a subset of subjects. This performance, however,
saturates after K = 60 at which point we include enough



TO APPEAR IN IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

0 20 40 60 80 100
−2

−1

0

1

2

3

4

5

6

7

Probe length (sec)

N
or

m
al

iz
ed

 s
co

re

 

 
Digraph Statistic
Hist. of Digraphs
Intra−letter Distance
Hist. of Virt. Letters
Fusion

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

4

5

6

Probe length (sec)

N
or

m
al

iz
ed

 s
co

re

 

 
Digraph Statistic
Hist. of Digraphs
Intra−letter Distance
Hist. of Virt. Letters
Fusion

0 20 40 60 80
0

5

10

15

20

25

30

35

40

Average probe length (sec)

E
E

R
 (

%
)

(a) (b) (c)

Fig. 10. (a-b) The authentication score over time for one specific genuine user (a) and impostor user (b). As time passes, the fused score stabilizes to the
correct decision. We can observe the fused score rectifies the various fluctuations in individual scores. (c) EER of keystroke sound authentication with S11
gallery and differing percents of S12, S13, and S14 as probes. Performance stabilizes at 70% or ∼62 seconds of typing.

sounds to handle the different keys and means of pressing
them. In comparison, as the percentage of selected digraphs
D increases, the performance improvement is not as obvious as
that of K, but it does improve slightly before declining when
unimportant or unused digraphs are included. K contributes
more to authentication due to the superiority of the histogram
of virtual letters, which only depends on K, rather than D.
Finally, the best performance (EER = 11.0%) is achieved
when K = 60 and D = 20%.

D. Feature Correlation

To ensure good score-level fusion, it is desirable that scores
are uncorrelated [18]. In Table III we examine the Pearson
correlation coefficient, p = cov(x,y)

σxσy
, of all combinations of

score functions to identify the linear dependence of each score
with each other. In doing so, we discover high correlation
between the histogram of virtual letters and the histogram of
digraphs scores. This may help explain why in Table II we
see that increasing the number of digraph features does not
improve the overall performance. The remaining features all
exhibit weak linear correlation, which does not guarantee in-
dependence, but still contributes to the increased performance
of the fused score.

E. Verification Time

One important question with continuous authentication is
the time taken to either authenticate a genuine user or detect an
impostor. Ideally this verification time [10] should be as short
as possible in practical applications. To answer this question,
we design an experiment to determine what length of probes
is necessary to reach a reasonable decision. Using S11 as
gallery, we vary the length of probes in S12, S13, and S14
by 5% across the entire length of the probes. Figures 10 (a-b)
demonstrates how the score functions change over time for
one specific genuine and impostor probe. In this example, we
see that both fluctuate in uncertainty near the beginning when
limited information is present, and they eventually stabilize to
the correct decisions as time passes. Figure 10 (c) shows the
EER for this experiment over the length of the probe. We see
large errors using short probes with a rapid improvement from

TABLE III
PEARSON CORRELATION COEFFICIENTS p OF FOUR SCORES: DIGRAPH

STATISTIC (DS), HISTOGRAM OF DIGRAPHS (HD), INTRA-LETTER
DISTANCE (ILD), AND HISTOGRAM OF VIRTUAL LETTERS (HVL).

DS HD ILD HVL
DS 1.000
HD 0.026 1.000
ILD 0.148 0.103 1.000
HVL 0.155 0.760 0.081 1.000

20% of the probe length or ∼18 seconds to 70% of the probe
length or ∼62 seconds.

F. Number of Enrollment Samples

We hypothesize that repeating the enrollment session to
create a set of user templates for each subject can capture
more of the intra-subject variation and therefore improve the
performance. If M gallery streams exist for each subject,
the fused score Si can be computed against each of the M
user templates and the final score for the user can simply be
the mean of fused scores, S = 1

M

∑M
i=1 S

i. To validate our
hypothesis about multiple gallery sequences, we use the seven
70% partitions of S14 as the probe and use all combinations
of S11, S12, and S13, for 1, 2, and 3 gallery sequences.
Furthermore, we perform the experiments 5 times for cross-
validation. The EERs are 12.2%, 10.6%, and 10.2%, for 1,
2, and 3 gallery sequences respectively, which indicates that
multiple galleries have a positive impact on the performance.
Note that in this experiment, multiple gallery sequences are
keystroke sounds when typing the same static text multiple
times. In the future, when one subject has multiple gallery
sequences with free texts, we would better capture the intra-
subject variation and expect a larger margin of performance
improvement for free text-based authentication.

G. Computational Efficiency

Since a probe stream is an one-dimensional signal, our algo-
rithm can operate comfortably in real time, with very minimal
CPU load, which is a very favorable property for continuous
authentication. Our experiments were run on a commodity



TO APPEAR IN IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

Digraph Statistic
Hist. of Digraphs
Intra−letter Distance
Hist. of Virt. Letters
Fusion

Fig. 11. ROC curves of 60-second probes in the unconstrained setting.

desktop computer with 8 GB RAM and 3.7G Hz AMD Radeon
processor. We implement our system in MatlabTM so the time
reported is conservative, and an efficient C++ implementation
would exhibit further improvements. For a 60-second probe
stream, it takes approximately 20 seconds to create the feature
representation with more than 98% of the time spent on
keystroke segmentation. Once the features have been extracted,
it takes less than 0.1 seconds to compute the score functions
against a user template. Since the keystroke segmentation can
be processed whenever the sound stream arrives, our system
can comfortably execute in real time. Note that because of the
negligible computational cost of matching to a user template,
the computational efficiency of using multiple templates is
almost the same as that of one template. A future work is to
design an incremental way of computing the score function,
similar to the online activity recognition work [27]. This is
important since we would like to perform authentication in the
online mode, as the sound stream is continuously received.

H. Unconstrained Free Text Setting

For keystroke sound to be used for continuous authen-
tication, it needs to perform well during the unconstrained
free text typing, which is captured in the S2 session of our
database. In this subsection, we use the same parameters
as previously tuned and evaluate the performance of using
S11 as the gallery and S2 as the probe. To create multiple
probes for each user, we split the S2 session into 60-second
probes with half overlap, which gives us in total 378 genuine
samples and 12, 852 impostor samples. Figure 11 demonstrates
the results for this unconstrained free text setting. We see
the performance of the fused score is nearly as high as the
constrained static text case with an EER of 11.7% only slightly
less than 11.0% from the static text case, which is a very
encouraging news considering the typical performance drop
of conventional keystroke dynamics approaches when moving
from static text to free text [2]. This demonstrates the potential
effectiveness of keystroke sound for continuous authentication.

We attribute this minimal performance degradation to the
formulation of our score functions with unconstrained free text
typing in mind. The histogram of virtual letter score relies
only on the discriminative sound produced from a collection
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Fig. 12. CMC for closed set identification in the unconstrained setting.

of single keypresses. Hence, it can work well with free text
typing, as long as common keypresses are observed even with
limited typing duration (∼60-second probe in both static and
free text). In contrast, the conventional keystroke dynamics
depend on the statistics of the time delay between common
pairs of letters. Therefore, due to the variability of typed text,
it takes a substantial amount of time to observe sufficiently
common pairs for computing the statistics, which might cause
a performance drop when the free text has the same probe
length as the static text.

a) Closed Set Identification: In addition to user authen-
tication, another application scenario of keystroke sound is
the user identification in forensic applications. For example,
closed set identification can be performed by computing and
ranking the similarities between a probe stream and a set of
gallery streams. Using the same data in the unconstrained
free text setting, we conduct the closed set identification
experiment and present the Cumulative Match Curve (CMC)
in Figure 12. Keystroke sound demonstrates positive results
for identification.

VI. CONCLUSIONS

In this paper, we explored the discriminative power of
keystroke sound through a continuous authentication appli-
cation, but there are other potential applications in foren-
sics, security, and personalization. The proposed keystroke
sound-based authentication does not interfere with normal
computer use and requires minimal computational overhead.
We collected a database of 50 individuals typing in both
a constrained static text and unconstrained free text setting.
We designed multiple approaches to compute match scores
between a gallery and probe keystroke acoustic stream. Fur-
thermore, we proposed a fusion of digraph statistics, histogram
of digraphs, intra-letter distances, and histogram of virtual
letters to authenticate a user. We obtained an EER of ∼11% on
a database of 50 subjects. This shows that there is promising
discriminative information in the keystroke sound to be further
explored. We wish to emphasize that the intent of this research
study is to open up a new line of exciting research on typing-
based analysis and authentication. We anticipate other inter-
ested researchers to commence applying keystroke acoustics to
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various applications, ranging from continuous authentication,
forensics to personalization.

There are a few limitations of the current approach which
present interesting avenues for future work on this topic. First,
the current database is constrained in the number of subjects,
single keyboard, consistent typing environment, and single day
of collection. Having a longitudinal study with many users will
help identify the limitations of audio and understand the inter-
and intra-class variability of keystroke sound. Second, the raw
processing of the sound stream presents many opportunities
for improvement. There may be better means of identifying
keystrokes through supervised learning or context-sensitive
thresholding. This will allow for more robust authentication
in the presence of background noise typical of a normal
work environment. Third, further exploration of discriminating
features and classification algorithms can help improve perfor-
mance. Fourth, there is no understanding of the susceptibility
of the current system to attacks. Fifth, keystroke sound fits into
the broader topics of keystroke dynamics and typing behavior.
A real world application should integrate all available cues into
a common framework to help make an authentication decision.
We hope that other researchers will join us in pursuit of these
research topics.
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