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Abstract

Unlike conventional “one shot” biometric authentica-
tion schemes, continuous authentication has a number of
advantages, such as longer time for sensing, ability to rec-
tify authentication decisions, and persistent verification of
a user’s identity, which are critical in applications de-
manding enhanced security. However, traditional modali-
ties such as face, fingerprint and keystroke dynamics, have
various drawbacks in continuous authentication scenar-
ios. In light of this, this paper proposes a novel non-
intrusive and privacy-aware biometric modality that utilizes
keystroke sound. Given the keystroke sound recorded by
a low-cost microphone, our system extracts discriminative
features and performs matching between a gallery and a
probe sound stream. Motivated by the concept of digraphs
used in modeling keystroke dynamics, we learn a virtual
alphabet from keystroke sound segments, from which the
digraph latency within pairs of virtual letters as well as
other statistical features are used to generate match scores.
The resultant multiple scores are indicative of the similar-
ities between two sound streams, and are fused to make
a final authentication decision. We collect a first-of-its-
kind keystroke sound database of 45 subjects typing on a
keyboard. Experiments on static text-based authentication,
demonstrate the potential as well as limitations of this bio-
metric modality.

1. Introduction
Biometric authentication is the process of verifying the

identity of individuals by their physical traits, such as
face and fingerprint, or behavioral traits, such as gait and
keystroke dynamics. Most biometric authentication re-
search has focused on one shot authentication where a sub-
ject’s identity is verified only once prior to granting access
to a resource. However, one shot authentication has a num-
ber of drawbacks in many application scenarios. These
include short sensing time, inability to rectify decisions,
and enabled access for potentially unlimited periods of
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Figure 1. The concept of keystroke sound as a biometric: The
sound of a user typing on the keyboard is captured by a simple
microphone attached to the PC and is input to our proposed sys-
tem, which authenticates the user by verifying if the characteristic
of the acoustic signals is similar to that of the claimed identity.

time [17]. In contrast, continuous authentication aims to
continuously verify the identity of a subject over an ex-
tended period of time thereby ensuring that the integrity of
an application is not compromised. It can not only address
the aforementioned problems in one shot authentication, but
can also substantially enhance the security of systems, such
as computer user authentication in security-sensitive facili-
ties.

Research on continuous authentication is relatively
sparse, and researchers have explored a limited number of
biometric modalities, such as face, fingerprint, keystroke
dynamics, and mouse movement, for this purpose. How-
ever, each of these modalities has its own shortcomings. For
example, face authentication demands uninterrupted sens-
ing and monitoring of faces - an intrusive process from a
user’s perspective. Similarly, the fingerprint sensor embed-
ded on the mouse requires user collaboration in terms of
precision in holding the mouse [15]. Although it is nonin-
trusive, keystroke dynamics utilizes key-logging to record
typed texts and thus poses significant privacy risk in the case
of surreptitious usage [13, 2].

In this paper, we consider another potential biometric
modality for continuous authentication based on keystroke
acoustics. Nowadays, microphone has become a standard
peripheral device that is embedded in PCs, monitors, and
webcams. As shown in Figure 1, a microphone can be used
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Figure 2. Architecture of the biometric authentication via keystroke sound, where the boldface indicates the output of each stage.

to record the sound of a user typing on the keyboard, which
is then input to the proposed system for feature extraction
and matching. Compared to the other biometrics modalities,
it has a number of advantages. It utilizes a readily available
sensor without requiring additional hardware. Unlike face
or fingerprint, it is less intrusive and does not interfere with
the normal computing operation of a user. Compared to
keystroke dynamics, it protects the user’s privacy by avoid-
ing direct logging of any keyboard input. Keystroke acous-
tics does have the disadvantage of dealing with environmen-
tal noise, but proper audio filtering or a directed microphone
should help in a noisy environment.

Our technical approach to employ this novel biometric is
largely motivated by prior work in keystroke dynamics. One
of the most popular features used to model keystroke dy-
namics is digraph latency [9, 8, 3], which calculates the time
difference between pressing the keys of two adjacent letters.
It has been shown that the word-specific digraph is much
more discriminative than the generic digraph, which is com-
puted without regard to what letters were typed [14]. As-
suming that the acoustic signal from keystroke does not ex-
plicitly carry the information of what letter is typed, we pro-
pose a novel approach to employ the digraph feature by con-
structing a virtual alphabet. Given the acoustic signals from
all training subjects, we first detect segments of keystrokes,
whose mel-frequency cepstral coefficients (MFCC) [4] are
fed into a K-means clustering routine. The resultant set of
cluster centroids is considered as a virtual alphabet, which
enables us to compute the most frequent digraphs (a pair of
cluster centroids) and their latencies for each subject. Based
upon the virtual alphabet, we also consider a number of
other feature representation and scoring schemes. Eventu-
ally a score level fusion is employed to determine whether a
probe stream matches with the gallery stream. In summary,
this paper has three main contributions:

⇧ We propose a novel keystroke sound-based biometric

modality that offers non-intrusive, privacy-friendly, and po-
tentially continuous authentication for computer users.

⇧ We collect a first-of-its-kind sound database of users
typing on a keyboard. The database and the experimental
results are made publicly available so as to facilitate future
research and comparison on this research topic.

⇧ We propose a novel virtual alphabet-based approach to
learn various score functions from acoustic signals, and a
score-fusion approach to match two sound streams.

2. Prior Work
To the best of our knowledge, there is no prior work in

exploring keystroke sound for the purpose of biometric au-
thentication. As a result, we focus our literature survey on
various biometric modalities for continuous authentication,
and other applications of keystroke sound.

Face is one of the most popular modalities suggested for
continuous user authentication, with the benefit of using ex-
isting cameras embedded in the monitor [15, 11]. However,
continuously capturing face images creates an intrusive and
unfavorable computing environment for the user. Similarly,
fingerprint has been suggested for continuous authentica-
tion by embedding a fingerprint sensor on a specific area
of the mouse [15]. This can be intrusive since it substan-
tially constrains the way a user operates a mouse. Mouse
dynamics has been used as a biometric modality due to the
distinctive characteristics exhibited in its movement when
operated by a user [12]. However, as indicated in a recent
paper [18], more than 3 minutes of mouse movement on av-
erage is required to make a reliable authentication decision,
which can be a bottleneck when the user does not continu-
ously use the mouse for an extended period of time.

Keystroke dynamics utilizes the habitual patterns and
rhythms a user exhibits while typing on a keyboard. Al-
though it has a long history dating back to the use of tele-
graph in the 19th century and Morse Code in World War II,
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Figure 3. A raw acoustic signal containing one keystroke.

most of the prior work still focuses on static text [7, 19, 2],
i.e., all users type the same text. Only a few efforts have
addressed the issue of free text (i.e., a user can type ar-
bitrary text) which is necessary for continuous authenti-
cation [10, 16]. Nevertheless, one major drawback of
keystroke dynamics is the fact that it poses significant pri-
vacy risk to the user because all typed texts can be poten-
tially recorded via key logging.

As far as recorded keystroke sound is concerned, there
has been a series of work on acoustic cryptanalysis in the
computer security community. The focus has been on de-
signing advanced signal processing and machine learning
algorithms to recover the typed letters from the keystroke
sound [1, 20, 6]. One of their main assumptions is that
when pressed, each key/letter will emit a slightly different
acoustic signal, which motivates us to learn a virtual alpha-
bet for our biometrics authentication application. Assuming
the success of this line of work in the future, we may lever-
age it to combine the best of both worlds: keystroke dynam-
ics based authentication using recovered keys and enhanced
discrimination due to additional 1D acoustic signals over
simple key logging signals.

3. Our Algorithm
As a pattern matching scheme, our algorithm seeks to

calculate a similarity score between a probe sound stream
recorded during the authentication stage and a gallery sound
stream, whose features have been pre-computed and saved
as a biometric template during the enrollment stage. Both
sound streams are recorded when a user is typing on a key-
board with minimal background noise, and they are de-
scribed in detail in Section 4.1. In this section, we present
our algorithm for calculating the similarity score between
two sound streams.

Figure 2 provides an overview of the architecture of our
proposed algorithm. There are three different stages in
our algorithm: training, enrollment, and authentication. In
each stage, given a raw acoustic signal, we first isolate the
keystroke portion from the silent periods in the temporal
domain, and MFCC features are extracted from each of the
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Figure 4. Temporal segmentation by thresholding the FFT power.

resultant keystroke segments. During the training stage, we
perform a K-means clustering of the MFCC features of all
keystroke segments, where the centroids of clusters are con-
sidered as the virtual letters in a virtual alphabet. We also
extract the digraph and letter frequencies, top N digraphs,
and compute score distributions for fusion. In the enroll-
ment stage, we use the virtual alphabet to convert the MFCC
features into virtual letters, from which three different fea-
ture sets, viz., digraph statistic, histogram of digraphs and
intra-letter distance, are designed to collectively form a bio-
metric template for the user. Finally, in the authentication
stage, the score functions are computed for a probe signal,
and score-level fusion is used to make the final authentica-
tion decision. In the following we will present each compo-
nent of this architecture in detail.

3.1. Temporal Segmentation & Feature Extraction
For an acoustic typing signal, g(t), composed of

keystrokes and silent periods, the first task before feature
extraction is to identify portions in the stream where a
keystroke occurs since it is assumed that the keystroke car-
ries the discriminative information about an individual typ-
ist. As shown in Figure 3, a keystroke is composed of key
pressing and key release, where the former comprises of the
sound emitted when a finger touches the surface of a key as
well as the sound due to the key being pressed down. We
denote a keystroke as ki, with a start time of ti and a du-
ration of L. In our algorithm, L is set to be 40 ms, since it
covers the full length of most keystrokes.

Motivated by [20], we conduct the temporal segmenta-
tion based on the observation that the energy of keystroke is
concentrated in the frequencies between 400 Hz and 12K
Hz, while the background noise occupies other frequency
ranges. We compute the 5-ms windowed Fast Fourier
Transform (FFT) of an acoustic signal using a sliding win-
dow approach, where the magnitudes of outputs in the range
of 400 Hz and 12K Hz are summarized to produce an ag-
gregate curve of the FFT power. By setting a threshold on
the curve, we identify the start of keystrokes, as shown in
Figure 4. Ideally this temporal segmentation should detect



all keystrokes, instead of the background noise. Our cur-
rent simple threshold-based method may not achieve this
reliably as yet, and in the future we will investigate more
advanced methods such as adaptive thresholding or super-
vised learning approaches.

Once the start of a keystroke ti is determined, we convert
the acoustic signal within a keystroke segment, g(ti, ..., ti+
L), to a feature representation fi for future processing. The
standard MFCC features are utilized due to its wide applica-
tions in speech recognition and demonstrated effectiveness
in key recovery [20]. Our MFCC implementation uses the
same parameter setup as [20]. That is, we have 32 channels
of the Mel-Scale Filter Bank and use 16 coefficients and
32 filters with 10-ms windows that are shifted by 2.5 ms.
The resultant feature of a keystroke ki is a 256-dimensional
vector fi.

3.2. Virtual Alphabet via Clustering
Most of the prior work in keystroke dynamics uses di-

graphs statistics, which is the mean and standard devia-
tion of delays between two individual keys or two groups
of keys, or trigraphs, which is the delay across three keys,
to model keystroke dynamics. It has also been shown
that word-specific digraph, which is computed on the same
two keys, is much more discriminative than the generic di-
graph [14]. In keystroke dynamics, such word information
is readily available since key logging records the letter asso-
ciated with each keystroke. However, this is not the case in
our keystroke acoustic signal. Hence, in order to enjoy the
benefit of digraph in our application, we strive to achieve
two goals from the acoustic signal:

• Estimate the starting time of each keystroke;

• Infer or label the letter pressed at each keystroke.

While the first goal is addressed by the temporal seg-
mentation process, the second goal requires knowledge
of the pressed key in order to construct word-specific di-
graphs. However, as shown in acoustic cryptanalysis [6],
precisely recognizing the typed key itself is an ongoing re-
search topic. Hence, we take a different approach by aim-
ing to associate each keystroke to a unique label, with the
hope that different physical keys will correspond to differ-
ent labels, and different typists will generate different labels
when pressing the same key. We call each label a virtual
letter, the collection of which is called a virtual alphabet.
Learning the virtual alphabet is accomplished by applying
K-means clustering to the MFCC features of all keystrokes
in the training set.

Assuming the training set includes streams from J sub-
jects, each with Ij keystrokes, the input of the K-means is
{f ji }, where j 2 [1, J ] and i 2 [1, Ij ]. The K-means cluster-
ing partitions the input samples into K clusters, with cen-
troids mf (k). We set K to be 30 considering that the total
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Figure 5. The mean MFCC features f̄k of each of 20 subjects
within virtual letters, plotted along the top-2 principle components
reduced from the original 256-dimensional space. The symbol
represents a letter and the color in (a) indicates a subject (best
viewed in color).

number of common keys on a typical keyboard is around
30.

During all three stages, given an original acoustic sig-
nal represented as a collection of keystrokes K = {ki}, we
compute the Euclidean distance between the MFCC feature
of a keystroke fi and each of the cluster centroids. The cen-
troid with the minimal distance will assign its index to the
keystroke as its corresponding virtual letter, i.e., li = k.
Thus, in our algorithm a virtual letter is simply a number
between 1 and K. Finally, we can represent a keystroke as
a triplet ki = {ti, fi, li}.

3.3. Score Functions
Given the aforementioned feature representation

scheme, we next investigate a set of score functions
to compute the similarity measure between two sets of
features, listed as follows.
Digraph statistic As a representation of individual typing
characteristics, digraph statistic refers to the statistics of the
latency, in terms of mean and stand deviation, within fre-
quent pairs of letters. A pair of letters is named digraph,
with examples such as (t,h), (h,e). In our algorithm, a
virtual alphabet with K letters can generate K2 digraphs,
such as (2, 5), (7, 1). During the training stage, we count
the frequency of each digraph by passing through adjacent
keystrokes, lji�1 and lji , in the entire training set. Then
we generate a list of top N most frequent digraphs, each
denoted as dn = {kn1, kn2}. Given the {ki} representa-
tion of an acoustic signal, for each one of N digraphs, we
then compute the mean, {mn}, and the standard deviation,
{�n}, of the time difference variable �t = ti � ti�1 where
li = kn2 and li�1 = kn1. Finally, the similarity score be-
tween two arbitrary length signals, K and K0, is computed
using the following equation:

S1(K,K0) =
NX

n=1

wn
1

"
X

�t

q
N (�t;mn,�2

n)N (�t;m0
n,�0

n
2)

#
,

(1)



Input: A stream g(t), top digraphs dn, cluster
centroids mf (k).

Output: A feature set F.
Locate keystrokes t = [t1, ..., ti, ...] at times of high
energy using FFT,
foreach keystroke time t i do

fi = MFCC(g(ti, ..., ti + L)),
li = argminkkmf (k)� fik2,

foreach digraph dn do
T = {ti � ti�1 : li = kn2 & li�1 = kn1, 8i 2
[2, |t|]},
mn = mean(T),
�n = std(T),
Compute histogram of digraphs hn via Eqn. (2),

foreach letter k do
Compute f̄k via Eqn. (4),

return F = {mn,�n, hn, f̄k}.
Algorithm 1: Feature extraction algorithm.

which basically summarizes the overlapping region be-
tween two Gaussian distributions of the same digraph,
weighted by wn

1 . The overlapping region is computed via
the Bhattacharyya coefficient, and wn

1 is the overall fre-
quency of each digraph learned from the training set. We
set N to be 50 in our algorithm.
Histogram of digraphs In our virtual alphabet represen-
tation, different subjects may produce different virtual let-
ters when pressing the same key. This implies that differ-
ent subjects are likely to generate different digraphs when
typing the same word. Hence, it is expected that we can
use the frequencies of popular digraphs as a cue for au-
thentication. Given this, we compute the histogram h =
[h1, h2, ..., hN ]T of top N digraphs, which are the same as
the ones in digraph statistic, for each acoustic signal. That
is,

hn =

P
i �(li = kn2)�(li�1 = kn1)

|K|� 1
, (2)

where � is the indicator function and the numerator is the
number of digraph dn = {kn1, kn2} within a sequence of
length |K|. The similarity score between two signals is sim-
ply the inner product between two histograms of digraphs,

S2(K,K0) = hTh0. (3)

Intra-letter distance We use the virtual letter to represent
similar keystrokes emerging from different keys pressed by
different subjects. Hence, within a virtual letter, it is very
likely that different subjects will have different distribu-
tions. Figure 5 provides evidences for this observation by
showing the mean MFCC features of 20 training subjects
within virtual letters. It can be seen that 1) there is dis-
tinct inter-letter separation among virtual letters; 2) within

Input: A probe stream g0(t), biometric template F,
top digraphs dn, cluster centroids mf (k),
score distribution msv,�sv , threshold ⌧ .

Output: An authentication decision d.
Compute feature set F0 for probe g0(t) via Alg. 1,
Compute digraph statistic score S1 via Eqn. (1),
Compute histogram of digraphs score S2 via Eqn. (3),
Compute intra-letter distance score S3 via Eqn. (5),
Compute normalized score S via Eqn. (6),
if S > ⌧ then

return d = genuine.
else

return d = impostor.

Algorithm 2: Authentication algorithm.

each virtual letter, there is intra-letter separation due to in-
dividuality. Hence, we would like to utilize this intra-letter
separation in our score function. For an acoustic signal, we
compute the mean of fi associated with each virtual letter,
which results in K = 30 mean MFCC features, as follows:

f̄k =
1

|li = k|
X

li=k

fi. (4)

Given two acoustic signals K and K0, we use Equa-
tion (5) to compute the Euclidean distance between the cor-
responding means and sum up by using a weight wn

3 , which
is the overall frequency of each virtual letter among all
keystroke segments and is computed from the training set.
The sign �1 is to make sure that, on average, the genuine
probe has a larger score than the impostor probe.

S3(K,K0) = �
KX

k=1

wn
3 ||̄fk � f̄ 0k||2. (5)

So far we have constructed a new feature set for one
acoustic signal, denoted as {mn,�n, hn, f̄k} where n 2
[1, N ] and k 2 [1,K]. We summarize the feature extraction
algorithm in Algorithm 1. If the acoustic signal is from the
gallery stream, we call the resultant feature set as a biomet-
ric template of the gallery subject, which is computed dur-
ing enrollment and stored for future matching with a probe
stream.
Score fusion Once the three scores are computed, we fuse
them to generate one value to determine whether the au-
thentication claim should be accepted or rejected. In our
system we use a simple score-level fusion where the three
normalized scores are added to create the overall similarity
score between two streams,

S =
3X

v=1

Sv �msv

�sv
. (6)
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The score normalization is conducted by using the mean
msv and standard deviation �sv of the score distribution
learned from the training data, such that the normalized
scores fall in a standard normal distribution. We summa-
rize the algorithm during the authentication stage in Algo-
rithm 2. In the future, more advanced fusion mechanisms
can be utilized, especially by leveraging previous work in
the biometrics fusion domain [5].

4. Experiments
In this section, we present an overview of the database

collected for this experiment which can be used for other
typing based biometrics. We also present our specific exper-
imental setup and the results of our static-text experiments.

4.1. Keystroke Sound Database
Since keystroke sound is a novel biometric modality

without any prior database, we develop a capture protocol
that ensures the collected database is not only useful for
the current research problem, but also beneficial to other
researchers on the general topic of typing-based biometrics.

When developing the protocol, our first goal was to study
whether the keystroke sound should be based on static text
or free text, i.e., does a subject have to type the same text
to be authenticated? The same question was addressed in
keystroke dynamics, where there is substantially more re-
search effort on static text than free text [2]. To answer this
question, we request each subject to perform typing in two
sessions. In the first session, a subject types one paragraph
four times (the first paragraph of “A Tale of Two Cities” by
Charles Dickens displayed on the monitor), with a 2–3 sec-
onds break between trials. Multiple typing instances of the
same paragraph enable the study of static text based authen-
tication. In the second session, a subject types a half-page
letter with arbitrary content to his/her family. It can be seen
from this session that most users make spontaneous pauses
during typing, which mimics well the real-world typing sce-
nario. Normally a subject spends around 5–8 minutes on
each session, depending on the typing speed.

A second consideration is the recording environment.
The background environment plays an important role in the
usability of the data. Low frequency pitches from comput-
ers, heaters, and lights can create distractions to the sound

Age 10–19 20–29 30–39
Number of subjects 11 30 4

Table 1. Age distribution of subjects.

of the actual typing. The placement of the sensor relative
to the keyboard as well as in the room can also introduce
differences due to echoes. All subjects in the study per-
formed the typing with the same computer, keyboard, and
microphone, in the same room, under reasonably similar
conditions. Care was taken to use non-verbal communi-
cation during the experiments to eliminate human speech
from corrupting the audio stream. Nevertheless, standard
workplace noises still exist in the background, e.g. doors
opening, chairs rolling, and people walking.

The third consideration is the hardware setup. We use
a US standard QWERTY keyboard for data collection. Al-
though there are many available options for microphones,
we decide to utilize an inexpensive webcam with embed-
ded microphone, which is centered on the top of the moni-
tor and pointed toward the keyboard. This setup allows us
to capture both the video of hand movement and the audio
recording of keyboard typing. Thus, a multi-modal (visual
and acoustic) typing-based continuous authentication sys-
tem can be developed in the future based on this database.
The sound is captured at 48, 000 Hz with a single channel.

Thus far our database contains 45 subjects with differ-
ent years of experience in using the keyboard. The sub-
jects are students and faculty at Michigan State University,
whose typing experience and age are displayed in Figure 6
and Table 1. The database of keystroke sound is available at
http://www.cse.msu.edu/

˜

liuxm/typing, and
is intended to facilitate future research, discussion, and per-
formance comparison on this topic.

4.2. Results
We use the static text portion of the database for our ex-

periments and leave the use of the free text for future work.
Our algorithm requires a separate training dataset for the
purpose of learning a virtual alphabet, top digraphs, and the
statistics of score distributions. Hence, we randomly par-
tition the database into 20 subjects for training and the re-
maining 25 subjects for testing our algorithm.

For each subject, we use the first typing trial as the
gallery stream and portions of the fourth typing trial as the
probe stream. We choose the first and last paragraph to
maximize the intra-subject differences for the static text.
For the probe streams, we need to balance two concerns.
Firstly, we want to use as many probes as possible to en-
hance the statistical significance of our experiments, which
requires that we use a shorter partial paragraph. Secondly,
we want to use longer probe streams to allow accurate cal-
culations of features for a given subject. We decide to form
7 continuous probe streams for each user by using 70% of
the fourth paragraph starting at the 0%, 5%, 10%, 15%,

http://www.cse.msu.edu/~liuxm/typing
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Figure 7. Distribution of the individual score functions, S1, S2 and S3, and the fused score S, for genuine and impostor probes.

20%, 25%, and 30% mark of the paragraph. This overlap
of text streams allows us to balance both concerns, while
also simulates a continuous environment where the algo-
rithm works with an incoming data stream and the results of
the current probe build on the results of the previous probes.
The average probe length is 62 seconds. The total number
of training probe streams is 140 with 3500 training cases.
The total number of testing probe streams is 175 with 4375
testing cases.
Evaluation metrics We use the standard biometrics au-
thentication metric, the ROC curve, to measure perfor-
mance. The ROC curve has two axes, False Positive Rate
(FPR), the fraction of impostor pairs incorrectly deemed to
be genuine, and True Positive Rate (TPR), the fraction of
genuine pairs correctly deemed to be genuine. We use the
Equal Error Rate (EER) to succinctly summarize the ROC
curve. We also use the probability distributions of the gen-
uine and impostor scores to study the performance.
Feature performance comparison Figure 7 illustrates
the separability of the three score functions and the over-
all fused score on the testing data. Figure 8 displays the
same information in the standard ROC format. We can
make a number of observations. Firstly, the individual
score function distributions all display overlap between the
genuine and impostor probes. The task of identifying a
single feature representation scheme to authenticate users
via keystroke sounds proves challenging. Digraph statis-
tics, histogram of digraphs, and intra-letter distance provide
31%, 32%, and 33% EER, respectively. Secondly, despite
the overlap, there is still some separation between the gen-
uine and impostor probes. We see Gaussian-like distribu-
tion for digraph statistics and intra-letter distance, which
implies that in real-world applications with unseen data, the
proposed score functions will be useful. The histogram of
digraphs displays a bimodal Gaussian distribution for the
genuine class, which indicates that it will behave on the ex-
tremes of either providing very useful information or lim-
ited discriminability. Furthermore, by using fusion, we cre-
ate a new fused score, which produces better results and
indicates that the individual score functions capture differ-
ent aspects of the subject typing behavior. The result with
the fused score has an EER of 25%.
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Figure 8. ROC curves of individual score functions as well as the
final fused score.

Computation efficiency Since a probe stream is an one-
dimensional signal, our algorithm can operate in real time,
with very minimal CPU load, which is a very favorable
property for continuous authentication. For a 60-second
probe stream, it takes approximately 20 seconds to create
the feature representation with the majority of the time spent
identifying the locations of keystrokes. Once the features
have been extracted, it takes less than 0.1 seconds to com-
pute the score functions against a biometric template. A
future work is to design an incremental score function. This
is important since we would like to perform authentication
in the online mode, as the sound stream is continuously re-
ceived.

5. Conclusions
In this paper, we presented keystroke sound as a potential

biometric for use in continuous authentication systems. The
proposed biometric is non-intrusive and privacy-friendly. It
can be easily implemented with standard computer hard-
ware and requires minimal computational overhead. To fa-
cilitate this research, we collected both acoustic and visual
typing data from 45 individuals. We designed multiple ap-
proaches to compute match scores between a gallery and
probe keystroke acoustic stream. In particular, we proposed
a fusion of digraph statistics, histogram of digraphs, and



intra-letter distances to authenticate a user. We obtained
an initial EER of 25% on a database of 45 subjects. This
suggests that more sophisticated features have to be investi-
gated in the future. While these are preliminary results, with
the accuracy far below well-researched biometric modali-
ties such as face or fingerprint, we wish to emphasize that
the intent of this feasibility study is to open up a new line
of exciting research on typing-based biometrics. We antic-
ipate other interested researchers to commence working on
keystroke acoustics as a biometric modality - either by it-
self or in conjunction with other modalities - in continuous
authentication applications.

Our future work on this topic will cover the following as-
pects. First, we will increase the subject size of our database
to provide more training samples. We will continue to col-
lect data from a larger number of users as well as acquire
more samples from the current users to gain a better under-
standing of the inter- and intra-class variability of this bio-
metric. Second, we will explore methods for better iden-
tifying keystrokes through supervised learning or context-
sensitive thresholding. This will allow for more robust au-
thentication in the presence of background noise typical of
a normal work environment. Third, we will explore the
changes that occur when comparing free text, by utilizing
the second session of our database. Finally, we will in-
vestigate new feature representation schemes to address the
intra-class variability of this biometric.

It is interesting to note a potential attack on this biomet-
ric system that involves recording a genuine user’s typing
sounds and then replaying the recording while the impostor
is using the computer in a silent manner through the mouse.
A means of foiling this attack is to log only the times of
keystrokes and ensure alignment of the detected keystroke
times from the audio with the actual keystroke times. Al-
ternatively, positioning a webcam toward the keyboard to
analyze the video of typing can foil this attack as well. It is
also desirable to completely fuse this method with standard
keystroke dynamics methods where the audio and virtual di-
graphs add extra discriminating information to the physical
digraphs.
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