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Abstract—We hypothesize that an individual computer user
has a unique and consistent habitual pattern of hand movements,
independent of the text, while typing on a keyboard. As a
result, this paper proposes a novel biometric modality named
“Typing Behavior (TB)” for continuous user authentication.
Given a webcam pointing toward a keyboard, we develop
real-time computer vision algorithms to automatically extract
hand movement patterns from the video stream. Unlike the
typical continuous biometrics such as keystroke dynamics (KD),
TB provides reliable authentication with a short delay, while
avoiding explicit key-logging. We collect a video database where
63 unique subjects type static text and free text for multiple
sessions. For one typing video, the hands are segmented in
each frame and a unique descriptor is extracted based on the
shape and position of hands, as well as their temporal dynamics
in the video sequence. We propose a novel approach, named
bag of multi-dimensional phrases, to match the cross-feature
and cross-temporal pattern between a gallery sequence and a
probe sequence. The experimental results demonstrate superior
performance of TB when compared to KD, which, together with
our ultra-real-time demo system, warrant further investigation
of this novel vision application and biometric modality.

Index Terms—Continuous authentication, user authentication,
biometrics, typing behavior, hand movements, bag of phrases, bag
of multi-dimensional phrases, keystroke dynamics, keyboard.

I. INTRODUCTION

IT is common to validate the identity of a user for any
computer system. The standard password-based, one-shot

user authentication may create an information system that is
vulnerable immediately after login, since no mechanism exists
to continuously verify the identity of the active user. This can
be an especially severe problem for security-sensitive facilities,
where compromised passwords or insufficient vigilance after
initial login can leak confidential information or give unwanted
privileges to the user. Hence, a method enabling continuous
authentication for the active user is highly desired.

One popular alternative to password-based user authen-
tication is to employ biometrics. Biometrics refers to the
identification of humans by their physical characteristics (e.g.,
face, fingerprint, iris) or behavioral traits (e.g., gait, keystroke
dynamics, mouse dynamics) [15]. Among these biometric
modalities, face, fingerprint, keystroke dynamics (KD), and
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Fig. 1. Concept of typing behavior. With a webcam pointing at a key-
board, the video stream of a user’s hand movements is continuously
fed into the proposed computer vision algorithms, which verify the
spatio-temporal patterns of the movement with those of the claimed
subject, so as to achieve continuous user authentication.

mouse dynamics have been used in continuous user authentica-
tion. Researchers develop this wide range of biometric modal-
ities due to a number of reasons. One, users interact with a
computer in many different ways. Some predominantly use the
keyboard, others the mouse, others may consume information
from the screen without interacting with peripherals, and other
input methods (e.g., gestures) may become more common in
the future. Two, users may be present at the computer or may
be logged in from a remote machine. Three, each modality
has its own limitation. For example, the fingerprint sensor
embedded on the mouse assumes user cooperation by pressing
the thumb on a dedicated position of the mouse [32]. Face
authentication requires continuously capturing and monitoring
facial appearance, which may give up personal information
irrelevant to identity, such as the emotional state. Also, the
processing pipeline from face detection, landmark estima-
tion, to authentication can be computationally intensive. Both
keystroke dynamics and mouse dynamics require the length
of probe sequences to be at least a few minutes for reliable
authentication [38], [46], which indicates a long verification
time - a higher risk of delayed detection of an imposter.

Due to the aforementioned issues, much room remains
from an academic point of view to explore novel biometric
modalities for continuous computer user authentication. We
aim to explore a biometric with short verification time, ultra-
real-time efficiency, and no interference with normal computer
operation, especially related to the standard input devices,
e.g., keyboard and mouse. In psychology literature, Ouellette
and Wood state that frequent behavior forms a habit where
actions from the past can predict actions in the future [25].
This claim of consistent user behavior leads us to study the
potential of using the “frequent” keyboard typing behavior as
a biometric modality. In particular, we hypothesize that every
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computer user has a unique and consistent habitual pattern
of hand movements, independent of the text, while typing on
a keyboard. Using a simple hardware setup demonstrated in
Fig. 1, we can capture a video of the hands without any user
cooperation and based on the video alone our system provides
an authentication decision with a short verification time. We
name this novel biometric modality as Typing Behavior (TB).

Specifically, given one typing video frame, it segments the
hands from the background and then separates the left and
right hand regions. A shape context based feature is extracted
from each hand region [7], which is concatenated with the
centroid positions to form the descriptor for each frame. We
use the Bag of Words [12] concept to convert the descriptor
into a word, and represent a typing video as a histogram of
words. Thus the matching of videos can be done between the
histogram of a probe and that of the gallery. We also model
the temporal dynamics of the words in a video via Bag of
Phrases [45], where a phrase is a set of words with a certain
temporal layout. Furthermore, we propose a novel extension
of Bag of Phrases, Bag of Multi-dimensional Phrases, where a
video frame is represented as a multi-dimensional word, and
the phrase is composed of cross-feature and cross-temporal
words. To study this novel biometrics, we conduct a two-
phase data collection including 63 computer subjects type
the static text or free text in multiple sessions. The extensive
experiments demonstrate excellent and superior performance
of TB. For example, on a 30-subject free text dataset collected
weeks apart, TB achieves 4.9% Equal Error Rate (EER) with
20-second probes, while KD has 20.9% EER.

In summary, this paper has three main contributions:
� We propose a novel biometric modality that offers real-

time continuous user authentication while typing. Through
extensive experiments and an ultra-real-time demo system,
we show that TB can provide excellent authentication per-
formance with a short verification time.
�We collect a first-of-its-kind, multi-session video database

of subjects typing on a keyboard. We will make the database
and our experimental results publicly available so as to facil-
itate future research efforts on this topic.
�We propose a Bag of Multi-dimensional Phrases approach

to match two multi-dimensional time series data. We experi-
mentally demonstrate its strength over prior work.

The remaining of this paper is organized as follows. Sec-
tion II reviews previous work relevant to our study. The details
of our algorithm in computing the similarity between two
typing videos are provided in Section III, which is followed
by applying our algorithm to the context of continuous user
authentications in Section IV. In Section V, we describe
the design, procedure, and outcome of collecting a keyboard
typing database. The extensive experimental results, as well
as the comparison with previous algorithms and keystroke
dynamics, are presented in Section VI. We conclude this paper
and provide future directions in Section VII.

II. PRIOR WORK

To the best of our knowledge, there is no prior work in
exploring the visual aspect of keyboard typing for user authen-
tication. Hence, this section focuses on biometric modalities

used in continuous authentication, computer vision tasks in-
volving hands, and general continuous authentication research.
To begin, we identify five different biometric modalities for
continuous authentication: face, fingerprint, mouse dynamics,
keystroke dynamics, and keystroke sound.

Face verification has been an active research topic for
decades [17], [35]. In continuous computer authentication,
users may routinely look away from the monitor (i.e., camera)
and researchers address this by integrating different modalities
alongside faces. For example, Sim et al. integrate finger-
print [32], while Niinuma et al. use clothing information [24].

Two techniques are based on mouse interaction. Fingerprint
authentication uses a sensor embedded on a specific area
of the mouse [32]. Mouse dynamics has been used since
users exhibit habitual patterns in moving the mouse while
operating a computer [3], [26], [31]. Features are formed
from angles, acceleration, and distance moved. However, more
than 3 minutes of mouse interaction is required to make
an authentication decision with 2.08% EER for free mouse
movement, as indicated by a recent paper [46].

Keystroke dynamics, habitual time delays between key
presses, is considered as a natural biometric modality for user
authentication due to a few desirable properties, such as non-
intrusiveness and no requirement for user cooperation [6],
[30]. However, KD also has a number of drawbacks. First
of all, given the limited 1-dimensional key-pressing signal, the
distinctiveness of KD is less than desired, reflected by the fact
that most prior work concentrate on static text [16], [47], i.e.,
users type the same text. Only a few research efforts concern
the free text, i.e., users type arbitrary text, which is imperative
for continuous authentication [14], [23]. Second, KD demands
long probe sequences because its digraph features require a
sufficient number of common pairs in both gallery and probe
to make a reliable decision. For example, [38] needs a probe
of at least 700 characters which is about 3 minutes long.
This implies a long verification time or authentication delay
for continuous authentication, which has the risk of delayed
detection of an impostor. In real-world typing, after a user
makes a spontaneous pause, during which an impostor could
take control of the keyboard, KD will be unreliable during the
authentication delay. The aforementioned limitations motivate
us to explore the visual aspect of typing, with potentially im-
proved performance due to higher-dimensional visual content.

Another recent technique based on keyboard interaction
uses the sound from keystrokes to identify the user. Previous
work use the discriminative abilities of sound to detect the
key presses [5], [48]. Roth et al. demonstrate the potential of
using keystroke sound alone for user authentication and suggest
fusion with keystroke dynamics could result in improved
performance [27]. While KD and keystroke sound explore the
timing and acoustic aspects of keyboard typing respectively,
our work, for the first time, studies the visual aspect of typing.

Hand is well studied in computer vision with extensive work
on hand tracking [20], gesture recognition [22], American Sign
Language recognition [37], [39], etc. There are prior work in
using the handprint [40], finger-knuckle-print [42], [43], or
hand shape [9] for person identification, which differ to our
work in two aspects. One is that the hand is typically scanned
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Fig. 2. Feature extraction steps: (a) original frames from multiple subjects, (b) foreground segmentation with hand separation, (c) shape context extraction.
The top-left image shows four patches used in the linear regressor. The left-middle image shows the cutoff between hands and arms. Note the large appearance
variations of typing video frames due to skin colors, lighting, cloth colors, and sleeve lengths.

in a fixed position while being fully open or clenched into a
fist. The other is that little video or temporal information is
utilized in these hand-based biometrics.

In terms of research on continuous authentication, a report
prepared by the U.S. Military Academy [36] presents a set of
guidelines for continuous authentication systems as required
by the Department of Defense. They outline terminologies for
reporting the performance of biometrics in the one-shot and
continuous authentication scenarios. Serwadda et al. propose
that the temporal distribution of false rejections is important in
continuous authentication systems and can help determining
when to update biometric templates [29]. In continuous au-
thentication, the system has the opportunity to correct mistakes
and operate in periods of uncertainty. Altinok and Turk discuss
the temporal integration of biometrics in continuous authenti-
cation [4]. Certainty of an authentication decision decreases as
time passes and an imposter has the opportunity to take over
the computer. By incorporating face, voice, and fingerprint,
their system maintains a level of confidence even when none
of the biometrics produces measurements.

III. VIDEO-TO-VIDEO MATCHING ALGORITHM

The core task in TB-based biometrics is to compute the
similarity between a gallery and probe video sequence of
hand movements during typing. In our work, a gallery is the
typing video sequence collected during the enrollment of a
known subject. A probe is the video sequence captured while
a to-be-authenticated subject is typing. In this section, we
first introduce the feature extraction of each video frame, and
then present a series of algorithms to compute the similarity
between two videos.

A. Feature Extraction

Given a typing video, the first step is to extract certain fea-
ture representations from each frame, the collection of which
over time constitutes a rich signature for the video. There are
many potential features for representing human hands, such as
shape, color, texture, etc. In this work, we choose to use the
hand shape as the feature for three considerations. First of all,
considering the large amount of motion in typing, there is more

dynamic information in shape to be explored than appearance,
which is the most unique perspective distinguishing our TB
biometrics from the prior hand-based biometrics. Second,
hand shape is potentially more discriminative than color or
texture, as demonstrated in handprint biometrics [40]. Third,
shape features can be very efficient to extract and match
due to their lower dimensionality, which is a critical property
for computational-sensitive continuous authentication applica-
tions. However, color and texture can still be useful for the
hand-based biometrics, as demonstrated in the finger-knuckle-
print [42]. Thus, we will incorporate them to constitute a richer
feature representation, as part of the future work.

To extract shape features, we follow the procedure of
foreground segmentation, hand detection and separation, and
feature computation, as shown in Fig. 2. On one hand, the
background in our application is rather favorable to vision
algorithms because of the popularity of black color keyboards
and neutral-colored desks. On the other hand, our algorithm
needs to handle large appearance variations due to skin colors,
lighting, cloth colors, and sleeve lengths. Also, the continuous
authentication application demands highly efficient visual pro-
cessing, in order to avoid interfering with the normal computer
operation. These observations lead to a carefully designed low-
level image processing module, as described below.

Foreground segmentation: An efficient foreground
(skin) segmentation converts each RGB pixel in image I to
a scalar via a vector w, followed by applying a threshold θ to
the scalar,

M = Iw > θ. (1)

We determine the optimal vector w and threshold via a set
of (27 in our experiments) representative RGB images, each
denoted as an E × 3 matrix Ii where E is the number
of pixels, along with their ground-truth masks Mi. Linear
Discriminative Analysis [21] determines the optimal w that
best separates the hand regions from the background. Due
to the lighting diversity across videos, an image-dependent
threshold may lead to superior segmentation than a global
threshold. The threshold with least-square error for each image
θi is determined by minimizing the Frobenius norm between
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the thresholded image and the ground-truth mask, i.e.,

θi = arg min
x

‖δ(Iiw − x)−Mi‖2, (2)

where δ() is the indicator function. Using the set of Ii and θi,
we learn a linear regressor that can predict θi from the mean
intensities of four pre-defined patches in Ii,

θ̂i : Ii 7→ r0 +

4∑
j=1

rjm(Iiw,bj), (3)

where m() defines the mean intensity of a patch bj and rj
is the coefficients of the learned regressor. The top-left image
of Fig. 2 displays the four patches used in our experiments.
Thus w and the regressor can be used to adaptively estimate
a segmentation threshold for an arbitrary typing video frame.

Hand detection and separation: We detect the existence
of hands when a sufficient number of foreground pixels are
present. If detected, we examine the largest two connected
components as candidate hand regions. Infrequently one region
is substantially larger than the other, an indication of merged
hands, and we must perform hand separation by finding the
trough in the curve which spans the width of image and
sums the number of foreground pixels in the vertical direction.
Finally people wear sleeves with different lengths, which
results in various vertical lengths of hand regions. To mitigate
their effect on the shape feature, we compute the direction of
maximum variance for a hand region and perform a constant
cutoff along this direction according to the average hand
length, as shown in the far-left image of Fig. 2 (b). Although
this solution is less ideal than a more sophisticated hand fitting
method based on 2D or 3D hand models, it is more efficient
and we observe experimentally that it is adequate to handle
the variability in our collected video data.

Shape context representation: Given the rich literature
on shape representations, we choose to use the shape context
as the shape feature mainly due to its efficient computation
and proven effectiveness in describing the shape of objects [7].
Also, being a histogram, the shape context is robust to intra-
class shape variations, which is favorable for our application
since small finger movement or segmentation error will likely
have little effect on the resultant shape context. Specifically,
after finding the boundary pixels of the hand region, for each
hand we use a shape context of three rings and 12 angular
sections, centered at the centroid of the hand region, as shown
in Fig. 2 (c). The radiuses of three rings are constant for all
subjects and determined such that each covers 33%, 66%,
and 100% of all hand sizes respectively. By binning the
boundary pixels into sections, we obtain two 36-dimensional
shape context histograms, normalized w.r.t. the total number of
boundary pixels in each hand. We denote the histograms as sl,
sr for the left and right hand respectively. Similarly, the two
centroid locations normalized between [0, 1] w.r.t. the image
size are denoted as xl, xr. For each frame, all features are
concatenated to form a 76-dimensional descriptor encoding the
hand shapes and locations, denoted as f = [x>l x>r s>l s>r ]

>.

B. Bag of Words
Given the descriptors of each video {fi}, we use a number

of methods to compute the similarity between two videos.

The first is the popular Bag of Words (BoW) approach [8],
[12], [33], which is known to be efficient and robust to intra-
class variations. To have a word representation for a video, we
learn a codebook of D codewords via K-means clustering. To
take advantage of redundant information in a high-frame-rate
video, we treat the concatenated descriptors from consecutive
L frames, g

(L)
i = [f>i−L+1 . . . f

>
i ]>, as an input sample for

clustering. The input samples are collected from video frames
of the gallery set, {g(L)

i }, where i = L, 3L2 , 2L, . . . if L ≥ 2,
or else i ∈ N+. As shown in Fig. 3 (a), the consecutive samples
have half overlap between their L-frame segments. A larger
segment length L will lead to less samples per second and
hence more efficient computation. The learned D codewords
describe the dominant combinations of shape and locations
between two hands, within L frames.

Given the D codewords, a video can be represented as a
collection of visual words, and denoted as V = {wi, ti},
where wi is the closest codeword for the feature g

(L)
i , and

ti = i is the time index of the corresponding word wi.
Note that each word carries the local dynamic information
of hands within a small window of L frames when L ≥ 2. In
Section VI, we will compare the authentication performances
under various values of L. With this representation, BoW
computes a D-dimensional histogram h = [h1, h2, . . . , hD]

>

of video V by hd =
∑

i δ(wi=d)

|V| , where the denominator
is the total number of words in V. The similarity between
two videos, V and V′, is the inner-product of two histogram
vectors, Kw(V,V

′) = h>h′, which is a typical choice for
BoW approaches [33].

C. Bag of Phrases

Although BoW works well in many applications, it discards
all structural, spatial or temporal, information among the
words. Hence, many prior works aim to extend BoW by
incorporating spatio-temporal relationship of the words [28],
[34], [45]. We leverage the recently proposed Bag of Phrases
(BoP) approach [45], due to its higher efficiency in capturing
high-order correlation among words when compared to other
BoW extensions.

An order-k phrase refers to a collection of k words arranged
in a certain order and relative position. A histogram of
phrases models the distribution of these collections of words.
However, the number of possible phrases, i.e., the length of
the histogram of phrases, is extremely huge because of all
possible combinations of words and their relative positions.
Hence, it is not only computationally infeasible to calculate the
histograms of phrases for two videos and their inner product,
but also inefficient due to the high sparsity of the histograms,
i.e., most of the histogram bins are zero. In other words, we are
only interested in how the non-zeros bins of two histograms
are similar to each other.

It has been shown that the similarity of two histograms
of phrases can be efficiently computed via the Co-Occurring
Phrases (COPs) between two videos [45]. A COP is a set
of k words appearing with the same temporal layout in both
videos. We can use the concept of the offset space to efficiently
identify the COPs. As shown in Fig. 3 (b), both videos
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Fig. 3. (a) The process of converting a L-frame segment into a word where L = 4; (b) COP calculation via an offset space in BoP; (c) Co-occurring
multi-dimensional phrase calculation via a single offset space in BoMP. Circles or blocks of the same color constitute a COP, e.g., the words 2, 11, and 6 in
(b) form an order-3 COP and contribute 3 votes to l = −2 (best viewed in color).

are represented as sequences of words, V = {wi, ti} and
V′ = {w′j , t′j}. If two words are the same, wi = w′j , we
add one vote at the location of l = ti− t′j in the offset space.
For example, the same word 7 in two videos contributes one
vote to l = 3 since their time indexes differ by 3.

Now we need to calculate the number of order-k phrases for
all possible k. Given the resultant offset space, the number of
votes nl at the location l indicates that nl words exist in both
videos with a temporal offset of l. If nl ≥ k, it contributes to
the similarity by

(
nl

k

)
, since an order-nl phrase may be viewed

as
(
nl

k

)
number of order-k phrases. For example, there are six

order-1 phrases, four order-2 phrases, and one order-3 phrase
in Fig. 3 (b). With that, we compute the number of order-k
COPs as Kk(V,V

′) =
∑
l

(
nl

k

)
.

Furthermore, the similarity between two videos is the total
number of COPs at various k, as follows:

Kp(V,V
′) =

∞∑
k=1

Kk(V,V
′)√

Kk(V,V)Kk(V′,V′)
. (4)

The prior work [44] shows that the total number of all COPs,∑∞
k=1Kk(V,V

′), equals the inner product of two sparse and
high-dimensional histograms of phrases. The normalization in
Eqn. 4 is to make the similarities comparable when two videos
with different lengths are matched.

D. Bag of Multi-dimensional Phrases

Bag of Phrases assumes the features of a video frame can
be sufficiently and efficiently represented by one word, which
converts a video to a 1-dimensional time series data. However,
this assumption may not be satisfied for the following reasons.
First, from one frame, we can extract multiple features with
different feature types, such as the centroid of hands or the
shape context. It might not be best to concatenate multiple
feature types into one vector and wish it is well clustered in
the feature space. Second, given the fact that certain feature
pairs within the concatenated vector may have relatively low
correlation, it wastes the representational power of words by
modeling their joint distribution via clustering. For example,
two frames of the same subject may differ only in the position
of the left hand and yet be mapped to different codewords de-
spite being otherwise identical, which is therefore not effective
to model intra-subject variations.

To address this issue, we propose a novel extension of BoP,
Bag of Multi-dimensional Phrases (BoMP). It allows the use of
multiple words, rather than one word, to describe the features,

and a phrase will be learned across both words and other
domains, e.g., the temporal domain. Specifically, given multi-
ple feature representations for video frames in the gallery, we
learn the codebook for each individual feature representation.
For example, in our application, the K-means clustering is
conducted four times, once each for the shape context and the
centroid of the two hands respectively. With four codebooks,
a typing video is represented as a 5-dimensional time series
data V = {w1

i , w
2
i , w

3
i , w

4
i , ti}. As a result, while matching

two time series data, the COP will be a set of words with the
same temporal and cross-feature layout between both data.

Even though BoMP seems more complicated than BoP, we
can still efficiently compute the COPs with a change to the
offset space voting. As shown in Fig. 3 (c), we define a single
offset space for the words in all dimensions. The process of
finding the same words is conducted between the word series
in the same dimension. Once a pair with the same word is
found, e.g., w2

i = w′2j , one vote is added at the location of
l = ti− t′j in the offset space, where a high vote indicates the
co-occurrence of a set of words at different time intervals and
different feature dimensions. With the resultant offset space,
we use the same method to calculate Kk(V,V

′) and the
normalized Kp(V,V

′).
In BoP and BoMP, we use the online (or incremental) offset

space calculation [45] to operate in a continuous manner,
where a small shift in the probe window only requires subtract-
ing and adding to the offset space from the boundary frames
without fully recomputing the offset space.

In essence, a hand typing video is a series of varying
postures of two hands. When one subject types the same
content twice, there is no guarantee that the postures of one
video will exactly match with those of the other video, i.e.,
share the same word at every time instance, because of factors
such as subject’s emotion, health status, etc. When one subject
types free text in two videos, this statement is even more true.
Hence, a good matching algorithm should be able to discard
the occasional noisy hand postures that might deviate from
the normal movement pattern of a subject, and focus on the
essential common postures between two videos. The BoP and
BoMP algorithms are exactly suitable for this purpose. As
shown in Figs. 3 (b,c), the words without circles are not used
in the offset space and hence make no contribution to the
similarity computation. In contrast, the words with circles in
BoMP, as part of COPs, indicate the subset of features as
well as the time instances where feature matching happens
between two videos. This powerful matching scheme is the
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main reason that our system goes beyond the BoW approach
and achieves superior performances, as will be demonstrated
in Section VI. We believe that matching two multi-dimensional
time series data while ignoring noisy samples is essential to
general activity or behavior recognition problems, and hence
our proposed BoMP algorithm is applicable to these general
problems as well. For example, the early version of BoMP,
BoP, has demonstrated the state-of-the-art performances on a
wide variety of activity recognition benchmark databases [45].
Note that, while other work [11], [41] present many improve-
ments to BoW, e.g., keypoint selection and histogram density
mapping, they are not along the same direction as BoP and
proposed BoMP, which focus on higher order interactions
among the local words.

IV. TB-BASED CONTINUOUS AUTHENTICATION

In this section, we discuss a number of aspects related
to implementing the video-to-video matching algorithm in
a practical system, so as to achieve typing behavior based
continuous user authentication. These include the two stages
of the system, gallery and probe schemes, continuous vs.
periodic authentication, multiple gallery sessions, and the
computational cost.

There are two main stages in our authentication system.
In the enrollment stage, the system captures a user typing a
given paragraph or given task, extracts the full 76-dimensional
feature vector from each frame of the video, translates the
features to the words using the previously trained codebook,
and stores the indexes of each word to a lookup table for
efficient matching, similar to the inverse indexing idea of the
retrieval community [49]. The word lookup table comprises
the biometric template for the user. In the authentication
stage, after the user claims an identity, the system uses the
real-time video feed to identify the words for each video
frame and compute a similarity score against the biometric
template. If the score is above a certain threshold, the user is
allowed access to the system, otherwise deemed an impostor
and rejected access.

Figure 4 depicts the two schemes designed for evaluating
our algorithms. In Scheme 1, the probe length lp remains
constant and shifts throughout the video to obtain a large
number of probes, which allows us to study the relation
between the probe length and the authentication performance.
In Scheme 2, the probe length starts small and expands to
include the most recent video frames without removing any
of the past. In Section VI, we conduct experiments with both
schemes to determine how much typing data is necessary to
make a reliable decision and to compare algorithms.

During authentication, the user may remove his or her hands
from the keyboard to use the mouse or adjust papers on the
desk, or the user may consistently type for a prolonged period
of time. When the hands are removed from the camera’s field
of view, the similarity computation must be restarted since a
different user could now be in control. A practical system
will incorporate as much information as it can confidently
assign to the active computer user by using either Scheme
2 or another technique for accumulating match scores from

1/4

e
lp

P

G

=1/2
3/4 1

lp

P

G

lg e

(a) (b)

Fig. 4. Visualization of both gallery and probe schemes. In Scheme 1
(a), we choose a gallery length, lg , as a fraction of the stream and the
probe is of length lp with a sampling interval of e both in seconds. In
Scheme 2 (b), we use the full gallery stream with probes of varying
length lp all originating from the start of the stream.

previous probes. Thus, how to integrate all prior decisions and
arrive at a new decision for the current time instance can be
part of our future work.

Strictly speaking, continuous authentication monitors the
identity of the user throughout their entire duration of de-
vice use. Practically speaking, computers can only implement
periodic authentication where it ascertains the user’s identity
at discrete intervals. As the interval length becomes shorter
than the time required for an impostor to gain access to the
system, the system achieves a working version of continuous
authentication. As the interval decreases in length, it becomes
paramount that the system operates in a passive manner
without placing any requirements on the user. We conduct
most experiments with an interval length of e = 1 second.

As with any behavioral biometric, a single gallery session
may not incorporate all intra-subject variations due to emo-
tions, stress, tiredness, or other subject conditions. Using mul-
tiple gallery sessions and averaging the similarity score of the
probe compared against all galleries can better encompass the
intra-subject variations. This technique is used with keystroke
dynamics as well [13].

Given a gallery session of length m frames and a probe
sequence of length n frames, the computational cost for the
system is as follows. To process the raw video into the 76-
dimensional feature vectors is O(n). To assign codewords
is O(Dn). To perform the probe normalization and update
the similarity score is O(n2) and O(nm) in the worst case
respectively, but this only occurs when all frames in both
videos are assigned to a single codeword. In practice, both
steps are O(n) on average since we use the lookup table. The
entire process then is O(Dn) and is theoretically efficient.
In Section VI we present the empirical speed of the system
broken down for the various tasks.

V. DATABASE COLLECTION

A good database is critical for computer vision research. In
particular, the design of a data capture protocol can greatly
influence the outcome of the biometric research. Since TB
is a novel biometric modality with no prior public database,
we aim to develop a capture protocol that will ensure the
database is not only useful for the current research prob-
lem, but also beneficial to other typing-based research. All
collected data used in this paper is publicly available at



ACCEPTED BY IEEE TRANSACTIONS ON IMAGE PROCESSING, JULY 28, 2014. 7

0 5 10 15 20 25 30
0

3

6

9

QWERTY experience (years)

N
um

be
r 

of
 s

ub
je

ct
s

Fig. 5. Typing experience distribution of Phase 1 subjects.

http://www.cse.msu.edu/~liuxm/typing, in order to facilitate
future research and performance comparison on this topic. In
this section we present an overview of the database including
the technical setup and the motivation behind the protocols.

Our database collection consists of two phases. In Phase 1,
51 subjects type a static text and a free text session. This
allows us to explore the distinctiveness, collectability, and
performance [15] of TB in a constrained environment. In
Phase 2, 30 subjects type multiple fully unconstrained sessions
each on a different day across the span of a month. This
allows us to explore the permanence and performance under
changing environmental factors. There are 18 overlapping
subjects between two phases for a total of 63 unique subjects.

Equipment and environment: For both phases, we use
the same US standard QWERTY keyboard, HP computer, and
monitor. Although there are a variety of options for video
collection, we decide to utilize an inexpensive webcam with
an embedded microphone. We fix the webcam with a tripod
centered behind the monitor and point it down at the keyboard.
This setup uses commodity equipment and allows for the
capture of audio data along with the visual data, which may
be useful for a multi-modal typing system. It captures 30 FPS
videos at a frame size of 1280× 720 pixels.

For Phase 1, the system is setup at a spare desk in our lab
at the Michigan State University (MSU). Under the monitor
of the researcher working on the project, subjects perform the
typing with the same chair, fixed keyboard position, lighting,
and as similar computing environment as possible. We collect
Phase 1 during October and November of 2012. For Phase 2,
the system is moved to a shared access lab where participants
are able to complete their typing at their time of choice,
without the monitor of the researcher. Subjects come multiple
times from March through July of 2013. Different chairs in
the lab are used based on the subject’s preference. There is
also a large window in the room that causes different lighting
scenarios based on the time and weather of the day.

Phase 1: For Phase 1, each subject performs two typing
sessions. In the first session, a subject continuously types the
first paragraph of “A Tale of Two Cities” by Charles Dickens
displayed on the monitor for four times, with a 3–4 second
break between consecutive times. The subject is asked to
remove their hands from the keyboard during the break so they
get a fresh hand position. In the second session, the subject
types a half-page letter with any content to his or her family.
As observed from the data in this session, most subjects make
spontaneous pauses during the typing, which mimics well the
real-world typing scenario. These two sessions correspond to
the case of static text and free text respectively. Normally one

TABLE I
AGE DISTRIBUTION OF PHASE 1 SUBJECTS.

Age 10–19 20–29 30–39
Number of subjects 11 36 4

Fig. 6. Screen capture of Phase 2 data collection.

subject spends 5-8 minutes on each session depending on the
typing speed, with a 30-second break between the two sessions
to reiterate the instructions.

To study the various factors that may affect TB’s distinc-
tiveness, each subject is asked to finish a survey with four
questions, viz., the age group, years of experience in using
keyboard, the major type of keyboard, and years of experience
in using QWERTY. Figure 5 presents the typing experience
distribution, and Table I demonstrates the subject age. Most
subjects are from the CSE department of MSU, either students
or faculty members, but some are friends of participants from
other departments or outside the university.

Phase 2: In Phase 2, we collect multiple 60-second
sessions from each subject with a simple HTML form to enter
content, as shown in Fig. 6. Subjects are given no instructions
on what to type. Examples of content entered during the
collection are transcribing a news article, writing a diary entry,
composing an e-mail, or complaining about schools. A subject
can come to the lab for a typing session any time, while at
most two sessions per week and one session per day. A 60-
second timer is displayed above the form that counts while
the subject types. Unlike Phase 1, keystroke press and release
timings are captured through Javascript to allow for direct
comparison between TB and KD. This setup is similar in
nature to prior KD work [13], [38], whose Javascript-based
keystroke timing has achieved satisfying KD performance.
Since Phase 2 collection is free text, entirely unmonitored by
our researchers, there are many typical real-world variations
due to lighting, chair, sleeves, background environment, and
distinct typing contexts that are out of our control. Greater
efforts have been made to lure participants back and so far we
have 140 sessions, i.e., 5 sessions per subject for the majority
of 30 subjects.

In Phase 1, we denote the static text session as S1 and
the free text session as S2. Furthermore, the video for each
session is split into 4 sequences, which are denoted as S11,
S12, S13, S14 for each typing of the paragraph in the static
text session, and S21, S22, S23, S24 for equal time length
divisions of the free text session. The letter S indicates the
single day collection of these sessions. In Phase 2, we denote
each session Mi where i is the index of the chronological
ordering of sessions for a given subject. The letter M indicates
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TABLE II
SUMMARY OF ∼9 HOURS KEYBOARD TYPING VIDEOS.

Phase 1 Phase 2
# sub video length # sub video length

51
S1 ∼400 sec.

30 Mi ∼5× 60 sec.
S2 ∼254 sec.

the multiple days used during the collection of a subject. We
use the first five 60-second typing sessions, denoted as M1,
M2, M3, M4, and M5. Table II gives a summary of the
collected ∼9-hour video database.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results on
databases of both phases. We begin by comparing and an-
alyzing the algorithms, tuning the internal and external pa-
rameters of BoMP, and demonstrating the distinctiveness and
performance of TB with the Phase 1 dataset. We then take a
detailed look at the effectiveness of TB for continuous authen-
tication by comparing with KD, understanding the effects of
multiple gallery sessions and probe intervals, and looking at
the computational efficiency with the Phase 2 dataset.

Gallery and probe: Static text in both gallery and probe
is an easier problem and initial KD works only examine static
text. Since we find excellent results using the more challenging
free text comparison, we ignore using S1 as probes and
only use it as a gallery to compare different typing contexts,
transcription, and letter writing. Under Scheme 1 (Fig. 4 (a)),
we use fractions of S11 or S21 as the gallery sequence,
e.g., 1

2 S11 gallery is the first half of the first typing of “A
Tale of Two Cities”. We generate probe sequences by moving
a fixed length (5-20 seconds) window along the last three
quarters of the second session (S22, S23, S24) where the
consecutive windows differ by 1 second. We choose a short
length (≤ 20 seconds) probe to minimize the initial verification
time whenever a subject starts to use a keyboard.

For Phase 2 dataset, we use the first 1, 2, 3, or 4 sessions as
gallery and the remaining sessions as probes. The total number
of genuine and imposter matches with 20-second probes in
Phase 1 and Phase 2 is ∼594, 000 and ∼35, 730 respectively,
for each of the 5 galleries.

Evaluation metrics: We use the ROC curve as the
performance measurement, which has two axes, False Positive
Rate (FPR) and True Positive Rate (TPR). FPR measures
the fraction of impostors incorrectly granted access to the
system, while TPR measures the fraction of genuine matches
correctly identified. We also use “Area Under the Curve”
(AUC) and Equal Error Rate (EER) to summarize the ROC.
Furthermore, for user authentication applications, there are
typically preferred operation points on the ROC. For example,
it is very important to reduce the FPR since the cost of wrongly
authenticating an impostor is extremely high. On the other
hand, it is also preferred to maximize the TPR since wrongly
rejecting a genuine user is not convenient to the user. Actually,
the European standard for access-control systems specifies a
TPR of more than 99%, with an FPR of less than 0.001% [10].
Therefore, we use two additional overall metrics, TPR when
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Fig. 7. ROC curves of three algorithms.

FPR is 0.001% (denoted as TPR0) and FPR when TPR is 99%
(denoted as FPR0), for performance comparison. Finally, we
measure verification time, since it is vital to make a decision
with the minimal delay to prevent unauthorized access.

A. Algorithm Comparison with Phase 1

Comparing approaches: Using Scheme 1, we compare
the performance of the three algorithms (BoW, BoP, BoMP)
with lp = 5 and e = 1 for the probes and lg = 1

4 S11
or 1

4 S21 for the gallery. In total we have 12, 623 genuine
matches and 618, 527 imposter matches. The first method is
the conventional BoW approach, where we are interested in
the performance of a collection of frames in a probe sequence.
The second method, BoP, explores the temporal pattern in a
sequence by representing each frame as one word. The third
method, BoMP, investigates the cross-feature and cross-time
pattern by representing a sequence as a multi-dimensional time
series data. In all methods, we use L = 1 and D = 200 in
learning a codebook by clustering the features of all gallery
data, except that BoMP has four codebooks.

Figure 7 illustrates the comparison of the three methods, and
Table III lists three metrics of ROC. Higher values of AUC and
TPR0 are desired while a lower value for FPR0 signifies better
performance. We can make a number of observations here.
First, the overall performance of S21 gallery is better than
that of S11 gallery. This is expected because S21 has context
relevant to S22–S24 probe as both regard letter writing,
while S11 is in a different context of transcription. Given the
fact that in real-world applications, the context being typed
in the gallery and probe will likely be very different, we
should pay more attention to the tests of S11 gallery since
it mimics the application scenario better. Second, comparing
among the three methods, the overall performance improves
from BoW to BoP to BoMP, indicated by increasing AUC
values. Specifically, the improvement of BoMP over other
methods concentrates on the primary operation points of ROC,
especially for TPR0 in the scenario of S11 gallery, which is
very important as this is where the system will be operating
in practice. For example, BoMP at least doubles TPR0, and
FPR0 reduces to a quarter for S11 gallery, and BoMP has
more than 10 times better TPR0 for S21 gallery.
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TABLE III
METHOD COMPARISON BY AUC, TPR0 (%), AND FPR0 (%).

AUC TPR0 FPR0

BoW 0.9934 6.9 21.5
BoP 0.9937 13.6 21.7
BoMP 0.9975 27.4 4.3

AUC TPR0 FPR0

BoW 0.9993 6.5 0.40
BoP 0.9993 0.8 0.42
BoMP 0.9996 68.7 0.73

(a) S11 gallery (b) S21 gallery

(a) A typical genuine match (b) A challenging genuine match

Fig. 8. Offset spaces of genuine matches with BoMP (top four rows)
and BoP (the bottom row). The horizontal and vertical axis are the
offset l and the number of votes nl respectively. Note the different
scales of the vertical axes.

One may question whether temporal information contributes
to the performance. With the same setup as Table III (b),
we employ a simple nearest neighbor classifier using only a
single frame’s 76-dimensional feature vector fi to make an
authentication decision. By using these static features only, we
find 92%, far less than the > 99% accuracy obtained by incor-
porating the dynamic information with BoW, BoP, or BoMP.
Hence, the dynamic information from hand movements allows
for significant performance improvement over the simple static
feature of hand shapes and locations.

Algorithm analysis: Here we explore the benefits of the
novel BoMP over BoP. We look at the behavior for a single
time step, across an entire typing session, and the overall
distribution to see why BoMP corrects cases that BoP fails.

Offset space: We show the COP offset spaces of BoMP
and BoP in Fig. 8. Note that the four separate offset spaces
of BoMP are only for visualization purposes, and in practice
only one offset space, the summation of corresponding votes
in these four, is used. For a typical genuine match in Fig. 8 (a),
although the left hand shape and centroid have few votes, i.e.,
less COPs between gallery and probe, the right hand features
have many more votes. Also, the actual offsets of the higher-
order phrases in the right hand shape and centroid are quite
different. Both differences, the difference in matched feature
types and offset, can jointly explain why the votes in BoP is
low for this subject since the same word pair becomes much
less when using a concatenated feature. For a challenging
genuine match in Fig. 8 (b), BoP does not find any COPs.
However, when matching the shape context of the left hand,
BoMP finds some COPs, which allows it to make a correct
decision. In practical applications, we see more cases where
only partial features may match, and hence BoMP is a more
favorable choice for the similarity calculation.

Performance over time: Figure 9 shows the similarity scores
over an entire typing session. In Fig. 9 (a), BoMP tends to have
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Fig. 9. Genuine match similarity scores (Eqn. 4) of BoP and BoMP
from all probes of two subjects.

TABLE IV
TPR0 (%) FOR DIFFERENT PROBE LENGTHS (SECONDS) AND

GALLERY LENGTHS (FRACTION).

lg lp 2 5 10 20
1
8

39.8 61.6 71.4 78.8
1
4

40.0 58.4 72.3 78.8
1
2

45.4 63.7 78.2 86.3
1 50.2 66.5 80.9 87.4

lg lp 2 5 10 20
1
8

45.3 59.7 84.9 92.0
1
4

66.6 85.6 92.3 95.5
1
2

76.4 91.9 95.1 98.3
1 82.3 94.3 98.2 99.5

(a) S11 gallery (b) S21 gallery

lower scores in areas of high similarity compared to BoP, but
both algorithms correctly classify this subject as a genuine. In
Fig. 9 (b), BoMP always identifies the correct match, but BoP
fails on the hard-to-classify parts of the sequence.

Similarity distribution: Figures 15 (a) and (b) show the
similarity distributions of both genuine and impostor match
scores for BoP and BoMP on the Phase 1 dataset. While
BoP has a greater mean for genuine match scores, the overall
distribution is flatter and has more genuine scores with extreme
low values. While hard to see in the figure, the impostor
distribution of BoP has a longer right tail with more false
matches due to high impostor scores. BoMP has a tighter
distribution, which allows it to handle larger intra-subject
variations. This is a very important property since real-world
applications might have even more variations than our dataset
due to changes in camera angles, keyboard types, the nature
of the typing task, the emotion of the user, etc.

BoMP parameter optimization: As BoMP demon-
strates the best performance, we now seek to identify good
values for its two internal parameters, the segment length L
and the codebook size D. We keep the same gallery and probes
that we have used in all experiments so far, lg = 1

4 S11 or
1
4 S21, lp = 5, and e = 1. Figures 10 (a,b) show the results
of using L consecutive frames, while fixing D = 200. We
see a clear advantage of L being 2, 4, or 6 on S11. For both
galleries, L = 4 performs at or near the best in terms of AUC
and TPR0. Hence, we chose to further work with L = 4.

Figures 10 (c,d) show the results of using different numbers
of codewords D, with the same setup as above and L = 4. As
D increases, we see improvement to TPR0 with saturation
occurring by 400. The K-means algorithm also sometimes
produces empty clusters at higher values of D, which indicates
that we have achieved good representation of the feature space
using 400 codewords.

Gallery, and probe length: The performance is also
dependent on gallery and probe length. Using the learned
parameters (L = 4 and D = 400), the accuracy of BoMP
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(a) S11 gallery with varying L (b) S21 gallery with varying L (c) S11 gallery with varying D (d) S21 gallery with varying D

Fig. 10. ROC curves for parameter tuning of L and D with the S11 or S21 gallery.

TABLE V
EER OF GP WITH DIFFERENT COMBINATIONS OF R-MEASURE AND

A-MEASURE USING THE FULL 60-SECOND KD PROBES.

Similarity R2 R2A2 R2R3 R2A2R3 R2A2R3A3

EER 19.53 17.08 32.73 21.82 27.22

improves as both longer gallery and probe sequences are
used, as shown in Table IV. From an efficiency standpoint,
all combination run in real time at 31-33 FPS. Little process-
ing time is spent finding COPs, which allows us to further
increase the robustness through multiple galleries or a longer
gallery session. Increasing the probe length, on the other hand,
presents a practical problem, as there becomes a longer delay
in detecting impostors at the keyboard. Hence, it is desirable
to achieve good accuracy with a shorter probe. Fortunately
with probes of only 20 seconds, BoMP meets the European
standard for access control with 99.5% TPR at 0.001% FPR
when using the full S21 gallery.

Application scenario: Note that even though the time
delay between the gallery and probe of Phase 1 data is very
short, the excellent performance presented above can still find
applications in continuous authentication. For example, we can
extend the conventional password-based one-shot authentica-
tion to continuous authentication as follows. Starting from the
onset of password typing, our system will record around 30
seconds of keyboard typing and use them as the gallery to
learn a biometrics template instantaneously, which will be used
to continuously perform TB-based authentication for the rest
of the user session. When the user lefts the computer for an
extensive period of time, the user session ends and a new
session will start once a new user logs in via a password. The
application scenario has a few favorable properties: 1) the short
time delay (e.g., a few hours) between the gallery and probe
will result in very high authentication performances; 2) the
biometrics template can be valid only during the current user
session and deleted immediately once the session ends, which
remedies the risk of compromised biometrics template.

B. Robustness with Phase 2

The Phase 2 data allows for additional experiments: testing
the robustness of TB to intra-subject variations such as time
and lighting, direct comparison with KD, the most relevant
biometric to TB, and studying the effect of the probe interval.

Keystroke dynamics: We setup an identical experiment
to compare TB with KD using Scheme 2. A single session
is selected as the gallery for each subject and all remaining
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Fig. 11. Average genuine and impostor match scores with Scheme 2. TB has
a much large score margin than KD.

four sessions are used as probes. The probe length lp is varied
from 1 to 60 seconds, where each second uses 110 genuine
matches and 3, 190 impostor matches to compute the EER.
This protocol allows us to directly compare TB with state-of-
the-art KD techniques. For TB we use the optimal parameters
of L = 4 and D = 400.

According to a recent survey of KD [6], the GP method [13]
performs near the best for free text based authentication. It also
can operate with short probe sequences and a single gallery,
unlike some of the more advanced methods. It weights an R-
measure and A-measure between n-graphs to create a similar-
ity metric between a probe and a set of gallery typing sessions.
R2 measures the relative latency of all common digraphs
between two sequences to ensure the order is similar, while
A2 measures the absolute latency of corresponding digraphs
to ensure consistency of time. R3 and A3 are similarly defined
for the trigraphs. We seek to find the optimal similarity metric
for the GP method on our dataset by running the experiment
on only the full 60-second probes. Table V demonstrates the
EER of the GP method for various combinations of R2, A2,
R3, and A3. We find that with our shorter probe length, the R2

and A2 combination performs the best as there are insufficient
common trigraphs between sequences to positively effect the
performance. We use the R2 and A2 combination for all the
KD experiments described below.

Figure 11 shows the mean and standard deviation of genuine
and impostor match scores for both TB and KD as the probe
length increases for the experiment run with M1 as gallery
and M2–M5 as probes. For TB, the impostor scores stay
consistently low for any probe length, whereas the genuine
scores increase over time. For KD, both impostor and genuine
scores maintain a consistent average, but the variance, and
hence the error, decreases. Figure 12 shows the average EER
of TB and KD for the same experiment repeated with each
possible gallery session. TB outperforms KD at all times, and



ACCEPTED BY IEEE TRANSACTIONS ON IMAGE PROCESSING, JULY 28, 2014. 11

10 20 30 40 50 60
0

10

20

30

40

50

Probe length (sec)

E
E

R
 (

%
)

 

 
Typing Behavior
Keystroke Dynamics

Fig. 12. EER comparison of TB and KD via Scheme 2. Error bars are reported
from five runs, each with one of Mi as gallery and the rest four as probe.

0 0.05 0.1 0.15
0.85

0.9

0.95

1

FPR

T
P

R

 

 

1 Gallery
2 Galleries
3 Galleries
4 Galleries

Fig. 13. ROCs for multiple gallery sessions on Phase 2.

even with a longer probe sequence, we would expect this trend
to continue since TB uses the hand shape information along
with the dynamic information.

We note that the performance of our KD experiment is lower
than that of the GP method reported as 11.22% FPR and
98.66% TPR [38]. This performance difference is attributed
to the fact that, we use 60-second probes and only one gallery
session while ∼3-minute probes and 14 gallery sessions per
subject are used in [38]. The identical experimental setup
between our implementation of the GP method and our TB
system still allows for a fair comparison.

Multiple gallery sessions: To see if multiple galleries
can improve performance by capturing more of the variations
for each user, we run an experiment with lp = 20 and e = 1
under Scheme 1 with M5 as the probe. We begin with only
using M1 as the gallery, and then add M2, M3, and M4.
Figure 13 shows the ROC improving with additional gallery
sessions. Specifically, the EER decreases from 7.2% to 2.5%
when the number of gallery sequences increases from 1 to 4.
Figures 15 (c) and (d) show the improvement in the genuine
score distribution from 1 to 4 galleries.

Probe interval: So far, we have only used e = 1 interval
between probes within a session in order to simulate the po-
tentially high frequency required for continuous authentication
and to increase the number of available probe samples. One
potential criticism of this interval choice is the correlation
between highly overlapped consecutive probes. While there
is a certain level of natural correlation between any probes
from the same user, we want to know if the correlation from
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Fig. 14. Mean absolute score difference of consecutive lp = 20 probes with
varying interval, e, for optimal parameters L = 4 and D = 400 with the full
S21 gallery on Phase 1 (a) and Phase 2 (b).

overlap inflates our performance. We look at the correlation
by analyzing the score difference between consecutive probes
with different intervals e.

Figure 14 presents the average absolute difference between
the genuine match scores (Eqn. 4) of consecutive probes for
different probe intervals. We see a few things from this figure.
First, the score difference holds stable after 20 seconds, when
there is no overlap. This indicates the stability of TB in general
as the average genuine match score for Phase 1 is 1.04 and
the average impostor match score is 0.22, which makes the
average score difference only 15% of the match score margin.
Second, between e = 1 and 20 seconds, we see a steady
increase in the difference, which does indicate some additional
correlation between overlapping probes.

How does this correlation affect our experiments? If we
examine the ROC curve for the Phase 1 experiment using the
S21 gallery without any overlap on the probes, i.e., e = 20,
we obtain better results with perfect classification of genuine
matches and only 1 out of 30, 086 impostor matches falsely
classified. Here, the accuracy is so high that we need sufficient
samples to make accurate claims. For the Phase 2 experiment
with one gallery session at e = 20, we obtain an EER of
7.5% nearly equivalent to the one with overlap, whose EER is
7.2%. Here, we see a negligible difference from removing the
overlap, so we use as many possible probes with both Phases.

Similarity distribution: We have already compared the
similarity distributions of genuine and impostor match scores
for BoP and BoMP with 1 gallery; now we compare Phase
1 with Phase 2 in Figs. 15 (b) and (c). BoMP of Phase
2 has a similar impostor match score distribution, but the
genuine score has a secondary peak with a low score, which
is hypothesized to be caused by two factors. First, lighting
conditions in the lab vary widely based on the time of day
for data collection. Our foreground segmentation considers
lighting, but still has error detecting the fingertips in low light
situations. Second, subjects wear different length sleeves on
different days. We currently cutoff the arms when sleeves are
absent, but do not reconstruct missing information when long
sleeves occlude part of the hands. Hand modeling and fitting
can help solve both issues by reconstructing the missing hand
information due to improper segmentation or occlusion. We
also demonstrate that multiple gallery sessions helps improve
the genuine score distribution as demonstrated in Fig. 15 (d).

Efficiency: Execution in real-time and beyond is impor-
tant for any continuous authentication system. Experiments are
run in Matlab on a standard Windows 8 desktop computer with
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Fig. 15. Similarity score (Kw for BoW, Eqn. 4 for BoP and BoMP) distributions of genuine matches and impostor matches.

Fig. 16. GUI of our real-time TB-based continuous authentication system.

an AMD A10 APU at 3.4 GHz with 8 GB of RAM. As stated
previously, Phase 1 experiments run 31–33 FPS depending
on lp and lg , with L = 4 and D = 400. With a Matlab
implementation, Phase 2 experiments run at 32.7 and 32.6
FPS with 1 and 4 gallery sequences respectively. In theory,
given a probe of length n frames and a gallery of length m
frames, the time is O(n) for computing the feature vectors,
O(Dn) for assigning to codewords and probe normalization,
and O(n) for incremental similarity computation. In practice,
it spends 79%, 20%, and < 1% of time on these three parts
respectively. The extremely efficient similarity computation of
BoMP enables the potential advantage of a large number of
gallery sessions, yet still achieving real-time efficiency.

C. Continuous Authentication Demonstration System

During the summer of 2013, we implemented a demon-
stration system of the proposed TB-based continuous au-
thentication in Microsoft Visual Studio. Our demo allows an
arbitrary user to enroll the system by typing free text for 30
seconds, and a biometrics template is created immediately.
During the testing, once a user claims his identity, continuous
authentication is performed while the user is typing on the
keyboard. As shown in Fig. 16, as the user types in the
left window, our system continuously displays the computed
similarity score, and genuine matches are claimed when the
scores are above the yellow threshold line. A user may type
completely different texts during the enrollment and testing.
When the hands are off the keyboard, the score will be zero
immediately. When a user just starts typing, the score will
typically goes above the threshold in less than 5 seconds for
genuine matches.

Our demo runs at 30 FPS on a conventional Apple Mac-
book laptop, with constantly less than 10% CPU load, which
translates to 300+ FPS. Our demo was well received and won
the Best Demo Award at the IEEE International Conference
on Biometrics: Theory, Applications and System 2013 [1].

From September 2013 till now, we have been showing and
testing our demo to at least 200 subjects, including conference
attendees, high school students in outreach events, campus
visitors, etc. Our observation is that the system is very robust,
and rarely makes any (false positive or false negative) errors.
We use this demo system as a way to not only disseminate
our work, but also continue our database collection.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presented a novel approach of continuously
validating the identity of a user in real time through the
use of typing-based behavior biometrics. We investigated a
number of methods to compute the similarity of two typing
sequences. In particular, we proposed a novel BoMP approach
to efficiently compute the high-order co-occurring phrases
that are composed of words across both the temporal and
feature spaces. We collected a multi-phase, multi-session, and
multi-model (visual, audio, and keystroke timing) database of
keyboard typing by 63 unique subjects. Through extensive
experiments, we demonstrated excellent performance at op-
erational points most relevant to authentication applications,
as well as explained where and why BoMP improves upon
the prior work. We also demonstrated superior performance
over keystroke dynamics, with a much shorter probe sequence,
which offers far less authentication delay. Finally the success
of our ultra-real-time demo system indicates again the promise
of this novel biometric modality.

As a novel exploration of TB, our approach focuses on
the behavioral traits that can be observed through how an
individual operates the keyboard. Similar to the fact that you
leave a fingerprint when touching something with your finger,
in behavior biometrics when you operate something you leave
a pattern based on how your mind processes information,
which is called a “cognitive fingerprint” by DARPA’s Active
Authentication program [2]. Just like conventional fingerprints,
the key challenge with cognitive fingerprints is whether the
pattern is consistent within an individual and discriminative
between individuals. Indeed typing behavior has demonstrated
the potential to meet such challenge, with carefully designed
data collection, extensive experiments, and a successful real-
time demo system.

We observe that TB can achieve excellent performances
(TPR=99.5% when FPR=0.001% for text independent test
with 20-second probes) Such performance is even more no-
table considering the fact that we have not utilized supervised
learning approaches, or any appearance features, both of
which are known to boost the performance of biometrics
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authentication. Hence, this demonstrates that our novel con-
tinuous biometric modality is promising and can be further
improved. Note that the already excellent performance in
our experiments and demo system suggests us to leave the
aforementioned two directions as future work, rather than
implementing them in the current system. Although the num-
ber of subjects (51 and 30) is preferred to be larger, it
is on par with the number of subjects (51) in the well-
known CMU benchmark keystroke database [16]. In addition
to enjoying the benefits of being a non-intrusive continuous
authentication modality with short verification time, typing
behavior also has additional favorable properties. For example,
being a behavioral biometric, it is inherently robust to spoofing
because the dynamics of typing is especially hard to imitate.

There are many interesting directions to further the de-
velopment of typing behavior. First, we will continue to
enroll subjects into unconstrained typing. Second, we will
perform keyboard-based calibration so as to compensate the
potential varying camera angles and keyboard position among
the typing sequences. Third, we will study how the type
of keyboard affects the authentication performance. Fourth,
given sufficient amount of data, we can also employ machine
learning methods to learn various parameters or weights in
the similarity calculation, such as the different weights for
Kk(V,V

′). Fifth, we will incorporate appearance features into
the sequence matching, which can be especially useful when
users make pauses during typing. Sixth, we will explore the
use of hand movement while operating the mouse. Seventh,
applying object tracking or image alignment [18], [19] to
hands can parse the hands’ structure and enable advanced
features for fingers and dorsum. Finally, we view TB as an
exploration of the visual aspect of keyboard typing, rather than
a replacement of KD. Hence, we can fuse TB with KD to
achieve greater authentication performances and robustness in
a diverse set of application scenarios.
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