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Abstract. This paper presents an algorithm for jointly learning a set of
mid-level attributes from an image ensemble by locating clusters of de-
pendent attributes. Human describable attributes are an active research
topic due to their ability to transfer between domains, human under-
standing, and improvement to identification performance. Joint learning
may allow for enhanced attribute classification when there is inherent
dependency among the attributes. We propose an agglomerative clus-
tering scheme to determine which sets of attributes should be learned
jointly in order to maximize the margin of performance improvement.
We evaluate the joint learning algorithm on a set of attributes for the
task of person re-identification. We find that the proposed algorithm can
improve classifier accuracy over both independent or fully joint attribute
classification. Furthermore, the enhanced classifiers also improve perfor-
mance on the person re-identification task. Our algorithm can be widely
applicable to a variety of attribute-based visual recognition problems.

1 Introduction

Person re-identification seeks to locate the same individual across multiple non-
overlapping cameras within a short time frame [1]. As an enabling technique
for video surveillance [2, 3], it has many applications such as tracker linking,
person retrieval, searching missing children in public spaces, etc. Depending on
the applications, person re-identification can be posed in different scenarios. For
example, classic person re-identification is image-to-image matching where one
image is the occurrence of the person of interest in one of the cameras. Zero-shot
identification is description-to-image matching where the only prior knowledge
is a verbal description by an eyewitness.

While many prior work of person re-identification rely on low-level visual
feature based image matching [4–8], recently human describable, mid-level at-
tributes have become a promising approach for both re-identification [9] and
zero-shot identification [10] scenarios. This is especially true for the latter where
describable attributes are the only source of input information. These attributes
have a number of advantages over low-level visual features. First, they enable
the possibility of human-in-the-loop to assist decision making. Second, they can
improve the system performance by fusion with low-level features. Third, human
understanding of the attributes allows for their use as evidences in a courtroom.
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Fig. 1. Given an image ensemble with labels on a set of attributes, our algorithm
automatically partitions the attribute set into various clusters and jointly learns a
classifier for multiple attributes within each cluster. This leads to superior performance
in both attribute classification and person re-identification application (e.g., zero-shot
identification).

In order to detect multiple attributes from an image, normally an array of
classifiers are independently learned from training data - one classifier per at-
tribute [9]. However, there are various potential dependencies among attributes
that may enable a better approach to learning. Correlation in attribute occur-
rence may exist. For example, knowledge that a person is a male will impact
the prior probability about the hair length. Another potential dependency is the
subset of low-level features that define the attributes. Attributes about the same
local area (e.g., wearing jeans or skirt) will likely share a common set of low-level
features. Recent works recognize there exist dependencies [9, 11], and few [12,
13] seek to leverage them to jointly learn attribute classifiers from the features.

This paper aims to explore whether and how joint learning can improve at-
tribute classification performance. As shown in Fig. 1, we propose an approach
for jointly learning attributes by leveraging their dependencies. Given a set of
images labeled with a set of attributes, we recognize that not all attributes have
strong dependencies and therefore it is desirable to identify clusters of attributes
for which joint learning will have greater impact. We propose a data-driven, ag-
glomerative clustering scheme where each attribute begins in a separate cluster
and we iteratively combine clusters based on the expected improvement from
joint classification. This scheme efficiently partitions the attributes into K clus-
ters, where K is estimated in a data-driven manner. We then train a set of
classifiers, one for each cluster of related attributes. To predict the attributes for
an unseen image, the image is given to the set of classifiers, which collectively as-
sign all attribute labels. Using the person re-identification datasets, VIPeR [14]
and PRID [15], we evaluate the joint learning on a challenging set of human
labeled attributes [9] with little inter-attribute correlation. We demonstrate su-
perior attribute classification performance of the proposed algorithm, and also
improvement on zero-shot person identification using the predicted attributes.

In summary, this paper has two main contributions:

– We develop a joint attribute classification algorithm that leverages attribute
dependencies to learn a set of attribute classifiers. Our algorithm can auto-
matically determine the attribute combinations for joint learning.
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– We demonstrate that joint learning improves classification accuracy of hu-
man labeled attributes for person re-identification and also improves zero-
shot identification.

2 Related Work

Attribute-based visual analysis is a popular research topic. Computer vision has
increasing interest in describing objects by a rich set of human describable at-
tributes [16–18]. For example, [19] presented a system with 65 attributes for
unconstrained face recognition, which performs well on the labeled faces in the
wild dataset. Soft biometrics have been used to improve commercial face match-
ers [20]. For person re-identification, [9, 10] explored the use of human describable
attributes either computed directly from the low-level features or provided by
a human operator. Most recently, [11] used human annotated soft biometrics as
ancillary information to improve face recognition at a distance. In all of these
works, the performances of the attribute classifiers are crucial to the overall
performance of the problem at hand because attribute classification errors will
propagate throughout the entire system.

All aforementioned applications have a separate, independently learned clas-
sifier for each attribute. Both [19, 9] used an SVM to classify each attribute.
Using independent classifiers is the naive approach for multi-attribute classi-
fication and may be inefficient since potentially different features need to be
extracted for each classifier. With this insight, [21, 22] proposed techniques to
find optimal common sets of features in order to make multi-attribute classifica-
tions computationally efficient. These techniques find a subset of features, which
jointly predict different classes where only one class will be present at a time.
If x is the set of features used for classification and y is the output, these ap-
proaches seek to minimize |x|, but do not place any criteria on the classification
performance on y. Also, in these works, y has only one attribute present in a
given image whereas our work allows any number of attributes to be present.

A few multi-task learning works try to take advantage of dependencies in
order to improve overall performance. These works have the same motivation for
joint learning as us and try to maximize the classification performance on y. Most
notably [23] presented an approach for using support vector regression to jointly
predict multidimensional output. They claimed this exploits the dependencies
between variables and reduces the effects of noise in the input. In [24], image
based regression (IBR) is proposed to use boosting to predict multiple outputs.
One very recent work [25] automatically determines attribute dependency and
learns a single classifier to jointly predict all attributes. These works differ from
ours in that they assume all attributes should be learned jointly. In contrast,
we recognize that not all attributes should be combined in order to improve
performance, i.e., attributes without dependencies may hurt performance when
learned jointly. Indeed, our experiment (Tab. 2) shows that fully joint learning
does degrade performance.
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A set of works [26–28] took advantage of the object labels along with the
attribute labels in the joint learning framework to further improve performance
for attribute learning. These object labels can act as latent variables or side
information [29] for attribute classification since they are not directly in the fea-
ture set, but are known during training. For the task of person re-identification,
we could use the identity information during training in the same manner if
the database includes sufficient images of the same person. Unfortunately, the
databases we use only have two images per person so we choose not to use the
identity information while training.

There are a few recent works recognizing that fully joint learning may lead to
overfit in attribute classification. The authors in [13] clustered attributes man-
ually based on human understanding of relatedness. Features were encouraged
to be shared among attributes within the same cluster, while attributes from
different clusters were encouraged to use different features. In contrast, we use
a data-driven approach to both clustering and feature selection. A data-driven
approach was used in [12] to create attribute clusters and learn a separate classi-
fier for each cluster. We use a data-driven approach to estimate the performance
margin of clustering, whereas [12] used a regularization of the selected features
to cluster attributes that reside in a low rank subspace of selected features.

3 Joint Attribute Learning

This section presents our approach for joint attribute learning. We start by
formally defining the problem and objectives. Then we analyze one specific means
of simultaneously predicting a set of multiple attributes. Finally, we present our
hierarchical clustering scheme to efficiently identify the sets of attributes for joint
learning, in order to best improve the attribute classification accuracy.

3.1 Problem Definition

Let us assume there are Q user-defined mid-level attributes to describe “person”
in videos, and one example of such attributes is shown in Tab. 1. We denote the
collection of attributes as A = {1, 2, · · · , Q}, where each integer corresponds to
a particular attribute. The training data of the joint attribute learning includes
the low-level visual features of N images X = {x1,x2, · · · ,xN}, xn ∈ RD and
their corresponding attribute labels Y = {y1,y2, · · · ,yN}, yn ∈ RQ. Here D is
the feature dimension of the visual features. Each element of the Q-dim vector
yn can be either 0 or 1 for binary attributes such as gender and bald, or a real
number scaled within [0, 1] for ordinal attributes such as age and weight.

The first objective of joint attribute learning is to learn one classifier G(x) :
RD → RQ that minimizes attribute classification errors:

J(G) =

N∑
n=1

‖yn −G(xn)‖2. (1)
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While this is a basic objective, it assumes that all attributes should be learned
together, but in Sec. 3.3 we will show that K, rather than one, attribute classi-
fier(s) should be learned to minimize J(). We will present an algorithm on how
to estimate the optimal K value and partition Q attributes into K clusters. Note
that when K = Q, this degenerates to the conventional approach where one clas-
sifier is trained for each individual attribute. For the clarity of presentation, in
the next section we first present the fully joint attribute learning where K = 1.

3.2 Learning via Image based Boosted Regression

Given a set of attributes, we seek to learn a classifier that predicts all attributes
simultaneously. For this task, we use IBR, which has shown success in various
vision applications [24] and its regressor formulation is also suitable for predicting
both binary and ordinal attributes. We present a brief overview of the basic IBR
algorithm. Given training data X and Y, it learns a classifier in the form,

G(x) =

T∑
t=1

αiht(x), (2)

where αi is the weight, ht(x) is the weak classifier that predicts all Q at-
tributes simultaneously, and is comprised of Q 1-dim weak learners, i.e., h(x) =
[h1(x), h2(x), · · · , hQ(x)]T .

We use the 1-dim decision stump weak learner h(x), which has a low-level
feature g(x), a parity indicator p̃ ∈ {−1, 1}, and a threshold θ. That is,

h(x) =

{
+1 : p̃g(x) ≥ p̃θ,
−1 : otherwise.

(3)

The low-level feature g(x) may be from the color or texture of a localized region,
or commonly used local descriptors.

During each boosting iteration, a weight α and weak classifier h(x) are chosen
by minimizing the cost function,

J(G) =

N∑
n=1

‖yn −G(xn)‖2B1
+ λ

N∑
n=1

‖µ−G(xn)‖2B2
. (4)

While the first term of this function is similar to Eq. 1, a regularization term with
µ equal to the sample mean of Y is used to diminish overfitting. The matrices
B1 and B2 are for normalization and are naturally related to the covariance
matrix of the attribute set. For details on how to select α and h(x) from a pool
of features and weak classifiers, we refer the readers to [24].

From this formulation, we see that joint learning occurs in part based on the
choice of B1 and B2. If either is a non-diagonal matrix, it is computationally
unfeasible to select the optimal weak classifier h(x). In contrast, if both B1

and B2 are identity matrices, each weak learner h(x) can be optimally chosen
independent of the other Q − 1 weak learners, and thus an incremental feature
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Fig. 2. Flow chart demonstrating a three-step approach to IBR. These steps correspond
to Lines 24-26 in Algorithm 1.
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Fig. 3. Example demonstrating the effects of attribute correlation on their whitened
attribute space. Red lines are decision boundaries. Figures are initial attribute space
Y (a), and then transformed space Y′ with 0 (b), 0.5 (c), and 1 (d) correlation.

selection scheme can be employed. Based on this observation, [24] suggests a
three-step approach to IBR, as shown in Fig. 2. In the first step, the multi-
attribute labels Y are decorrelated via whitening. Specifically, let D and V
be the eigenvalue and eigenvector matrices of the covariance matrix of Y. We
generate uncorrelated pseudo-attribute labels by

y′n = D−1/2Vᵀ(yn − µ). (5)

The second step learns the regressor H(x) =
∑
αiht(x) to predict the uncorre-

lated labels Y′, by setting B1 = B2 = I. In the third step, the final attribute
classifier G(x) can be obtained by dewhitening the estimated uncorrelated la-
bels, G(x) = µ+ (Vᵀ)−1D1/2H(x).

It is interesting to note that the joint learning is achieved in this implemen-
tation mainly because the whitening and dewhitening share the selected features
across the attributes. Thus, we hypothesize that any standard regression tech-
nique can be applied to predict each one of Q attributes of Y′ independently. In
Fig. 3 we demonstrate the effects of whitening on the Y′ attribute space (Q = 2)
for different amounts of initial correlation.

While the learned regressor G(x) directly classifies ordinal attributes such
as age and height, for binary attributes we must also find a threshold τ to
perform classification. We select τq for attribute aq that minimizes the error on
the training data. Note that even in a case with all binary attributes, regression
is still necessary because the Y′ space is ordinal.

3.3 Attribute Clustering

The aforementioned joint attribute learning assumes that on average the jointly
learned classifier can achieve superior classification performance for Q attributes
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than Q independently learned attribute classifiers. However, it is important to
note that this assumption may not always hold true. Let us consider two simple
scenarios when Q = 2. First, the two attributes have dependencies and there is
a difference between their independent classifier performances. Thus, the depen-
dency between the attributes may be exploited by a joint classifier to improve
the performance of the harder-to-classify attribute. Second, the two attributes
have no dependency and they both have high independent classifier performance.
If we apply joint learning in this scenario, the labeling noise in the training sam-
ples or bias in their sampling from the population may cause the joint classifier
to assume there to be dependence when there is none. Hence, the joint learning
may actually hurt the performance of attribute classification.

Therefore, our goal is to identify the contributing factors and pre-
dict when joint learning will improve the attribute classification per-
formance over independent learning, and to use this knowledge to par-
tition the set of attributes into multiple clusters where the attributes
within each cluster may be jointly learned to best improve perfor-
mance.

Mathematically we define this process as follows. Let a partitioning C split
all Q attributes into K non-overlapping clusters, i.e., C = {c1, · · · , cK}, where
ck ⊆ A, ∪Kk=1 ci = A, and ck1 ∩ ck2 = ∅, ∀1 ≤ k1 6= k2 ≤ K. The objective of
jointly learning K classifiers G = {G1, · · · ,GK} is to minimize the classification
error,

J(G,C) =

K∑
k=1

N∑
n=1

‖ykn −Gk(xn)‖2, (6)

where both Gk(xn) and ykn are the estimated and true labels of the attributes
in the ck cluster. As an extension of Eq. 1, this objective function is difficult to
optimize since it depends on both G and C. Therefore we propose a sub-optimal
solution by estimating C and G sequentially. Most of the remaining section will
present our approach to estimate C since learning Gk can be easily done by
using the IBR approach in Sec. 3.2 or any other multi-attribute predictor.

The estimation of C is nontrivial due to the large solution space. The num-

ber of partitions for a Q-attribute set is equal to the Qth Bell number [30],
which grows exponentially and is computationally unfeasible to enumerate as
Q increases. Therefore, we propose a greedy approach similar to agglomerative
hierarchical clustering. We start by placing each attribute in its own cluster and
then iteratively merge the two clusters that are expected to benefit most from
joint learning. The merging process stops when we arrive at a single cluster
or more likely when the merging of any two clusters no longer has expected
improvement.

Specifically, we denote a an attribute of the cluster c, p(a) the classification
accuracy of a when learned independently, and p̂(a, c) the accuracy when learned
jointly as a part of c. The performance margin of an attribute cluster is defined
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Algorithm 1: Joint attribute learning via attribute clustering.

Data: Attributes A, training samples and labels D = {X,Y}, validation samples and labels
Dv = {Xv,Yv}, a flag useReg.

Result: The partitioning C, cluster classifiers G, and thresholds T.
/* Find partitioning */

1 Initialize clusters c1 = 1, c2 = 2, · · · , cK = Q and K = Q;
2 Initialize margins m(c1) = · · · = m(cK) = 0;
3 Train Q classifiers from D and compute p(a) ∀a ∈ A on Dv ;
4 if useReg then
5 Learn R() : f → m(c) via f from D, Dv and m(c) from Dv;

6 repeat
7 bestGain = 0;
8 foreach k1 = 1, · · · , K − 1 do
9 foreach k2 = k1 + 1, · · · , K do

10 if useReg then
11 Compute f from D,Dv;
12 Compute m({ck1

, ck2
}) via R(f);

13 else
14 Train joint classifier on D via IBR;
15 Evaluate m({ck1

, ck2
}) on Dv;

16 if s(ck1
, ck2

) > bestGain then
17 bestGain = s(ck1

, ck2
);

18 ct = {ck1
, ck2

}; . Remember the best cluster

19 if bestGain> 0 then
20 Merge two clusters into one, ck1

= ct, ck2
= ∅;

21 K = K − 1; . One less total number of clusters

22 until bestGain≤ 0;
/* Train cluster-specific classifiers */

23 foreach k = 1, · · · , K do
24 Whiten attribute labels from cluster ck via Eq. 5;

25 Train regressor Hk(x) as Eq. 2 via IBR on D,Dv;

26 Gk(x) = µ+ (Vᵀ)−1D1/2Hk(x);
27 Compute decision boundaries τq for binary attributes on D, Dv;

28 return C = {c1, · · · , cK}, G = {G1(x), · · · ,GK(x)}, T = {τ1, · · · , τQ}.

as the average margin of each attribute in the cluster,

m(c) =
1

|c|
∑
ai∈c

(p̂(ai, c)− p(ai)). (7)

Our objective is to find a partitioning C that maximizes the average performance
margins across all clusters,

Ĉ = argmin
C
J1(C) =

1

K

K∑
k=1

(m(ck)|ck|), (8)

where |ck| is the cardinality of ck.
Our greedy approach starts with Q clusters, each with one distinct attribute.

In each iteration, we search for a pair of clusters, which have the maximal ex-
pected improvement when combining them into one cluster compared to leaving
them as two clusters. Hence, the expected improvement is computed by

s(ck1 , ck2) = m({ck1 , ck2})−
|ck1 |m(ck1) + |ck2 |m(ck2)

|ck1 |+ |ck2 |
. (9)
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The iteration continues until all s(ck1 , ck2) < 0, which means that there is no
expected performance improvement by combining any two existing clusters. Al-
gorithm 1 summarizes our clustering and learning algorithm. In theory the com-
plexity of each iteration is O(K2). However, with memoization of the s(ck1 , ck2),
each iteration after the first iteration has a complexity of O(K), which becomes
fairly efficient to compute.

The only thing remaining to implement Algorithm 1 is in Lines 11-15, i.e.,
how to estimate the performance margin of an attribute cluster, m(c). We pro-
pose two methods for this estimation: a learned regressor based on the properties
of the attribute set c, and an empirical estimation based on its performance on
a validation set, as detailed below.

Regression To learn the regressor, we hypothesize that dependencies among
attributes may impact the performance margin of joint learning, and these de-
pendencies will be the features for regressor learning. First, the correlation among
attributes may help since not all attributes are equally classifiable and the result
of the “easier” attribute can benefit the prediction of the “harder” attribute.
Thus we define f0 to be the average of pair-wise correlation coefficients of any
two attribute labels Yk in the cluster ck, Second, this line of reasoning also
suggests that the performance difference among the independently learned at-
tributes could be indicative, which leads to f1 = var(p(a)),∀a ∈ c. Third, we note
that the independent accuracy p(a) can place restrictions on the joint perfor-
mance. For example, if an attribute is 99% accurate independently, it is less likely
to be improved via joint learning. Hence we define f2 = mean(p(a)),∀a ∈ c. Fi-
nally the correlation of the top selected features from the independently boosted
classifiers also matters. If two attributes share many discriminative features, they
will be less likely to help improve each other. But if their top features differ, they
may potentially help create a more robust joint classifier. We define f3 to be a
11-dim histogram of the pair-wise correlation coefficients of the top five selected
features from each independently learned attribute’s classifier. The collection of
features f = [f0, f1, f2, f

ᵀ
3 ]T becomes the input variable for the regressor R(f),

whose output variable is the expected performance margin m(ck). Specifically
we train a simple linear regressor by using f computed on D, Dv and m(ck)
computed on Dv, based on a small set of random clusters c.

Validation For the empirical estimation, we evaluate p(a) and p̂(a, c) on a
separate validation set Dv for every attribute in the cluster, and then compute
m(c) directly. This scheme has a computational burden as it has to train a
joint classifier each time it examines a potential cluster merge, but it will give
us an accurate estimate of the performance margin. Using R(f) to estimate
the performance margin requires an upfront computational investment to train
the regressor, but after it is trained, it efficiently examines potential merges.
Ultimately, we seek to find an accurate prediction R(f) of the margin through
the regressor, which is one of the future research directions.
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Fig. 4. Sample images from the VIPeR (top) and PRID (bottom) dataset of the 21
attributes used for person re-identification.

Table 1. 21 Mid-level attributes.

redshirt blueshirt lightshirt darkshirt greenshirt

nocoats notlightdarkjeanscolour darkbottoms lightbottoms

hassatchel barelegs shorts jeans male

skirt patterned midhair darkhair

bald hashandbagcarrierbag hasbackpack

4 Experiments

Our experimental goal is to determine whether joint learning improves upon
independent learning and how it works by exploring the aspects of the regressor
that best predict the performance improvement for a set of attributes. We do
present the results as reported by [9] solely for reference to show how our baseline
(independent learning) performance compares to the state of the art, but the
most important question is if the joint learning technique can improve upon the
independent formulation.

4.1 Experimental Setup

Datasets We conduct experiments on the classic person re-identification datasets,
VIPeR [14] and PRID [15], which contain 632 and 200 subjects respectively with
a pair of images taken from different cameras (Cam A and Cam B) with arbi-
trary poses. The images are cropped and scaled to 128 × 48 pixels in size for
VIPeR and 128 × 64 for PRID. Layne et al. [9] provided 21 manually labeled
attributes for each image. Sample images from the databases are shown in Fig. 4
and the list of attributes is in Tab. 1.

Feature representation We extract the same low-level visual features as [5,
9]. Images are split into 6 equal sized horizontal sections. For each section we
compute 8 color channels and responses from 19 texture channels of Gabor and
Schmid filters. Each channel is quantized by a 16-bin histogram. A total of 2592
low-level features x are extracted from each image, i.e., D = 2592.
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Fig. 5. Experimental setups. Shaded region is the data used to train final G used for
classification. Vertical is across the subject space for each camera.

Table 2. Comparison of independent and joint learning techniques.

Indep. Full Reg. Valid.

Setup 1: Q = 16 74.75% 74.28% 75.18% 75.31%
Setup 2a: Q = 15 65.63% 64.98% 67.83% 67.87%
Setup 2b: Q = 15 68.60% 68.20% 70.43% 69.17%

Experimental setup Figure 5 displays the two different setups for our exper-
iments. Setup 1 is intra-dataset and examines attribute classification within a
single dataset. We elect to only examine VIPeR since it contains sufficient im-
ages to make decisions for the attributes, whereas PRID has multiple attributes
with only a few positive examples. VIPeR also covers a wider range of camera
viewpoints. This setup splits the subjects in five folds and we repeat the experi-
ment using one fold for testing each time. The validation set is used to learn the
regressor and to predict the cluster margins for classification purposes. Setup
2 is inter-dataset and examines the ability to transfer attribute classifiers. This
setup has two variations. Setup 2a uses completely different datasets for training
and testing. Setup 2b uses half of PRID as the validation set to help training.

Evaluation metrics For attribute classification, we report accuracy, which is
the number of correctly classified samples over the total number of samples.
When evaluating person re-identification, we report the expected rank, which
is the mean rank of genuine matches and provides an estimate of how many
images a manual operator will have to examine to find the genuine match. We
also report performance at rank n for re-identification, which is the probability
that the genuine match appears within the top n matching results.

4.2 Attribute Classification

We evaluate joint attribute learning and report the accuracies for four different
techniques in Tab. 2. 1) Independent, where each attribute is learned by a sepa-
rate classifier, i.e., K = Q. 2) Fully joint, where all attributes are jointly learned
in one cluster, i.e., K = 1. 3) Regressor clustering, where we use the regressor
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Table 3. Attribute accuracy for clustering in Fig. 6 on the testing set. For each cluster, we also
report the predicted margin on the validation set and the actual margin on the test set Dt.

Indep. Valid. m(c) on Dv m(c) on Dt

male 55.16% 53.97%
4.41% −0.66%hasbackpack 48.02% 47.62%

midhair 66.27% 65.87%
lightshirt 76.98% 80.95%

2.17% 2.18%
greenshirt 83.73% 84.13%

darkbottoms 76.98% 75.00%
1.88% 0.79%

lightbottoms 62.30% 65.87%
redshirt 93.65% 93.65%

1.68% −1.38%
blueshirt 86.51% 83.73%
nocoats 67.86% 73.41%

1.04% 2.68%
darkhair 67.46% 67.86%

notjeanscolor 80.16% 82.54%
shorts 76.19% 78.57%

darkshirt 85.71% —
barelegs 75.00% —

jeans 75.40% —

R(f) to form the clustering. 4) Validation clustering, where the validation set is
used for clustering.

Our hypothesis is that adaptively combining the attributes for joint learn-
ing will increase the performance of attribute classification. We evaluate using
Setup 1 with the same 16 attributes as used by [9] where the remaining five
attributes are not used due to extreme imbalanced samples. Our independent
result, 74.75% is better than the 66.9% as reported in [9]. For Setup 2, we can
only use 15 attributes because the other six attributes of PRID have very few
samples. We make a few comments based on the results reported in Tab. 2. First,
fully joint learning has a negative impact on the classifier accuracy. Note that
this observation is different to the very recent work [25] where fully joint learning
has shown improvement. Part of the reason is that the chosen datasets have little
overall correlation among attributes making joint learning difficult. We also note
that conceptually [25] is a special case of our algorithm, because it is possible
that all attributes are clustered into one cluster by our algorithm as long as the
expected improvement s is positive. Second, both proposed clustering techniques
improve over independent classifiers for all experiments. In Setup 1 we report
the average accuracies from using each one of the five folds as the test set. Even
though the relative improvement from the “Indep.” to “Valid.” is small, the p-
value from one-tailed paired t-test is less than 0.05, which demonstrates this is
a statistically significant performance increase.

We also examine a reduced subset of only five attributes in order to com-
pare our greedy clustering with the global optimal clustering, which is obtained
through brute force all possible attribute partitions. In this example, cluster-
ing with validation achieves 78.4% accuracy barely below the global optimal
clustering at 78.5%.

4.3 Regression versus Validation based Clustering

We propose two means of estimating the performance margin of a cluster in the
agglomerative clustering scheme, regression and validation. In Fig. 6 and Tab. 3,
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Fig. 7. Predicted margin from
clustering regressor versus ground
truth margin. The Pearson corre-
lation coefficient is 0.66.

we show the chosen clusters as well as the per attribute accuracy improvement
using the clustering with the validation set for one fold of the Setup 1 experi-
ment. It can be observed that some of the clustering results are consistent with
human intuition. For instance, darkbottoms and lightbottoms are negatively cor-
related and hence clustered together. Also, the inconsistency between the m(c)
on Dv and on Dt indicates the insufficient validation samples, and hence a more
representative validation set will help us improve performances in the future.

Using a validation set to find the clusters can take several hours for Q = 16.
We train R(f) using less time than the validation approach, and once trained
it takes a few minutes to cluster A. In our experiments, we only train R(f) on
Setup 1 and use the same regressor for Setup 2a and 2b.

As discussed in Sec. 3.3, we define a regressor using dependencies between
attributes to predict the performance margin of a cluster. We train the regres-
sor with Setup 1, where we learn joint classifiers for all pairs of attributes and
a random selection of sets of three attributes. The ground truth performance
margins are computed on the validation set. Figure 7 displays the ability of the
regressor to predict the actual margin. Of the four types of attribute dependen-
cies modeled, the descending order of importance as defined by weights of the
regressor R(f) is feature correlation (f3), variance of independent classifier per-
formance (f1), mean independent classifier performance (f2), and the attribute
correlation (f0). It might be counter-intuitive that attribute correlation would
have the least impact on joint learning, but this is mainly an anomaly caused
by the attributes having little correlation by design. There are too few attribute
pairs with high correlation to impact the regressor. For example, the average
inter-attribute correlation is only 0.07 in VIPeR. This low correlation makes
joint attribute learning a very challenging problem, so if we can improve on this
dataset, it is likely to improve other problems where more inter-attribute corre-
lation exists. Using a regressor to predict the performance margin demonstrates
promise, but further exploration to improve the regressor prediction accuracy is
still necessary.
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Table 4. Zero-shot identification performance on VIPeR.

ExpRank Rank 1 Rank 5 Rank 10

Layne [9] 50.1 6.0% 17.1% 26.0%
Ind. 27.11 6.1% 24.8% 37.8%

Valid. 26.13 7.7% 26.3% 38.1%

4.4 Zero-shot Identification

Improving attribute classification is good, but does joint learning also improve
the applications of the attributes? We examine the zero-shot identification sce-
nario [9], where only attribute descriptions of an eyewitness are available. Fol-
lowing the same experimental setup as [9], we use the provided human labels for
the subjects y as the probe and use the raw regression output G(x) for VIPeR
Cam B (Setup 1 test set) as the gallery. The distance metric is computed as the

weighted sum of errors between y and G(x), i.e., s̃ =
∑K
k=1 ep̂(·,ck) · |yk−Gk(x)|.

Table 4 reports the results averaged across all five folds for independent and
the proposed clustering scheme with the validation set. Joint learning of the
attributes improves both the expected rank (smaller is better) and the rank n
accuracy (lager is better) at low ranks. To calibrate the zero-shot identification
performance of our independently learned attributes, we show the performance
of [9] as reported in the paper.

5 Conclusions

We have shown that joint learning of attributes can increase the average attribute
classification performance. Our main contribution is the clustering scheme that
identifies which sets of attributes should be jointly learned for maximum per-
formance increase. For joint learning, we used IBR, but any multi-output clas-
sification algorithm can be substituted. We demonstrated the effectiveness of
this joint attribute learning approach on the task of person re-identification and
improved zero-shot identification performance.

A common characteristic of exploratory paper is to raise interesting ques-
tions and present opportunities for further work. This exploratory work is no
exception. How will this translate to other multi-attribute problems such as the
face attributes [19, 31]? What other dependencies impact joint learning and can
we leverage to improve the clustering prediction? Would accurate body align-
ment [32] have a positive impact on joint learning? Would we see a larger per-
formance gain from joint learning if there is more inherent correlation among
the user-defined attributes, especially on a larger dataset such as [33]? On the
contrary, it is interesting to note that even a lack of correlation has the potential
to improve joint classifier performance because that knowledge may lead to a se-
lection of different low-level features to predict each attribute. Finally and most
importantly, because our approach is independent to the definitions or types
of attributes, we believe it is widely applicable to many attribute-based visual
recognition problems, which warrants future research on this topic.
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