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Abstract

Ballistic images of a cartridge case or bullet carry dis-
tinct “fingerprints” of the firearm, which is the foundation
of widely used forensic examination in criminal investiga-
tions. In recent years, prior work has explored the effective-
ness of correlation-based approaches in matching ballistic
imagery. However, most of these studies focused on highly
controlled situations and used relatively simple image pro-
cessing techniques, without leveraging supervised learning
schemes. Toward improving the matching accuracy, espe-
cially on operational data, we propose a learning-based
approach to compute the similarity between two ballistic
images with breech face impressions. Specifically, after a
global alignment between the reference and probe images,
we unroll them into the polar coordinate for robust feature
extraction and global registration. A gentleBoost-based
learning scheme selects an optimal set of local cells, each
constituting a weak classifier using the cross-correlation
function. Experimental results and comparison with state-
of-the-art methods on the NIST database and a new opera-
tional database, OFL, obtained from Michigan State Foren-
sics Laboratory demonstrate the viability of our approach.

1. Introduction
This paper presents an algorithm to quantitatively evalu-

ate whether a fired cartridge case was fired from a specific
firearm purportedly belonging to the suspect. As an impor-
tant forensics evidence, a toolmark is created when a harder
surface, the tool, comes into contact with a softer surface
and causes plastic deformation [19]. Among all surfaces
with toolmarks, fired cartridge cases and bullets are the two
most commonly used in criminal investigations and court
proceedings. Due to the random variations in the manu-
facturing of firearms, individual characteristics or “finger-
prints” are left on the cartridge cases and bullets – the foun-
dation of firearm examination. In many crime scenes, typ-
ical biometric signatures such as fingerprint or DNA may
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Figure 1. Given two ballistic images (evidance & test) captured by
a comparison microscope, our algorithm determines whether the
two cartridge cases were fired with the same firearm, which may
link the evidance to the firearm, and subsequently to the suspect.

not be available. In such cases, linking the bullet to the gun
owned by a suspect provides an important clue to apprehend
and prosecute the suspect.

Normally, a firearm examiner fires a test shot from a
questioned firearm and compares this shot with an evidence
collected from the crime scene, using microscope-based
ballistic images; a genuine match established by this visual
examination of the two images will link the firearm (and
hence the suspect in possession of the firearm) to the evi-
dence. This manual examination is not only laborious, but
also dependent on the examiner’s expertise. It is estimated
that 1, 000+ firearm examination cases per month are han-
dled by the Michigan State Forensics Lab and each case can
take about 2 hours. From 2001 to 2011, there were approxi-
mately 500, 000 firearms related crimes in the United States
each year [14]. Therefore, there is an urgent need to fun-
damentally change the paradigm of firearm examination by
developing an automatic and robust method, that is scientif-
ically sound, for comparing ballistic images.

The National Research Council (NRC) has published
comprehensive reports stating that existing solutions to au-
tomatic ballistic image matching are limited [13, 12]. The
main commercial solution developed by Forensic Technol-
ogy WAI Inc. [1] searches for the most similar images in a
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Figure 2. The formation and taxonomy of ballistic toolmarks2. (a) When the firing pin (FP) hits the primer (4), the powder (3) is ignited
and propels the bullet (1) out of the barrel. At the same time, the explosive force pushes the cartridge case (2) against the breech face (BF)
of the firearm. (b) The lands and grooves fabricated in the barrel leave striated toolmarks on the bullet when it passes through the barrel.
(c) The FP, BF and Ejector of a firearm, each is responsible for one type of toolmarks on the cartridge case. (d) Three types of impressed
toolmarks on the cartridge case: FP impression, BF impression and Ejector mark (EM). (e) Striated toolmarks on the bullet.

database given a query image of the evidence item. While
this retrieval system reduces the manual comparison, it does
not directly address the major demand in forensic practice–
a comparison of two ballistic toolmarks. In contrast, the
academic efforts have either focused on formulating the im-
age matching in the context of non-visual knowledge [3],
or matching surface topography [19]. Their main limita-
tion is that only the basic image processing techniques are
applied, without any classifier learning. Further, there is a
complete lack of exploration on ballistic images collected in
real-world operational environment that contain more vari-
ations than images obtained in controlled lab environments.

Computer vision and machine learning have made great
strides in both their individual capabilities and their con-
fluence. It is generally agreed that a supervised learning-
based approach is superior to a non-learning-based ap-
proach. Hence, we aim to take advantage of the advances
in these two fields to systematically address the limitations
of prior work. To this end, we propose a learning-based ap-
proach to compute the similarity (score) between two ballis-
tic images and classify between the genuine match and false
match (a.k.a. known match and known non-match) (Fig. 1).
We focus on the breech face impression (BFI) among vari-
ous ballistic toolmarks given its extensive use in forensics.

Given two 2D microscope images of cartridge cases, we
first estimate the center of the BFI circular region of each
image, followed by a global rotation estimation between
two images. In order to build a global feature correspon-
dence among all training images – a prerequisite for any
learning method, we transform an image from the Carte-
sian coordinate space to the polar coordinate space, similar
to how the iris code is generated [5]. Given the two un-
rolled images, one can use one or more local cells (local
image region) with arbitrary size and location to compute

the similarity score. To achieve the maximum discrimina-
tion between the genuine and false scores, we employ a
gentleBoost-based learning scheme to select a discrimina-
tive subset of local cells in the spatial domain, where each
cell constitutes a weak classifier by using the classic cross-
correlation function (CCF) score. Experiments are con-
ducted on the NIST Ballistics Toolmark Database [2] and
our newly collected operational dataset (OFL), with com-
parison to state-of-the-art methods.

2. Background and Prior Work
In this section, we first provide necessary background on

how a toolmark is generated during the firing of a cartridge
(bullet and cartridge case), and the various types of ballistics
toolmarks. Then we review relevant work on manual and
automatic firearm identification via toolmarks.

During the firing of a cartridge, different components
(i.e., tools) of a firearm will leave various types of tool-
marks that have individual characteristics of the fiream and
can be used for firearm identification. As shown in Fig. 2
(a), a typical cartridge has four parts: the primer, the pow-
der, the casing (or cartridge case), and the bullet. When
a firearm is fired, the firing pin hits the pressure-sensitive
primer and ignites the powder, which then propels the bul-
let out of the barrel. In order to increase the accuracy and
range of the bullet by creating spin, the barrel is designed
with a slight right or left spiral pattern. These surfaces are
imparted with unique microscopic features due to random
variations in the manufacturing process. Therefore, when a
bullet travels through the barrel, such surface features will
leave striated toolmarks on the body of the bullet.

Furthermore, there are three areas where impression
2Some of the images are downloaded from the Internet: (a) http:

//goo.gl/idcCFb; (b) http://goo.gl/O66Ffo; (c) http://
goo.gl/TzrRz5; and (d) http://goo.gl/6nnnbk.

http://goo.gl/idcCFb
http://goo.gl/idcCFb
http://goo.gl/O66Ffo
http://goo.gl/TzrRz5
http://goo.gl/TzrRz5
http://goo.gl/6nnnbk
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Figure 3. The pipeline of pre-processing a ballistic image: (a) BFI segmentation based on six labeled points, (b) BFI after compensating
for planar bias, (c) detected outlier pixels (⇠1% of all BFI pixels), and (d) filtered image – the input for all three approaches in Sec. 3.

Table 1. Ballistic image datasets (we use datasets with boldface).
Dataset Toolm. Sensor # Firearms # Cases Environment

NIST-Weller BFI 3D 10 90 Lab
BFI 2D 10 50 Lab

NIST-Fadul BFI 2D/3D 10 40 Lab
NIST-Light. BFI 2D/3D 10 30 Lab
NIST-Hamby Bullet 3D 10 70 Lab
OFL BFI 2D 73 146 Operational

marks may be found on a fired cartridge case. First, a FP
impression (FPI) is left on the primer as the FP strikes.
Second, when the powder is ignited, the explosive force
pushes the cartridge case against the breech face (BF) of
the firearm, which impresses the surface topography of the
BF on the soft surface of the primer. Third, when the spent
cartridge case is pulled back and ejected out of the firearm,
the ejector impacts an ejector mark on the edge of the case.

When an evidence (cartridge case and/or bullet) is found
at a crime scene, it is of great interest to determine whether
it was fired from a specific seized firearm. To make this
determination, known test fired bullets and cartridge cases
are obtained from the firearm. A trained examiner visually
compares known test shots to the recovered evidence using
a microscope. Based on the toolmarks, either striated, im-
pressed or both, the examiner makes his conclusions.

While the aforementioned examination practice and the
resultant forensic evidence have been used extensively in
legal proceedings, concerns have been raised regarding the
reliability and validity of toolmark-based forensic evidence.
For example, in the two comprehensive reports published
by NRC [13, 12], it was indicated that no framework ex-
ists to describe the uncertainty in judgment when linking an
evidence to a specific firearm.

Unlike biometrics [9] or other computer vision applica-
tions, there is less concentrated research work in ballistic
image matching. Gerules et al. [8] present an overview of
the image processing, toolmark identification, and match-
ing approaches. Two research groups, in particular, have
obtained impressive results on 3D topographical measure-
ments. Scientists from NIST proposed the Congruent
Matching Cells (CMC) method [16, 18, 4]. Ravi and Cham-
pod propose three similarity scores for aligned 3D topogra-
phies [15]. The authors in [3] fuse the non-visual knowl-
edge into the image matching procedure. However, in most

prior work, the focus was more on low-level image process-
ing while less on learning, and the performance was not
evaluated on real-world operational ballistic data. Our goal
is to develop a learning-based approach towards filling a
gap between research and practice. For this work, BF im-
pression in 2D reflectance microscopy images are selected
as our target toolmark because it is the most frequently ex-
amined ballistic toolmark in forensic laboratories.

NIST released the first open-access database of ballistics
toolmarks (Table 1). It includes data from four different
studies, all captured under controlled laboratory environ-
ments. The number of bullets for which ballistic images
are available in the NIST databases vary from 30 to 90. In
contrast, the Operational Forensic Lab (OFL) database that
we collected in collaboration with Michigan State Forensic
Lab is the first one collected in an operational forensic fa-
cility and consists of ballistic images for 146 fired cartridge
cases; it will be released in the public domain.

3. Ballistic Image Matching Algorithms
This section presents the details of comparing two ballis-

tic images with breech face impressions (BFI). We start with
the pre-processing step for the ballistic images (Fig. 3). We
then present existing methods for comparing ballistics im-
ages. Finally, we describe the proposed approach for glob-
ally registering an image pair and learning a matcher.

3.1. Pre-Processing Pipeline
Since the BFI occupies only a small region on the back

of the cartridge, it is important to segment this area of inter-
est from the remainder of the cartridge image. Not only will
this help the algorithmic efficiency by avoiding computation
on the irrelevant parts of the image, it will also increase the
accuracy since the lettering and other parts of the cartridge
may differ even for the genuine match. Although an auto-
mated BFI segmenter (i.e., detecting two circles) could be
learned, since a firearm examiner is already manually cap-
turing the microscope imagery, for better accuracy we rely
on three points, marked by the examiner, on each of the two
circles, to define the boundary of the BFI region.

We observe that there is an overall planar bias in the im-
age intensity across the BFI region, for two potential rea-
sons: (i) the cartridge surface may not be in a perfect par-
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allel plane with the imaging plane of the camera, especially
given the high magnification of the microscope, and (ii) a
point light source may introduce additional intensity bias
in the spatial domain. This bias can dominate the image
matching over the BFI. To address this, we fit each image
I(u, v) by an optimal planar function in the least-squares
sense, i.e., argmina

P
u,v k(u, v, 1)a � I(u, v)k22, where a

is a 3-dim vector defining the plane. After fitting, the com-
pensated image is I0 = I� (u, v, 1)a.

During the 2D reflectance microscope imaging, the spec-
ular reflections or shadows may result in outliers in certain
local pixels, whose intensities are very different from their
neighborhood. These outliers inevitably have a negative im-
pact on the score computation. Hence, we define a pixel as
an outlier when its intensity is three times the standard de-
viation from the mean of its 21 ⇥ 21 pixel local patch, and
replace it with the interpolation of neighboring pixels.

Finally, all available images are filtered in order to em-
phasize the discriminative features of the firearms. Since
the imaging procedure may inevitably create noise in the
image, a low-pass Gaussian filter is used to remove the
high-frequency noise. On the other hand, there are low-
frequency components that are shared across all images re-
gardless of which firearm fired the bullet. To attenuate these
non-discriminative characteristics, we also apply a high-
pass Gaussian filter to each image.
3.2. NIST Techniques for Ballistic Matching

Given the pre-processed images, we now present the two
related approaches that were proposed by NIST and are con-
sidered as the state of the art in ballistic image matching.

3.2.1 Global CCF Approach
The widely accepted distance metric for matching BFIs is
based on cross-correlation proposed by NIST [17]. Since
then it has been used in other ballistic image matching tech-
niques [18, 20]. The normalized cross-correlation function
of a reference image I1 and a probe image I2 is defined as:

CCF(I1, I2, du, dv) =
P

u,v I1(u, v)I2(u+ du, v + dv)qP
u,v I1(u, v)

2
qP

u,v I2(u, v)
2
,

(1)
where du and dv represent the translation of the probe im-
age. The CCF score ranges from �1 to 1, where 1 indicates
a perfect match of two images, 0 would arise from two ran-
dom images, and �1 from inverse images.

To match a probe image with a reference image, the
probe is rotated across a range of angles ✓, and shifted
by du and dv pixels at each rotation. The optimal values
of ✓, du and dv are found when the CCF score is maxi-
mized. Since all images are typically captured under the
same magnification of the microscope, no scale variation
is present in the data. This brute force procedure of find-
ing optimal matching seems computationally intensive, but
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Figure 4. Example CCFmax searches for the best registration angle.
The NIST dataset example has a sharp peak at ✓ = �5 where the
probe and reference images best align. The OFL dataset is more
challenging, but still displays a clear peak at ✓ = 0.

fortunately there are techniques for an efficient implemen-
tation. First, similar to convolution, cross-correlation sat-
isfies F{I1 ? I2} = (F{I1})⇤ · F{I2}, where F denotes
the Fourier transform and an asterisk indicates the com-
plex conjugate. This means all possible translations can be
evaluated efficiently at once via the Fast Fourier Transform
(FFT). Note that in the FFT computation, both images must
be padded with zeros to avoid the affects of circular cross-
correlation. Second, we use a coarse-to-fine search for ✓

(see Fig. 4). Initially, we search half-resolution images with
✓ 2 ±180

� in 2.5

� increments. We then refine the search
using the full-resolution images at 0.5� increments within
±2.5

� from the coarse optimum.
This global approach is able to perfectly distinguish gen-

uine matches from false matches in a recent evaluation on
the 3D topological BF datasets [20]. We will demonstrate
its effectiveness on 2D reflectance microscopy images.

3.2.2 Congruent Matching Cells (CMC) Approach
One limitation of the global approach is that the entire BFI
region may not be useful for comparing two ballistic im-
ages. This is because the FP may strike at different posi-
tions or certain areas of the primer may experience more
deformation creating a stronger mark. Therefore, the CMC
method was proposed to improve the correlation accuracy
by first identifying invalid correlation areas and then dis-
carding them from further consideration [4].

Instead of producing a single CCF score, the CMC
method computes a number of valid matching cells as fol-
lows. The probe image is divided into a grid of 7 ⇥ 7

non-overlapping cells. Due to the ring-like shape of the
BFI region, many cells are immediately discarded because
of an insufficient number of BFI pixels. Each remaining
cell is then rotated and translated across the reference im-
age to identify its matching cell by maximizing the cross-
correlation function CCFmax. If CCFmax < TCCF, the cell is
discarded since no high correlation match is found, where
TCCF is a preset threshold. Finally, we select the largest
set of remaining cells whose variances of ✓, du and dv es-
timates are less than preset thresholds T✓, Tu, and Tv , re-
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spectively. The cardinality of this set is the CMC score.
Intuitively, if the two BFIs are from a genuine match

(i.e., a pair of cartridge cases originated from the same
firearm), there will be a large number of valid matching
cells. While for a false match, their estimated parameter
values CCFmax will be low, and even if cells find individual
matches in the reference image, their ✓, du and dv values
will not be consistent. NIST determined appropriate thresh-
olds by selecting values that best separate the known gen-
uine scores from known false scores.
3.3. Proposed Approach

We propose a learning-based approach to identify spe-
cific local parts of the BFI region that are most discrimina-
tive for matching. While a global approach may decrease
the genuine scores due to the inclusion of low-correlation
local regions in the score calculation, we also recognize a
number of limitations of the local approach, namely CMC.
First, CMC forces each cell to make equal contribution
to the similarity score via hard thresholds (TCCF, T✓, Tu,
Tv), despite that cells with high correlation should have a
stronger influence in computing the score. Second, the re-
quirement of sufficient data in a CMC cell arises due to the
ring-like BFI being broken into square cells. We apply a po-
lar transformation to the image to keep the cells within the
confines of the valid BFI. Third, there is no global regis-
tration of the images in CMC, and therefore, the same pair
may have different similarity scores under different initial
rotations since the cells will be in different relative posi-
tions. We desire a global registration and the resultant score
that is independent of the cartridge rotation by the examiner
under the microscope. Such a global registration is also cru-
cial for developing a learning-based approach.

3.3.1 Unrolled Image and Global Registration
As stated above, we seek to transform the images so that
rectangular cells have more valid BFI regions as well as
create a global registration among different image pairs.
To achieve both these goals, motivated by the classic iris
code [5], we generate an unrolled image by applying a po-
lar transformation. To convert a Cartesian BFI image I to a
polar BFI image P, we use the polar transformation,

P(r, ✓) = I(r cos(✓) + uc, r sin(✓) + vc), (2)

where (uc, vc) is the BFI region center. The center of the
reference image is simply the center of the annotated BFI
circle (circle fitted to the three annotated points). For the
probe image, we first register it to the reference through the
global correlation approach. Before converting it to polar
coordinates, we rotate it by the optimal ✓ value and trans-
late it by du and dv . The height of the unrolled image is
equal to the radius of the BFI and the width is equal to the
circumference. We call the polar image the unrolled image
since it unrolls the circular BFI into a rectangle.

,� ,�

3�

3�

Figure 5. The process of creating unrolled images. A probe I2 is
aligned to a reference I1 in Cartesian space. Both images are then
transformed into polar space P1 and P2, and the line connecting
the BF and FP centers on the reference is defined as ✓ = 0.

At this point, both the probe and reference images are
aligned with each other in the polar coordinates, but there
is no global registration between arbitrary pairs; a different
initial rotation of the reference image would produce a dif-
ferent unrolled image. To address this issue, we note that
the FPI is off center on the BFI. Typically the side with the
FPI has only a small strip of valid BFI while the other side
has a large swatch of valid BFI. We leverage this observa-
tion to globally align the reference and probe by circularly
shifting the reference to have the smallest usable part on
the left boundary, which makes the largest usable part in
the center of the unrolled image. The probe is shifted by
the same amount as the reference to maintain the alignment
within the pair. Fig. 5 presents a visual demonstration of the
unrolling and global registration.

3.3.2 GentleBoost-based Classifier Learning
Given the unrolled images of the reference and probe, dif-
ferent local cells may have different abilities to separate
genuine matches from false matches. Hence it is essential
to select local cells that are most discriminative in this two-
class classification. We use a boosting-based method since
it merges feature selection and classifier learning in a single
step. While different variants of boosting have been pro-
posed [11], we use the GentleBoost algorithm [7] for two
reasons. First, unlike the common AdaBoost [6], the weak
classifier in GentleBoost is a soft classifier with continu-
ous output. This addresses the issue of hard thresholding
in CMC. Second, GentleBoost is superior to other boosting
variants in object detection due to its robustness to noisy
data and resistance to outliers [10].

GentleBoost iteratively selects weak classifiers to form
a strong classifier using summation: F =

PM
m=1 fm, as

shown in Algorithm 1, where F (x) is the strong classi-
fier and fm(x),m = 1, ...,M are the M weak classifiers.
Given a ballistics database, the unrolled images of genuine
matches are the positive samples with labels yi = 1, and
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Algorithm 1: The GentleBoost-based matcher learning.

Input: Training data {Pi
1,P

i
2; i = 1, 2, ...,K} and their

corresponding class labels {yi; i = 1, 2, ...,K}.
Output: A strong classifier F (P1,P2).
1. Initialize weights wi = 1

K , and F (P1,P2) = 0.
2. for m = 1, 2, ...,M do

(a) Fit the regression function fm(P1,P2) by weighted
least-squares (LS) of yi to Pi

1,P
i
2:

fm(P1,P2) = argmin
r2R

✏(f), (3)

where ✏(f) =
PK

i=1 wi(yi � f(Pi
1,P

i
2))

2.
(b) Update F (P1,P2) = F (P1,P2) + fm(P1,P2).
(c) Update wi = wie

�yifm(Pi
1,P

i
2).

(d) Normalize the weights such that
PK

i=1 wi = 1.
end
3. Output the classifier F (P1,P2) =

PM
m=1 fm(P1,P2).

those corresponding to the false matches are negative sam-
ples with labels yi = �1. Since there are substantially more
negative than positive samples, we apply a horizontal shift
to the unrolled probe within ±2 pixels in 1 pixel increments,
i.e., one genuine match will create five positive samples.

The key in designing a boosted classifier is the set of
M weak classifiers. Given that the CCF has demonstrated
its effectiveness in prior work, we decide to use CCF to
construct our weak classifiers, defined as:

fm(P1,P2) =
2

⇡

atan(g(CCF(P1(rm),P2(rm), 0, 0)�tm)),

(4)
where tm is a two-class threshold, atan() function serves the
purpose of generating a continuous output within [�1, 1],
g is a constant that controls the smoothness of atan(), and
rm specifies the location and size of one local cell. Ba-
sically, this is a regression function that converts the CCF
score CCF(P1(rm),P2(rm), 0, 0) of a local cell rm to a
value within [�1, 1]. Since global correlation has been used
to register two images, we set du and dv to be zero for effi-
cient CCF computation. Note that the collection of all local
cells at various locations and of different sizes forms the hy-
pothesis space R. During Step 2(a), for each r within R,
we calculate the CCF scores for all positive and negative
pairs, estimate the optimal threshold tm by binary search,
and compute the weighted error ✏(f). The local cell r with
the minimum ✏(f) is chosen as the mth weak classifier. Af-
ter learning is completed, our classifier can be compactly
represented as a M ⇥ 5 matrix, {rm, tm}Mm=1.

4. Experiments
4.1. Datasets

Table 1 shows the dataset collected in the Weller study
of the NIST Ballistics Toolmark Database. It used a Ruger

P-series 9mm caliber pistol with 10 consecutively manufac-
tured slides, and images were captured via a Leica FS M
comparison microscope. Details about the gun and manu-
facturing process may be found in [20]. This dataset con-
sists of both 3D topographical maps as well as 2D imagery.
We use the 2D images since most forensic examiners do not
currently acquire 3D maps, and 2D image comparison is
more challenging than 3D maps. There are 5 test fires from
each slide; we use the side light images given their proven
performance for BF comparisons.

We also present a new operational forensic laboratory
(OFL) dataset collected to reflect the real-world practices
in a forensics laboratory. A Leica FS C comparison mi-
croscope was used, equipped with a Leica model DFC320
digital camera. OFL consists of BFI images of 2 shots from
73 Glock semiautomatic handguns in 9mm Luger, .357 SIG,
.40 S&W and .45 Auto caliber. Unlike the NIST dataset that
has 10 slides of the same handgun, OFL has a variety of dif-
ferent guns. While the different guns may appear to make
the matching task easier, the imaging conditions in OFL are
more typical of challenging conditions that a forensic exam-
iner may encounter. The BFI area of both NIST and OFL
datasets has a resolution of 1, 500⇥ 1, 500 pixels.

4.2. Experimental Setup
We evaluate four different approaches in this work: 1)

the global CCF approach outlined in Sec. 3.2.1, 2) the state-
of-the-art CMC approach, 3) the global CCF approach ap-
plied to the unrolled images, and 4) the proposed learning-
based approach. Due to the small number of available im-
ages in the two datasets, we use 50%-hold-out evaluation
for all experiments where we randomly select half of the
available guns for training while keeping the other half for
testing. The hold-out procedure was repeated five times.

The NIST dataset has been shown to achieve perfect
classification using both the CCF method on the 3D topo-
graphical maps, and the CMC method on both the 3D and
raw 2D images [4, 18]. We implemented both the CCF and
CMC methods and evaluated them on the 2D side light im-
ages. We use the same experimental parameters for CMC as
in [18]: TCCF = 0.25, T✓ = 3

�, and Tu = Tv = 150 µm. To
evaluate the results on the NIST dataset, which is known to
be separable, we show histograms of the genuine and false
scores. On each test set, there are 100 genuine matches and
500 false matches.

For the more challenging OFL dataset, we only run the
global CCF approach and the proposed approach, since we
find that the global CCF performs better than CMC and
takes substantially less time to evaluate. Because the OFL
dataset actually produces classification errors, we show the
performance using the Receiver Operating Characteristic
(ROC) curve, a plot of False Positive Rate (FPR) vs. the
True Positive Rate (TPR). On each test set, there are 72 gen-
uine matches and 1, 440 false matches.
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(a) Global CCF (b) CMC (c) Unrolled CCF (d) Proposed approach
Figure 6. Comparison of score histograms of four approaches on the NIST dataset, overlaid with fitted Gaussian distributions.

Table 2. Mean and s.d. of the expected errors on the NIST dataset.
Approach Mean S.d.
Global CCF 1.2e�4 1.3e�4

CMC 3.4e�2 1.7e�2

Unrolled CCF 1.7e�4 1.8e�4

Proposed approach 2.3e�6 2.8e�6

4.3. Results
NIST dataset Fig. 6 compares the results of the four ap-
proaches on the NIST dataset. Even though the NIST tech-
niques were developed for topographical data, they still
maintain perfect separation on the 2D images, but the sim-
ilarity scores for the genuine pairs are lower than the ones
reported on the 3D data. The proposed learning-based ap-
proach also achieves perfect classification. In order to quan-
tify the error, we fit Gaussian distributions to the score his-
tograms, and use the overlapping area of two distributions
as the expected errors of these approaches. With five hold-
out evaluations, the means and standard deviations of the
expected errors are reported in Table 2.

There are a few things to note about these results. First,
the unrolled CCF method performs nearly identical to the
global CCF method on the Cartesian images, which indi-
cates that the unrolling process does not substantially effect
the performance but gives us the benefit of alignment among
image pairs. Second, the CMC method appears to perform
the worst of any of the reported methods on the 2D images.
Third, the fact that NIST techniques achieve excellent re-
sults indicates we have a good-quality implementation of
pre-processing steps and NIST techniques. Fourth, despite
using a relatively small dataset, our proposed algorithm has
a substantial lower expected error compared to the NIST
techniques, which can also be observed from the wider sep-
aration of two histograms in Fig. 6 (d).
OFL dataset The OFL dataset contains real-world varia-
tions in ballistic images due to gun types and lighting con-
ditions. As such, we expect the performance to be worse on
OFL. Fig. 7 reports the ROC curves comparing the proposed
method with the global CCF method. The proposed method
performs better, especially at typical operating points of
low FPR. The performance comparison of OFL vs. NIST
datasets indicates that ballistic image matching on opera-
tional data is very challenging, and warrants future research.
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Figure 7. Results on OFL: (a) histogram of global CCF scores, (b)
histogram of scores from the proposed approach, and (c) compar-
ison in terms of ROC, based on five hold-out evaluations.

Figure 8. The same two OFL images with automatic alignment by
cross-correlation (left) and with manual alignment by a forensic
examiner (right). Each image is comprised of two images stitched
together along a vertical seam. The top selected cell from the pro-
posed approach is overlayed on the left.

Fig. 8 shows examples of aligned two OFL images.
We hypothesize that a learning-based method could

identify local regions of the BFI that are highly discrimi-
native. In Fig. 9 we overlay the selected cells onto sample
BFI images. The selected cells tend to avoid the FPI and
boundary of the BFI while concentrating on the valid por-
tion of the BFI with a variety of different size regions.
Boosting parameters There are two parameters that can be
set in the proposed method: the number of weak classifiers,
M and the weak classifier smoothness parameter, g. For
selecting M , we plot the expected error in classifying the
training samples in Fig. 10 and select M to avoid overfit-
ting. The performance on the NIST dataset saturates with
no negative impact and we select M = 100. But for OFL,
which has fewer genuine matches, we select a small num-
ber of weak classifiers, M = 15, since the performance on
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NIST% OFL%

Figure 9. Boosting-selected features/cells for NIST and OFL
datasets displayed on Cartesian and unrolled images.
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(a) NIST dataset (b) OFL dataset
Figure 10. Expected error per boosting iteration on two datasets.

the training set decreases with larger M . For g, we select a
value that produces the lowest expected error on the training
set, which is g = 5 for NIST, and g = 1 for OFL.

The potential rectangular cells are set to the full size of
the unrolled image, 1

2 size, 1
4 size, and 1

8 size placed with
an offset of 10 pixels from each other. There are a total of
7, 973 and 7, 788 potential features in the hypothesis spaces
of NIST and OFL datasets, respectively.
Computational cost All algorithms are implemented in
Matlab and run on a standard PC with an Intel i7-4770s
3.1GHz CPU. The time to pre-process each image is ⇠4s.
Comparing two images with the global CCF method takes
⇠7s. The CMC method takes the longest time at ⇠35s. The
proposed method requires alignment via the global CCF
method, but takes less than a second to extract features and
compute the similarity score, with a total time of ⇠8s.

5. Conclusions
We present a learning-based classifier for ballistic im-

age matching of breech face impressions. The proposed ap-
proach is compared against state-of-the-art methods on both
the NIST ballistics toolmark database and a newly collected
operational forensic lab (OFL) dataset. While promising
performances are observed on the controlled laboratory data
available from NIST, our results show that additional re-
search efforts are required for large-scale operational ballis-
tic imaging matching. Our research also highlights the need
for a large operational benchmark ballistic image database
to develop probabilistic models for ballistics matching to
address concerns about the “uncertainty in judgment”.
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[11] R. Meir and G. Rätsch. An introduction to boosting and leveraging.
S. Mendelson and A. Smola, Editors, Advanced Lectures on Machine
Learning, LNAI 2600. Springer, 2003.

[12] National Research Council. Ballistic Imaging. The National
Academies Press, Washington, DC, 2008.

[13] National Research Council. Strengthening Forensic Science in the
United States: A Path Forward. The National Academies Press,
Washington, DC, 2009.

[14] M. Planty and J. Truman. Firearm violence, 2993-2011. Technical
Report NCF 241730, U.S Department of Justice, May 2013.

[15] F. Riva and C. Champod. Automatic comparison and evaluation of
impressions left by a firearm on fired cartridge cases. Journal of
Forensic Sciences, 59(3):637–647, 2014.

[16] J.-F. Song. Proposed NIST ballistics identification system (NBIS)
based on 3D topography measurements on correlation cells. AFTE
Journal, 45(2):184–194, 2013.

[17] J.-F. Song and T. V. Vorburger. Proposed bullet signature compar-
isons using autocorrelation functions. In NCSL, Toronto, Canada,
July 2000.

[18] M. Tong, J. Song, W. Chu, and R. M. Thompson. Fired cartridge
case identification using optical images and the congruent matching
cells (CMC) method. Journal of Research of the National Institute
of Standards and Technology, 119:575–582, 2014.

[19] T. Vorburger, J. Yen, B. Bachrach, T. Renegar, J. Filliben, L. Ma,
H. Rhee, A. Zheng, J. Song, M. Riley, C. Foreman, and S. Ballou.
Surface topography analysis for a feasibility assessment of a national
ballistics imaging database. Technical Report 7362, NISTIR, 2007.

[20] T. Weller, A. Zheng, R. Thompson, and F. Tulleners. Confocal mi-
croscopy analysis of breech face marks on fired cartridge cases from
10 consecutively manufactured pistol slides. Journal of Forensic Sci-
ences, 57(4):912–917, 2012.

http://www.ultra-forensictechnology.com
http://www.nist.gov/forensics/ballisticsdb

	. Introduction
	. Background and Prior Work
	. Ballistic Image Matching Algorithms
	. Pre-Processing Pipeline
	. NIST Techniques for Ballistic Matching
	Global CCF Approach
	Congruent Matching Cells (CMC) Approach

	. Proposed Approach
	Unrolled Image and Global Registration
	GentleBoost-based Classifier Learning


	. Experiments
	. Datasets
	. Experimental Setup
	. Results

	. Conclusions

