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Abstract

Face alignment has witnessed substantial progress in the

last decade. One of the recent focuses has been align-

ing a dense 3D face shape to face images with large head

poses. The dominant technology used is based on the cas-

cade of regressors, e.g., CNNs, which has shown promis-

ing results. Nonetheless, the cascade of CNNs suffers from

several drawbacks, e.g., lack of end-to-end training, hand-

crafted features and slow training speed. To address these

issues, we propose a new layer, named visualization layer,

which can be integrated into the CNN architecture and en-

ables joint optimization with different loss functions. Exten-

sive evaluation of the proposed method on multiple datasets

demonstrates state-of-the-art accuracy, while reducing the

training time by more than half compared to the typical cas-

cade of CNNs. In addition, we compare across multiple

CNN architectures, all with the visualization layer, to fur-

ther demonstrate the advantage of its utilization.

1. Introduction

Face alignment, also known as face landmark detec-

tion, is an essential process for many facial analysis tasks,

such as face recognition [36], expression estimation [1] and

3D face reconstruction [20, 30]. During the last decade,

face alignment technologies have been substantially im-

proved [8–10, 32, 41]. One recent advancement in this area

is to tackle challenging cases with large face poses, e.g.,

profile views with ±90◦ yaw angles [18, 19, 23, 24, 47, 50].

The dominant technology for large-pose face alignment

(LPFA) utilizes a cascade of regressors which combines dif-

ferent types of regression designs [23, 49, 50] with feature

extraction methods [18]. At each stage of this procedure,

the target parameters, e.g., the 2D landmarks or the head

pose, as well as the 3D face shape, are refined by regress-
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Figure 1. For the purpose of learning an end-to-end face alignment

model, our novel visualization layer reconstructs the 3D face shape

(a) from the estimated parameters inside the CNN and synthesizes

a 2D image (b) via the surface normal vectors of visible vertexes.

ing an update of these parameters. Due to the proven power

of Convolutional Neural Network (CNN) in vision tasks,

it is also adopted as the regressor in this framework and

has achieved the state-of-the-art performance on face align-

ment [18, 23, 34, 50].

Despite the recent success, the cascade of CNNs, when

applied to LPFA, still suffers from the following drawbacks.

Lack of end-to-end training: It is a consensus that end-

to-end training is desired for CNN [6, 14]. However, in

the existing methods, the CNNs are typically trained in-

dependently at each cascade stage. Sometimes even mul-

tiple CNNs are applied independently at each stage. For

example, locations of different landmark sets are estimated

by various CNNs and combined via a separate fusing mod-

ule [33]. Therefore, these CNNs can not be jointly opti-

mized and might lead to a sub-optimal solution.

Hand-crafted feature extraction: Since the CNNs are

trained independently, feature extraction is required to uti-

lize the result of a previous CNN and provide input to the

current CNN. Simple feature extraction methods are used,

e.g., extracting patches based on 2D or 3D face shapes with-

out considering other factors including pose and expres-

sion [33, 45] . Normally, the cascade of CNNs is a collec-

tion of shallow CNNs where each one has less than five lay-

ers. Hence, this framework can not extract deep features by

building upon the extracted features of early-stage CNNs.

Slow training speed: Training a cascade of CNNs is
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usually time-consuming for two reasons. Firstly, the CNNs

are trained sequentially, one after another. Secondly, feature

extraction is required between two consecutive CNNs.

To address these issues, we introduce a novel layer, as

shown in Figure 1. Our CNN architecture consists of several

blocks, which are called visualization blocks. This architec-

ture can be considered as a cascade of shallow CNNs. The

new layer visualizes the alignment result of a previous visu-

alization block and utilizes it in a later visualization block.

It is designed based on several guidelines. Firstly, it is de-

rived from the surface normals of the underlying 3D face

model and encodes the relative pose between the face and

camera, partially inspired by the success of using surface

normals for 3D face recognition [25]. Secondly, the visual-

ization layer is differentiable, which allows the gradient to

be computed analytically and enables end-to-end training.

Lastly, a mask is utilized to differentiate between pixels in

the middle and contour areas of a face.

Benefiting from the design of the visualization layer, our

method has the following advantages and contributions:

⋄ The proposed method allows a block in the CNN to

utilize the extracted features from previous blocks and ex-

tract deeper features. Therefore, extraction of hand-crafted

features is no longer necessary.

⋄ The visualization layer is differentiable, allowing for

backpropagation of an error from a later block to an earlier

one. To the best of our knowledge, this is the first method

for large-pose face alignment, that utilizes only one single

CNN and allows end-to-end training.

⋄ The proposed method converges faster during the train-

ing phase compared to the cascade of CNNs. Therefore, the

training time is dramatically reduced.

.
2. Prior Work

In this section, we review related work in three topics:

cascade of regressors for face alignment, convolutional re-

current neural network and visualization in deep learning.

Cascade of Regressors for Face Alignment Cascade of

Regressors is a classic approach in not only conventional

face alignment [44, 51], but also the large-pose face align-

ment [13, 17, 39, 49]. To handle large poses, many ap-

proaches go beyond 2D landmarks and also estimate 3D

landmarks and 3D face shapes [18, 50]. Zhu et al. [49] use

a set of local regressors to estimate the 2D shape update,

and fuse their results with another regressor. The occlusion-

invariant approach of RCPR [5] is applicable to large poses

since self-occlusion is one type of occlusions. An iterative

probabilistic method is utilized in [11, 15] for registering

3D shape to the pre-computed 2D landmarks. Tulyakov et

al. [35] also use a cascade of regressors to estimate 3D land-

mark updates directly from a single image. Some even use

The source code of the proposed method with the trained model are

released here.

two regressors at each cascade stage. Wu et al. [39] use

one regressor to estimate the 2D shape update and the other

to estimate the visibility of each landmark. Similarly, Liu

et al. [23] employ one regressor for 2D shape update and

the other uses the 2D shape to estimate the 3D face shape.

Among methods with cascade of regressors, CNN is a

popular choice of regressor due to its strong learning ability.

These methods typically extract hand-crafted features be-

tween consecutive regressors. TCDCN [46] uses one CNN

to estimate five landmarks, with yaw angles within ±60◦.

A cascade of stacked autoencoder (SAE) progressively es-

timates 2D landmark updates from extracted patches [45].

Similarly, cascades of CNNs with global or local patches

are combined at each stage, and their results are fused via

averaging [33, 48]. The methods in [18, 19, 50] combine

cascade of CNNs with 3D feature extraction to estimate the

dense 3D face shape. All aforementioned methods lack the

ability to end-to-end train the network, which is our novel

contribution to large-pose face alignment.

Convolutional Recurrent Neural Network (CRNN)

Methods based on CRNNs [34, 37, 40] are the first at-

tempts to combine cascade of regressors with joint opti-

mization, for aligning mostly frontal faces. Their convo-

lutional part extracts features from the whole image [40] or

from the patches at the landmark locations [34]. The recur-

rent part facilitates the joint optimization by sharing infor-

mation among all regressors. The main differences between

the proposed method and CRNNs are: 1) existing CRNN

methods are designed for near-frontal face alignment, while

ours is for LPFA; 2) the CRNN methods share the same

CNN at all stages, while our CNN of each block is different

which might be more suitable for estimating the coarse-to-

fine mappings during the course of alignment; 3) due to our

new differentiable visualization layer, our method has one

additional flow of the gradient back-propagation (note the

two blue arrows between consectutive blocks in Figure 2).

Visualization in Deep Learning Visualization techniques

have been used in deep learning to assist in making a rel-

ative comparison among the input data and focusing on

the region of interest. One category of these methods ex-

ploits the deconvolutional and upsampling layers to either

expand response maps [22, 28] or represent estimated pa-

rameters [43]. Alternatively, various types of feature maps,

e.g., heatmaps and Z-Buffering, can represent the current

estimation of landmarks and parameters. In [4, 26, 38], 2D

landmark heatmaps represent the landmarks’ locations. [4]

proposes a two step large pose alignment based on heatmaps

to make more precise estimations. The heatmaps suffer

from three drawbacks: 1) lack of the capability to repre-

sent objects in details; 2) requirement of one heatmap per

landmark due to its weak representation power. 3) they can-

not estimate visibility of landmarks. The Z-Buffer rendered

using the estimated 3D face is also used to convey the re-

http://cvlab.cse.msu.edu/project-pifa.html
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Figure 2. The proposed CNN architecture. We use green, orange, and purple to represent the visualization layer, convolutional layer, and

fully connected layer, respectively. Please refer to Figure 3 for the details of the visualization block.

sults of a previous CNN to the next one [50]. However,

the Z-Buffer representation is not differentiable, preventing

end-to-end training. In contrast, our visualization layer is

differentiable and encodes the face geometry details via sur-

face normals. It guides the CNN to focus on the face area

that incorporates both the pose and expression information.

3. Proposed Method

Given a single face image with an arbitrary pose, our

goal is to estimate the 2D landmarks with their visibility

labels by fitting a 3D face model. Towards this end, we pro-

pose a CNN architecture with end-to-end training for model

fitting, as shown in Figure 2. In this section, we will first de-

scribe the underlying 3D face model used in this work, fol-

lowed by our CNN architecture and the visualization layer.

3.1. 3D and 2D Face Shapes

We use the 3D Morphable Model (3DMM) to represent

the 3D shape of a face Sp as a linear combination of mean

shape S0, identity bases SI and expression bases SE :

Sp = S0 +

NI
∑

k

pIkSI
k +

NE
∑

k

pEk SE
k . (1)

We use vector p = [pI , pE ] to indicate the 3D shape param-

eters, where pI = [pI0, · · · , p
I
NI

] are the identity parameters

and pE = [pE0 , · · · , p
E
NE

] are the expression parameters. We

use the Basel 3D face model [27], which has 199 bases, as

our identity bases and the face wearhouse model [7] with 29
bases as our expression bases. Each 3D face shape consists

of a set of Q 3D vertexes:

Sp =
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The 2D face shapes are the projection of 3D shapes. In

this work, we use the weak perspective projection model

with 6 degrees of freedoms, i.e., one for scale, three for

rotation angles and two for translations, which projects the

3D face shape Sp onto 2D images to obtain the 2D shape U:

U = f(P) = M

(

Sp(:, b)
1

)

, (3)

where

M =

[

m1 m2 m3 m4

m5 m6 m7 m8

]

, (4)

and

U =

(

xt
1 xt

2 . . . xt
N

yt1 yt2 . . . ytN

)

. (5)

Here U is a set of N 2D landmarks, M is the camera pro-

jection matrix. With misuse of notation, we define the tar-

get parameters P = {M, p}. The N -dim vector b includes

3D vertex indexes which are semantically corresponding

to 2D landmarks. We denote m1 = [m1 m2 m3] and

m2 = [m5 m6 m7] as the first two rows of the scaled rota-

tion component, while m4 and m8 are the translations.

Equation 3 establishs the relationship, or equivalency,

between 2D landmarks U and P, i.e., 3D shape parameters

p and the camera projection matrix M. Given that almost all

the training images for face alignment have only 2D labels,

i.e., U, we preform a data augmentation step similar to [18]

to compute their corresponding P. Given an input image,

our goal is to estimate the parameter P, based on which the

2D landmarks and their visibilities can be naturally derived.

3.2. Proposed CNN Architecture

Our CNN architecture resembles the cascade of CNNs,

while each “shallow CNN” is defined as a visualization

block. Inside each block, a visualization layer based on

the latest parameter estimation serves as a bridge between

consecutive blocks. This design enables us to address the

drawbacks of typical cascade of CNNs in Section 1. We

now describe the visualization block and CNN architecture,

and dive into the details of the visualization layer in Sec-

tion 3.3.

Visualization Block Figure 3 shows the structure of our

visualization block. The visualization layer generates a fea-

ture map based on the latest parameter P (details in Sec-

tion 3.3). Each convolutional layer is followed by a batch

normalization (BN) layer and a ReLU layer. It extracts

deeper features based on the features provided by the pre-

vious visualization block and the visualization layer out-

put. Between the two fully connected layers, the first one

is followed by a ReLU layer and a dropout layer, while the
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Figure 3. A visualization block consists of a visualization layer,

two convolutional layers and two fully connected layers.

second one simultaneously estimates the update of M and

p, denoted ∆P. The outputs of the visualization block are

deeper features and the new estimation of the parameters

(∆P + P). As shown in Figure 3, the top part of the visual-

ization block focuses on learning deeper features, while the

bottom part utilizes those features to estimate the param-

eters in a ResNet-like structure [12]. During the backward

pass of the training phase, the visualization block backprop-

agates the loss through both of its inputs to adjust the con-

volutional and the fully connected layers in previous blocks.

This allows the block to extract better features for the next

block and improve the overall parameter estimation.

CNN Architecture The proposed architecture consists

of several connected visualization blocks as shown in Fig-

ure 2. The inputs include an image and an initial estimation

of the parameter P0. The outputs is the final estimation of

the parameter. Due to the joint optimization of all visualiza-

tion blocks through backpropagation, the proposed archi-

tecture is able to converge with substantially fewer epochs

during training, compared to the typical cascade of CNNs.

Loss Functions Two types of loss functions are em-

ployed in our CNN architecture. The first one is an Eu-

clidean loss between the estimation and the target of the pa-

rameter update, with each parameter weighted separately:

Ei
P = (∆Pi −∆P̄

i
)TW(∆Pi −∆P̄

i
), (6)

where Ei
P is the loss, ∆Pi is the estimation and ∆P̄

i
is the

target (or ground truth) at the i-th visualization block. The

diagonal matrix W contains the weights. For each element

of the shape parameter p, its weight is the inverse of the

standard deviation that was obtained from the data used in

3DMM training. To compensate the relative scale among

the parameters of M, we compute the ratio r between the

average of scaled rotation parameters and average of trans-

lation parameters in the training data. We set the weights of

the scaled rotation parameters of M to 1
r

and the weights of

the translation of M to 1. The second type of loss function

is the Euclidean loss on the resultant 2D landmarks:

Ei
S = ‖f(Pi +∆Pi)− Ū‖2, (7)

where Ū is the ground truth 2D landmarks, and Pi is the in-

put parameter to the i-th block, i.e., the output of the i−1-th

block. f(· ) computes 2D landmark locations using the cur-

rently updated parameters via Equation 3. For backpropa-

gation of this loss function to the parameter ∆P, we use the

chain rule to compute the gradient.

Figure 4. The frontal and side views of the mask a that has positive

values in the middle and negative values in the contour area.

∂Ei
S

∂∆Pi
=

∂Ei
S

∂f

∂f

∂Pi
.

For the first three visualization blocks, the Euclidean loss

on the parameter updates (Equation 6) is used, while the Eu-

clidean loss on 2D landmarks (Equation 7) is applied to the

last three blocks. The first three blocks estimate parame-

ters to roughly align 3D shape to the face image and the last

three blocks leverage the good initialization to estimate the

parameters and the 2D landmark locations more precisely.

3.3. Visualization Layer

Several visualization techniques have been explored for

facial analysis. In particular, Z-Buffering, which is widely

used in prior works [2, 3], is a simple and fast 2D repre-

sentation of the 3D shape. However, this representation is

not differentiable. In contrast, our visualization is based on

surface normals of the 3D face, which describes surface’s

orientation in a local neighbourhoods. It has been success-

fully utilized for different facial analysis tasks, e.g., 3D face

reconstruction [30] and 3D face recognition [25].

In this work, we use the z coordinate of surface normals

of each vertex, transformed with the pose. It is an indicator

of “frontability” of a vertex, i.e., the amount that the surface

normal is pointing towards the camera. This quantity is used

to assign an intensity value at its projected 2D location to

construct the visualization image. The frontability measure

g, a Q dimensional vector, can be computed as,

g = max

(

0,
(m1 × m2)

‖m1‖‖m2‖
N0

)

, (8)

where × is the cross product, and ‖.‖ denotes the L2 norm.

The 3×Q matrix N0 is the surface normal vectors of a 3D

face shape. To avoid the high computational cost of calcu-

lating the surface normals after each shape update, we ap-

proximate N0 with the surface normals of the mean 3D face.

Note that both the face shape and pose are still continuously

updated across visualization blocks, and are used to deter-

mine the projected 2D location. Hence, this approximation

would only slightly affect the intensity values. To trans-

form the surface normal based on the pose, we apply the

estimation of the scaled rotation matrix (m1 and m2) to the

surface normals computed from the mean face. The value

is then truncated with the lower bound of 0 (Equation 8).



The pixel intensity of a visualized image V(u, v) is com-

puted as the weighted average of the frontability measures

within a local neighbourhood:

V(u, v) =

∑

q∈D(u,v) g(q)a(q)w(u, v, xt
q, y

t
q)

∑

q∈D(u,v) w(u, v, x
t
q, y

t
q)

, (9)

where D(u, v) is the set of indexes of vertexes whose 2D

projected locations are within the local neighborhood of the

pixel (u, v). (xt
q, y

t
q) is the 2D projected location of q-th

3D vertex. The weight w is the distance metric between the

pixel (u, v) and the projected location (xt
q, y

t
q),

w(u, v, xt
q, y

t
q) = exp

(

−
(u− xt

q)
2 + (v − ytq)

2

2σ2

)

. (10)

The Q-dim vector a is a mask with positive values for ver-

texes in the middle area of the face and negative values for

vertexes around the contour area of the face:

a(q) = exp

(

−
(xn − xp

q)
2 + (yn − ypq )

2 + (zn − zpq )
2

2σ2
n

)

,

(11)

where (xn, yn, zn) is the vertex coordinate of the nose tip.

a is pre-computed and normalized for zero-mean and unit

standard deviation. The mask is utilized to discriminate be-

tween the middle and contour areas of the face. A visual-

ization of the mask is provided in Figure 4.

Since the human face is a 3D object, visualizing it at an

arbitrary view angle requires the estimation of the visibility

of each 3D vertex. To avoid the computationally expensive

visibility test via rendering, we adopt two strategies for ap-

proximation. Firstly, we prune the vertexes whose frontabil-

ity measures g equal 0, i.e., the vertexes pointing against the

camera. Secondly, if multiple vertexes projects to a same

image pixel, we keep only the one with the smallest depth

values. An illustration is provided in Figure 5.

Backpropagation To allow backpropagation of the loss

functions through the visualization layers, we compute the

derivative of V with respect to the elements of the param-

eters M and p. Firstly, we compute the partial derivatives,
∂g
∂mk

,
∂w(u,v,xt

i,y
t
i)

∂mk
and

∂w(u,v,xt
i,y

t
i)

∂pj
. Then the derivatives

of ∂V
∂mk

and ∂V
∂pj

can be computed based on Equation. 9.

4. Experimental Results

We evaluate our method on two challenging LPFA

datasets, AFLW and AFW, both qualitatively and quanti-

tatively, as well as the near-frontal face dataset of 300W.

Furthermore, we conduct experiments on different CNN ar-

chitectures to validate our visualization layer design.

Implementation details Our implementation is built upon

the Caffe toolbox [16]. In all of the experiments, we use

six visualization blocks (Nv) with two convolutional layers

(Nc) and fully connected layers in each block (Figure 3).

Details of the network structure are provided in Table 1.

Normal vectors with

negative z

Normal vector with

positive z and smaller depth

Figure 5. An example with four vertexes projected to a same pixel.

Two of them have negative values in z component of their normals

(red arrows). Between the other two with positive values, the one

with the smaller depth (closer to the image plane) is selected.

Instead of using the sequentially pretrain strategy [42],

we perform the joint end-to-end training from scratch. To

better estimate the parameter update in each block and to

increase the effectiveness when using visualization blocks,

we set the weight of the loss function in the first visualiza-

tion block to 1 and linearly increase the weights by one for

each later block. This strategy helps the CNN to pay more

attention to the landmark loss used in later blocks. Back-

propagation of loss functions in the last blocks would have

more impact in the first block, and the last block can adopt

itself more quickly to the changes in the first block.

In the training phase, we set the weight decay to 0.005,

the momentum to 0.99, the initial learning rate to 1e−6. Be-

sides, we decrease the learning rate to 5e−6 and 1e−7 after

20 and 29 epochs. In total, the training phase is continued

for 33 epochs for all experiments.

4.1. Quantitative Evaluations on AFLW and AFW

The AFLW dataset [21] is very challenging with large-

pose face images (±90◦ yaw). We use the subset with 3, 901
training images and 1, 299 testing images released by [18].

All face images in this subset are labeled with 34 landmarks

and a bounding box. The AFW dataset [51] contains 205
images with 468 faces. Each image is labeled with at most

6 landmarks with visibility labels, as well as a bounding

box. AFW is used only for testing in our experiments. The

bounding boxes in both datasets are used as the initilization

for our algorithm, as well as the baselines. We crop the

region inside the bounding box and normalize it to 114 ×
114. Due to the memory constraint of GPUs, we have a

pooling layer in the first visualization block after the first

convolutional layer to decrease the size of feature maps to

half. The input to the subsequent visualization blocks is

Table 1. The number and size of convolutional filters in each visu-

alization block. For all blocks, the two fully connected layers have

the same length of 800 and 236.

Block # 1 2 3 4 5, 6
Conv. 12 (5×5) 20 (3×3) 28 (3×3) 36 (3×3) 40 (3×3)

layers 16 (5×5) 24 (3×3) 32 (3×3) 40 (3×3) 40 (3×3)



Table 2. NME (%) of four methods on the AFLW dataset.

Proposed method LPFA [18] PIFA RCPR

4.45 4.72 8.04 6.26

Table 3. NME (%) of the proposed method at each visualization

block on AFLW dataset. The initial NME is 25.8%.

Block # 1 2 3 4 5 6
NME 9.26 6.77 5.51 4.98 4.60 4.45

of 57 × 57. To augment the training data, we generate 20
different variations for each training image by adding noise

to the location, width and height of the bounding boxes.

For quantitative evaluations, we use two conventional

metrics. The first one is Mean Average Pixel Error

(MAPE) [44], which is the average of the pixel errors for

the visible landmarks. The other one is Normalized Mean

Error (NME), i.e., the average of the normalized estimation

error of visible landmarks. The normalization factor is the

square root of the face bounding box size [17], instead of

the eye-to-eye distance in the frontal-view face alignment.

We compare our method with several state-of-the-art

LFPA approaches. On AFLW, we compare with LPFA [18],

PIFA [17] and RCPR [5] with the NME metric. Table 2

shows that our proposed method achieves a higher accu-

racy than the alternatives. The heatmap-based method,

named CALE [4], reported an NME of 2.96%, but suffers

from several disadvantages as discussed in Section 2. To

demonstrate the capabilities of each visualization block, the

NME computed using the estimated P after each block is

shown in Table 3. If a higher alignment speed is desir-

able, it is possible to skip the last two visualization blocks

with a reasonable NME. On the AFW dataset, comparisons

are conducted with LPFA [18], PIFA [17], CDM [44] and

TSPM [51] with the MAPE metric. The results in Table 4

again show the superiority of the proposed method.

Some examples of alignment results of the proposed

method on AFLW and AFW datasets are shown in Figure 9.

Three examples of visualization layer output at each visual-

ization block are shown in Figure 10.

4.2. Evaluation on 300W dataset

While our main goal is LPFA, we also evaluate on the

most widely used near frontal 300W dataset [31]. 300W

containes 3, 148 training and 689 testing images, which are

divided into common and challenging sets with 554 and 135
images, respectively. Table 5 shows the NME (normalized

by the interocular distance) of the evaluated methods. The

most relevant method is 3DDFA [50], which also estimates

M and p. Our method outperforms it on both the common

and challenging sets. Methods that do not employ shape

constraints, e.g., via 3DMM, generally have higher freedom

Table 4. MAPE of five methods on the AFW dataset.
Proposed method LPFA [18] PIFA CDM TSPM

6.27 7.43 8.61 9.13 11.09

Table 5. The NME of different methods on 300W dataset.
Method Common Challenging Full

ESR [8] 5.28 17.00 7.58
RCPR [5] 6.18 17.26 8.35
SDM [41] 5.57 15.40 7.50
LBF [29] 4.95 11.98 6.32

CFSS [50] 4.73 9.98 5.76
RCFA [37] 4.03 9.85 5.32
RAR [40] 4.12 8.35 4.94

3DDFA [50] 6.15 10.59 7.01
3DDFA+SDM 5.53 9.56 6.31

Proposed method 5.43 9.88 6.30

and could achieve slightly better accuracy on frontal face

cases. Nonetheless, they are typically less robust in more

challenging cases. Another comparison is with MDM [34]

via the failure rate using a threshold of 0.08. The fail-

ure rates are 16.83% (ours) versus 6.80% (MDM) with 68
landmarks, and 8.99% (ours) versus 4.20% (MDM) with 51
landmarks.

4.3. Analysis of the Visualization Layer

We perform four sets of experiments to study the prop-

erties of the visualization layer and network architectures.

Influence of visualization layers To analyze the influence

of the visualization layer in the testing phase, we add 5%
noise to the fully connected layer parameters of each vi-

sualization block, and compute the alignment error on the

AFLW test set. The NMEs are [4.46, 4.53, 4.60, 4.66, 4.80,

5.16] when each block is modified seperately. This analy-

sis shows that the visualized images have more influence on

the later blocks, since imprecise parameters of early blocks

could be compensated by later blocks. In another experi-

ment, we train the network without any visualization layer.

The final NME on AFLW is 7.18% which shows the impor-

tance of visualization layers in guiding the network training.

Advantage of deeper features We train three CNN archi-

tectures shown in Figure 6 on AFLW. The inputs of the vi-

sualization block in the first architecture are the input im-

ages I, feature maps F and the visualization image V. The

inputs of the second and the third architectures are {F,V}
and {I,V}, respectively. The NME of each architecture is
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Figure 6. Architectures of three CNNs with different inputs.



Table 6. The NME (%) of three architectures with different inputs

(I: Input image, V: Visualization, F: Feature maps).

Architecture a Architecture b Architecture c

(I,F,V) (F,V) (I,V)
4.45 4.48 5.06

shown in Table 6. While the first one performs the best, the

substantial lower performance of the third one demonstrates

the importance of deeper features learned across blocks.

At the first convolutional layer of each visualization

block, we compute the average of the filter weights, across

both the kernel size and the number of maps. The averages

for these three types of input features are shown in Figure 7.

As observed, the weights decrease across blocks, leading to

a more precise estimation of small-scale parameter updates.

Considering the number of filters in Table 1, the total im-

pact of feature maps are higher than the other two inputs in

all blocks. This again shows the importance of deeper fea-

tures in guiding the network to estimate parameters. Fur-

thermore, the average of the visualization filter is higher

than that of the input image filter, demonstrating stronger

influence of the proposed visualization during training.

Advantage of using masks To show the advantage of using

the mask in the visualization layer, we conduct an experi-

ment with different masks. Specifically, we define another

mask for comparison as shown in Figure 8. It has five pos-

itive areas, i.e., the eyes, nose tip and two lip corners. The

values are normalized to zero-mean and unit standard devi-

ation. Compared to the original mask in Fig. 4, this mask is

more complicated and conveys more information about the

informative facial areas to the network. Moreover, to show

the necessity of using the mask, we also test using visual-

ization layers without any mask. The NMEs of the trained

networks with different masks are shown in Table 7. Com-

parison between the first and the third columns shows the

benefit of using the mask , by differentiating the middle and

contour areas of the face. By comparing the first and second

columns, we can see that utilizing more complicated mask

does not further improve the result, indicating the original

mask provides sufficient information for its purpose.

Different numbers of blocks and layers Given the total

number of 12 convolutional layers in our network, we can

partition them into visualization blocks of various sizes. To

compare their performance, we train two additional CNNs.

The first one consists of 4 visualization blocks, with 3 con-
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Figure 7. The average of filter weights for input image, visualiza-

tion and feature maps in three architectures of Figure 6. The y-axis

and x-axis show the average and the block index, respectively.

Figure 8. Mask 2, a different designed mask with five positive ar-

eas on the eyes, top of the nose and sides of the lip.

Table 7. NME (%) when different masks are used.

Mask 1 Mask 2 No Mask

4.45 4.49 5.31

Table 8. NME (%) when using different numbers of visualization

blocks (Nv) and convolutional layers (Nc).

Nv = 6 , Nc = 2 Nv = 4 , Nc = 3 Nv = 3 , Nc = 4

4.45 4.61 4.83

volutional layers in each. The other comes with 3 block and

4 convolutional layers per block. Hence, all three architec-

tures have 12 convolutional layers in total. The NME of

these architectures are shown in Table 8. Similar to [5], it

shows that the number of regressors is important for face

alignment and we can potentially achieve a higher accuracy

by increasing the number of visualization blocks.

4.4. Time complexity

Compared to the cascade of CNNs, one of the main ad-

vantages of end-to-end training a single CNN is the reduced

training time. The proposed method needs 33 epochs which

takes around 2.5 days. With the same training and testing

data sets, [18] requires 70 epochs for each CNN. With a total

of six CNNs, it needs around 7 days. Similarly, the method

in [50] needs around 12 days to train three CNNs, each one

with 20 epochs, despite using different training data. Com-

pared to [18], our method reduces the training time by more

than half. The testing speed of proposed method is 4.3 FPS

on a Titan X GPU. It is much faster than the 0.6 FPS speed

of [18] and is similar to the 4 FPS speed of [40].

5. Conclusions

We propose a large-pose face alignment method with

end-to-end training in a single CNN. The key is a differ-

entiable visualization layer, which is integrated to the net-

work and enables joint optimization by backpropagating the

error from a later visualization blocks to early ones. It al-

lows the visualization block to utilize the extracted features

from previous blocks and extract deeper features, without

extracting hand-crafted features. In addition, the proposed

method converges faster during the training phase compared

to the cascade of CNNs. Through extensive experiments,

we demonstrate the superior results of the proposed method

over the state-of-the-art approaches.



Figure 9. Results of alignment on AFLW and AFW datasets, green landmarks show the estimated locations of visible landmarks and

red landmarks show estimated locations of invisible landmarks. First row: provided bounding box by AFLW with initial locations of

landmarks, Second: estimated 3D dense shapes, Third: estimated landmarks, Fourth to sixth: estimated landmarks for AFLW, Seventh:

estimated landmarks for AFW.

initialization Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

Figure 10. Three examples of outputs of visualization layer at each visualization block. The first row shows that the proposed method

recovers the expression of the face gracefully, the third row shows the visualizations of a face with a more challenging pose.
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