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Abstract—The rapid emergence of airborne platforms and imaging sensors are enabling new forms of aerial surveillance due to their
unprecedented advantages in scale, mobility, deployment and covert observation capabilities. This paper provides a comprehensive
overview of human-centric aerial surveillance tasks from a computer vision and pattern recognition perspective. It aims to provide
readers with an in-depth systematic review and technical analysis of the current state of aerial surveillance tasks using drones, UAVs
and other airborne platforms. The main object of interest is humans, where single or multiple subjects are to be detected, identified,
tracked, re-identified and have their behavior analyzed. More specifically, for each of these four tasks, we first discuss unique
challenges in performing these tasks in an aerial setting compared to a ground-based setting. We then review and analyze the aerial
datasets publicly available for each task, and delve deep into the approaches in the aerial literature and investigate how they presently
address the aerial challenges. We conclude the paper with discussion on the missing gaps and open research questions to inform
future research avenues.

Index Terms—Aerial surveillance, Mass surveillance, Persistent surveillance, Eyes in the sky, Wide-Area motion imagery (WAMI)

F

1 INTRODUCTION

THIS paper presents the first ever review of the state-of-
the-art research of the rapidly evolving area of aerial

surveillance, covering the unique challenges in performing
the human centric tasks of detection, tracking, recognition,
person re-detection and action recognition on aerial data.
Large volumes of human centric aerial surveillance data are
being collected in several major initiatives. For example in
2011, the Gorgon Stare project, led by the Pentagon in the
United States, rolled out a MQ-9 drone equipped with an
advanced Multi-Spectral Targeting System called ARGUS
to Iraq and Afghanistan. With as many as 368 individual
cameras, Gorgon Stare could capture 1.8 billion pixels per
frame, enough imaging power to spot an object six inches
wide from an altitude of 25,000 feet [93]. An entire city
of size 10 × 10 km2 could be continuously observed at a
resolution sufficient to monitor any person or vehicle in
the city. This all-seeing system enabled persistent and mass
surveillance of a wide area 24/7 without awareness of the
citizens in the city.

In 2019, a Stratollite - a giant stratospheric balloon,
orbited continuously for 45 days in the stratosphere at an
altitude of 65,000 feet to monitor North America [104].
Equipped with hi-tech radars and multi-spectral sensors,
these solar-powered balloons can hover over a small area of
interest, taking photos with a quality of five centimeters per
pixel and beaming the footage down to the ground station.
This resolution is many times superior than commercial
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satellites and is sufficient to detect a mobile phone in a
person’s hand and track all individual vehicles day and
night in an entire city for weeks, even months [104].

In the last four consecutive years, four "Vision meets
drones" challenges in major academic conferences (ECCV
2018, ICCV 2019, ECCV 2020, ICCV 2021) were organized
targeting aerial object detection, tracking and crowd count-
ing from drone-based footage. The challenges were based
on a large-scale aerial dataset, VisDrone, with more than
400 aerial videos formed by 265K frames and 2.6M bound-
ing boxes or points of targets of frequent interests, such
as pedestrians, cars, and bicycles [187]. Captured by the
civilian DJI Mavic drones flying at an altitude of a few
hundred feet in urban areas, the VisDrone footage shows the
potential and feasibility of large data collection for analysis.

From the all-seeing eyes of the Gorgon Stare and the
months-lasting Stratollites, to the off-the-shelf DJI drones,
as illustrated in Fig. 1, the uptake of aerial surveillance
has significantly broadened across military, industry and
academic sectors. The academic research related to aerial
surveillance has seen a huge boom. According to Scopus,
there are more than 78K UAV/drone/aerial papers pub-
lished 1, 38K surveillance papers published 2 and 1.3K
UAV/drone/aerial surveillance papers published 3 in the
last six years as illustrated in Fig. 2.

Powered by recent breakthroughs in computer vision
and deep learning, the implementation of the basic aerial
surveillance tasks of detection, tracking, identification, and
action recognition, on aerial data are emerging as an impor-
tant and timely research area to be investigated. This paper
dives deep into aerial surveillance tasks from a computer
vision and pattern recognition perspective. Compared with

1. Query string: TITLE-ABS (uav OR drone OR aerial)
2. Query string: TITLE-ABS (surveillance) AND TITLE-ABS (detection

OR tracking OR identification OR action OR event)
3. Query string: TITLE-ABS (uav OR drone OR aerial) AND TITLE-

ABS (surveillance) AND TITLE-ABS (detection OR tracking OR identi-
fication OR action OR event)
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Figure 1: The rise of aerial surveillance. (1) The first column shows the military all-seeing Gorgon Stare [93] deployed in
Iraq, using a MQ-9 drone (costs $17M USD) flying at an altitude of 25K feet, able to capture simultaneously an area of
10 × 10 km, with a 1.8 GB sensor at a Ground Sampling Distance (GSD) of 15 cm. (2) The second column is Stratollite, a
giant solar-powered balloon flying at an altitude of 65K feet [104], which can hover for months, able to detect a mobile
phone in a person’s hand at a GSD of 5 cm. (3) The third column is the off-the-shelf DJI Mavic 2 (costs $3K USD) flying at
an altitude of 1K feet, able to capture simultaneously an area of 1× 1 km, at a GSD of 20 cm [187].

Figure 2: According to Scopus, there are more than 1,300
papers published with one aerial keyword, i.e. UAV or
Drone or Aerial, and one surveillance keyword, i.e. detection
or tracking or identification or action or event in the title and
abstract in the last six years.

ground-based surveillance, aerial surveillance provides un-
precedented scope in surveillance scale, mobility and covert
observation. However, it also poses distinct challenges
for the computer vision and deep learning community
to address including extreme object viewing angles, low-
resolution of objects and non-linear object distribution with
diverse backgrounds from moving cameras. In surveillance,
it is of great interest to detect and track humans, identify

and re-identify humans from a camera or across multiple
cameras, understand their behaviors and interactions, as
well as search for humans with specific characteristics. From
a computer vision and machine learning perspective, these
tasks are categorized as detection, identification (biometrics,
soft-biometrics, and re-ID), action recognition and crowd
analysis. While these tasks have been actively studied in
generic ground-based images, the challenges with aerial
images are daunting but targeted research to address these
challenges are rapidly emerging in the aerial domain. This
paper will investigate each task from 4 angles:

• (1) aerial surveillance challenges: discuss unique chal-
lenges for performing the task in the aerial domain, and
the amount of performance drop when ground-based
approaches shift to the aerial domain,

• (2) aerial surveillance datasets: analyze the aerial datasets
publicly available for the task,

• (3) approaches to solve aerial surveillance challenges: delve
deep in the state-of-the-art approaches in the aerial
literature and how they address the challenges unique
to aerial data,

• (4) techniques to improve aerial surveillance tasks: further
investigate techniques to improve the performance of
the aerial task.

The rest of the paper is structured as follows. Section § 2
identifies the advantages and challenges of aerial surveil-
lance, and the statistics of public datasets and academic
papers published. Sections § 3 - § 6 review the state-of-the-
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art research of the four central aerial surveillance tasks:
detection, tracking, identification, and action recognition.
Section § 7 summarizes the state of aerial surveillance, open
questions and future outlook. Section § 8 concludes the
paper.

2 AERIAL SURVEILLANCE

Aerial surveillance is the task of employing airborne plat-
forms and imaging sensors mounted on them to detect,
track, identify, and monitor behavior and activities of a per-
son or a group of persons [80], [93], [187]. Aerial surveillance
is also known as Wide Area Motion Imagery (WAMI) or
mass surveillance since it is capable of monitoring a wide
range area, such as an entire city with a large population
persistently and unblinkingly 24/7. A wide range of air-
borne platforms are available with diverse characteristics in
flying ranges and altitudes, endurance, speed, manoeuvra-
bility, payload and vulnerabilities as summarized in Table 7
in Appendix. These airborne platforms are deployed with
a wide range of sensors. In this paper, we consider mainly
techniques for analyzing data acquired by RGB imaging sen-
sors, which capture data with spatial details to be analyzed
by computer vision and deep learning. Imaging sensors are
categorized by their spectrum as summarized in Table 8 in
Appendix.

To limit the scope of this paper, we only focus on the
human-centered security-related surveillance tasks. Aerial
surveillance empowers a wide range of human-centric ap-
plications, including border patrol [52], search and rescue
[15], [121], maritime surveillance [128], protest monitoring,
drug trafficking monitoring [145], military IED tracking [93]
and crime fighting [160]. Due to these burgeoning applica-
tions of aerial surveillance, corporate aerial surveillance is
rapidly growing. Along with this growth, there is a growing
privacy threat. Aerial surveillance of individuals as well as
mass surveillance can now be conducted at low cost using
the drone technology. This poses a serious threat to privacy
since there are not well-established privacy protections to
prevent widespread and indiscriminate aerial surveillance
[125]. In this review we will not be covering the privacy
issues of aerial surveillance which is a very important topic.
Since aerial surveillance has immense potential to provide
safety and security to the public, it is important to ensure
that the regulations that are imposed to protect privacy do
not hamper the development of the area of aerial surveil-
lance.

2.1 Advantages and challenges

Aerial surveillance can be employed independently or
complementary with ground-based surveillance. Compared
with standard ground-based surveillance, there are four
distinct advantages to observation from the air:

• Scale: high resolution imaging sensors mounted on air-
borne platforms enable covering a wide area of observa-
tion from the air at multiple resolutions (depending on
the altitude of the aerial platform) with less occlusion
[80], [173].

• Mobility: airborne platforms such as UAVs and drones
can move rapidly to a target. Once at the destination,

they can circle or hover and adjust positions over the
target destination for optimum viewing [53], [128].

• Deployment: airborne platforms can be deployed at any
time (day and night), for any terrain (land and sea), and
launched from a long distance [52], [127], [128].

• Covert observation: airborne platforms can adjust the
flying altitudes to either quietly hide themselves, stay
out of visibility reach or explicitly reveal their presence
[33], [93].

However aerial surveillance opens up a plethora of chal-
lenges that must be addressed. Aerial surveillance not only
inherits all challenges of unconstrained and outdoor surveil-
lance, but also exhibits additional unique challenges to be
addressed. From a data perspective, there are seven key
challenges to contend with:

• Small resolutions: objects may appear extremely small in
aerial data due to the high flying altitude [27], [173].

• Multiple scales: multiple instances of the same class, e.g.
person, can appear drastically different in sizes and
scales [92], [148].

• Extreme views: objects can appear in overhead views, i.e.
top views and angle views, which rarely exist in generic
object detection [30], [111].

• Moving cameras: the view of objects may continuously
change due to the moving of the camera mounted on
the airborne platform [8], [80]. This also adds additional
challenge of motion blur and camera stabilization [16],
[146].

• Non-uniform distribution: in many cases, objects are dis-
tributed non-uniformly: clustered with high density, e.g.
in a busy urban village [72], [163]; or cluttered with low
density in a wide area, e.g. in a search and rescue task
[158], [166].

• Illumination: non-linear local strong and/or low illumi-
nation and lighting due to a wide area coverage [187].

• Noise: the scene may be obstructed, e.g. cloud, fog, haze
and rain [69], [158]; The wind may add more challenge
in video stabilization for sharp footage.

2.2 State of aerial surveillance
We provide the first overview of the state of aerial surveil-
lance tasks via analyzing public datasets available for four
key tasks, i.e. detection, tracking, identification and action
recognition, and by summarizing the public interest in this
area as illustrated in Fig. 3. While this does not reflect
efforts by military and defense in these areas, which are
usually protected or classified, the state of the public dataset
collections is expected to represent a driving factor for the
academic research community towards new aerial surveil-
lance tasks.

• Publication distribution: Fig. 3.a shows that a majority of
aerial surveillance papers that are published in open
literature focus on detection and tracking, while the
number of papers on identification is limited. This
would be due to the fact that compared to other tasks,
aerial human identification requires high quality vi-
sual details of subjects from expensive and purchase-
regulated cameras/sensors, which may not be available
or too costly to acquire for public use.

• Dataset distribution: Fig. 3.b shows that a majority of
public datasets are for research in detection and action
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Figure 3: Overview of the state of aerial surveillance tasks. a) The distribution of academic papers across four aerial
surveillance tasks: detection, tracking, identification and action recognition; b) The distribution of public aerial datasets
across four aerial surveillance tasks: detection, tracking, identification and action recognition. Solid columns denote datasets
in the visible spectrum, stripe columns denote datasets in other spectrum; c) The statistics of aerial datasets for aerial
surveillance tasks. The size of circles denotes the scale of datasets (i.e. #images, the horizontal axis denotes UAV flying
altitudes, and the vertical axis denotes the state-of-the-art accuracies on these datasets.

recognition, while the number of datasets for identi-
fication is limited. Recent datasets have gone beyond
visible cameras, capturing footage from other spectral
bands such as thermal, night vision infrared and depth.

• Dataset characteristics: Fig. 3.c shows that: (i) Flying
altitudes: all of the datasets are captured while flying
drones or UAVs at most 120 meters, which is the
regulated maximum altitude for civilian drones; (ii)
Scale: datasets for aerial human detection have large
scales, while others usually have small scales; (iii) State-
of-the-art accuracies: aerial group/event recognition
tasks have already achieved high accuracies in available
databases, while face recognition struggles to perform
well in the aerial setting.

The following sections (Sections § 3 - § 6) dive deep into the
four central aerial surveillance tasks.

3 AERIAL HUMAN DETECTION

Object detection aims at detecting and localizing instances
of visual objects of a certain class, i.e. human in our surveil-
lance setting, in digital images and videos. Akin to ground-
based surveillance, aerial object detection also plays a fun-
damental role as a foundation for high-level tasks in aerial
surveillance. However, due to the unique characteristics of
aerial imaging settings, aerial object detection exhibits new
challenges to be addressed.

In this section, we first review generic ground-based
object detection landscape to form a foundation for the
object detection discussion. Then, we focus on discussing
the aerial human detection in terms of challenges, datasets,
approaches, and future outlook.

3.1 Challenges for aerial human detection
Despite the great success of the generic object detection
methods trained on ground-to-ground images, a huge per-
formance drop is observed when they are directly applied
to images captured by UAVs [36], [171]. Examples of the
performance drop of state-of-the-art detectors are illustrated
in Fig. 5. The Cascade R-CNN [17] drops the performance
by 50% in the aerial VisDrone [187] dataset compared with
the ground-based COCO and Pascal VOC datasets [36]. The

Faster R-CNN [117] also drops the performance by 30%
in the aerial TinyPersons [173] dataset compared with the
ground-based COCO and Pascal VOC datasets [171].

The unsatisfactory performance is owing to the domain
shift when compared to ground-based data caused by the
high flying altitude and the camera characteristics. Aerial
human detection shares all seven challenges discussed in
Section § 2.1. Examples of these challenges are illustrated in
Fig. 4.

3.2 Datasets for aerial human detection
The number of aerial datasets has quickly increased in the
last few years, partially due to the affordable availability
of off-the-shelf drones such as DJI. We summarize public
datasets and their statistics in Table 1. Table 1 shows a wide
range of public datasets where two notable large-scale ones
are VisDrone [187] and TinyPersons 2020 [173].

• VisDrone 2018-2021 [187]: The VisDrone team has com-
piled a dedicated large-scale drone benchmark and
organized four consecutive challenges in object detec-
tion in ECCV/ICCV from 2018 to 2021. It consists of
400 video clips formed by 265K frames and 10K static
images with 2.6M bounding boxes, captured by various
drone-mounted cameras, covering a wide range of as-
pects including location (14 cities), environment (urban
and country), objects (pedestrian, vehicles, bicycles,
etc.), and density (sparse and crowded scenes).

• TinyPersons 2020 [173]: this dataset is behind two “Tiny
Object Detection” challenges in ICCV 2019 and ECCV
2020. The unique characteristic of this dataset is the tiny
resolution of humans. A majority of human instances
appear as small as [20, 32] pixels and as tiny as [2, 20]
pixels. In total, there are 72K objects with bounding
boxes that have been manually annotated.

There are a wide range of other datasets with specific
characteristics targeting various applications.

• Context: there is a diverse range of contexts, from urban
villages [15], [100], [187], rural [80], [187], university
campuses [118], internet [173], forest [12], to agricul-
tural areas [75].

• Flying altitudes: there is a diverse range of flying alti-
tudes, from a very close distance of less than 10m [71],
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Figure 4: Challenges for aerial object detection: (i) low resolution, (ii) a wide range of scales, (iii) arbitrary viewing angles,
(iv) non-uniformly distributed, (v) illumination. Images from the TinyPersons [173] and VisDrone [187] datasets.

Figure 5: State-of-the-art generic detectors drop the perfor-
mance when shifting to the aerial data. The figure compares
the detection accuracy (AP50) of Cascade R-CNN [17] and
Faster R-CNN [117] on two ground-based (COCO and VOC)
and two aerial (VisDrone and TinyPersons) datasets.

to a close range 10-50m [100], [118], to a middle range
50-120m [75], [80], to above the recreational limit >120m
[5], [173].

Multimodal: many datasets also provide multi-modal data
from other on-board sensors such as GPS, time, altitude,
IMU, velocity, weather conditions. The AU-AIR [14] labeled
each frame with time, GPS, IMU, altitude, velocities of
the UAV. [158] annotated and released altitude, viewing
angle, and weather for the VisDrone dataset. These auxiliary
details can be used to improve detection [158].

Task-specific: many aerial human detection datasets are
aimed for specific tasks. The HERIDAL [15], [90] and SARD
[120] datasets were collected to support the search and
rescue mission with drones. The AgriDrone [75] dataset was
collected in an agricultural context for rural applications.

Beyond visible: sensors from other spectrum have also been
employed to complement visible cameras. Infrared sensors
complement visible cameras in such adverse conditions as
night time or low light. Both the BIRDAI [12] dataset and
UAV-Human [80] dataset provides thermal-infrared images
of humans for detection. Depth sensors complement visible
cameras in 3D object details and can be found in the recent
UAV-Human [80] dataset.

Competitions: the task of aerial human detection has at-
tracted great attention from the computer vision commu-

Table 1: Public datasets for aerial human detection. ‘Spec.’,
‘#Con’, ‘#Vid’,‘#ID’, and ‘#Box’ respectively represent for
the imaging spectrum (V: Visible, T: Thermal-infrared, Z:
Depth), the context where data was collected, the number of
videos, identities and bounding boxes.

No. Dataset Spec. Con. #Vid. #ID #Box.

1 VisDrone [187] V Urban 400 50 2M

2 TinyPerson [173] V Internet 2 632 1,264

3 AU-AIR [14] V Real 8 192 1,011

4 MiniDrone [13] V Carpark 21 100 200

5 HERIDAL [15] V Urban 2 632 1,264

6 StanfordDrone [118] V Campus 2 450 900

7 SARD [120] V Urban 6 491 38,271

8 UAV123 [100] V Urban 123 632 1,264

9 UAVDT [169] V Urban 2 502 3,012

10 PDT-ATV [115] V Urban 2 1,467 14,000

11 AgriDrone [75] V Agri 2 412 8,240

12 BIRDSAI [12] VT Forest 2 119 34K

13 UAV-Human [80] VTZ Various 64K 1,144 41K

nity. Multiple challenges have been organized in top-tier
conferences. The challenges “Vision meets drones” [36] in-
cluding detection, tracking and crowd counting have been
organized in the last four consecutive years in ECCV 2018,
ICCV 2019, ECCV 2020 and ICCV 2021 using the VisDrone
dataset. The TinyPerson challenges [171], organized in ICCV
2019 and ECCV 2020, focus on the persons from a very long
distance with a wide view using the TinyPerson dataset.

Details of these datasets can be found in Appendix § B.

3.3 Approaches for aerial human detection
Network architecture is the key consideration for all deep-
learning-based approaches. The aerial human detection
community has adopted two-stage network architecture
[50], [66], [180], one-stage network architecture [50], [162],
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[170], anchor-free architecture [20], [135] and network en-
sembles [36], [36].
Two-stage networks
Due to its performance, two-stage detectors such as Faster
R-CNN [117] are popular in the literature [30], [50], [58], [77].
In aerial object detection, a strong multi-scale representation
is crucial due to the variance of object sizes and resolutions,
which reflects the popularity of the FPN [84] backbone in
the literature [50], [66], [180]. The multi-scale challenge also
makes multi-stage detectors well-suitable for aerial object
detection. Many recent approaches [2], [148], [175] achieved
good performance with Cascade R-CNN [17]. In fact, many
entries, including the winning and runner-up entries, of
the VisDrone detection challenges combined Cascade R-
CNN [17] with other networks to achieve high detection
performance [36]. Similarly, two of top-three detectors in the
TinyPersons challenge employed Cascade R-CNN [171].
One-stage networks
One-stage networks are fast and less computationally inten-
sive than their multi-stage counterparts, hence they have
also been employed in many aerial object detection ap-
proaches. RetinaNet [85] is among the most popular one-
stage networks for aerial object detection by [50], [162],
[170]. EfficientDet [134] has also been employed in the aerial
setting by [69], [92]. Real-time detectors such as YOLO and
its variants [11] are also a popular one-stage network for
aerial object detection by [30], [114]. Pelee [151], a real-time
object detection system on mobile devices, has also been
utilized in aerial object detection by [142].
Anchor-free
In aerial images where object instances vary drastically in
resolution and size in a single image, finding good prior
anchor sizes is not feasible. LaLonde et al. [72] also showed
that it is easier to locate extremely small objects with points
instead of anchors, hence many approaches have shifted to
using anchor-free network designs. CenterNet [39] with a
Hourglass backbone [101] has been a popular choice such
as [51], [153]. [31] took advantages of FCOS [136], [137].
Tang et al. [135] employed a CornerNet design [73]. Zhang
et al. [175] employed a FreeAnchor design [181]. Chen et al.
[20] also designed a point based detector called RRNet and
observed that point-based detectors usually outperform all
anchor-based detectors in the VisDrone test set.
Network ensemble
Each detector may have different strengths and weaknesses.
While the multi-stage detectors tend to produce more false
negatives, which means that multi-stage detectors fail to
detect some objects, single-stage detectors generally propose
more bounding boxes with less quality [2], [188]. Hence,
combining them may predict more bounding boxes than
multi-stage detectors and the quality of the single-stage de-
tector predictions may be enhanced by the multi-stage one.
Albaba et al. [2] showed that combining a multi-stage detec-
tor, i.e. Cascade R-CNN [17], and a single-stage detector, i.e.
CenterNet [39], yields higher accuracy than individual de-
tectors. The ensemble strategy has been widely employed in
practice since it is effective to improve the accuracy of object
detection. For example, the winner of the VisDrone object
detection challenge 2020 [187], DPNetV3 [36], ensembles a
few powerful backbones such as HRNet-W40 [149], Res2Net

[45], Balanced Feature Pyramid Network [107] and Cascade
R-CNN [17]. The second-ranked detector also uses different
combinations of multiple models (i.e. Cascade R-CNN [17],
HRNet [149], and ATSS [176]) to fuse the detection results.

3.4 Techniques to solve aerial detection challenges

The distinct aerial challenges discussed in Section § 3.1 arise
in a large number of domains, across which an effective
aerial detection model has to stay robust.

3.4.1 Low resolution and scale variance

The most challenging factor in aerial object detection is
the low resolution or small size of objects due to the high
flying altitude. A human may appear as tiny as a few
pixels in an image. For example, the size of humans in the
TinyPerson dataset [173] ranges [2, 32], in practice [2, 20] is
considered as tiny and [20, 32] is considered as small. In the
VisDrone dataset, human sizes only ranges from 0.00014% to
5.59% and a mean of 0.044% and the human objects occupy
only three pixels in images within a frame resolution of
1, 916 × 1, 078 pixels [187]. The scale of object resolutions
also varies largely from 101 to 103 pixels not just within
the dataset, but also within a single image [20]. There are
three key approaches to deal with small object detection in
aerial data: (i) improve feature maps for small objects [86],
[138], (ii) incorporate context information of small objects
[82], [97], and (iii) data augmentation [36].

3.4.2 Multi-scale detection

Multi-scale detection is commonly used in aerial object
detection due to the dominance of small objects and the
co-presence of object instances with a wide range of scales.
Similar to generic multi-scale object detection, many aerial
object detectors [58], [83], [148], [180] employ FPN [84] and
its variants. New techniques have also been proposed to
improve the fusion between feature maps. Gong et al. [50]
introduced a fusion factor to weigh the aggregation between
adjacent layers. Gong et al. [51] also proposed an adaptive
feature selection scheme to aggregate feature maps. Wang et
al. [148] proposed to refine multi-scale features by increasing
the receptive field size for high-level semantic features.
Differently, Yang et al. proposed a sequential approach to
employ local high-resolution features for small objects in
their QueryDet [162]. Liu et al. proposed to combine both
feature pyramid and image pyramid to improve the aggre-
gated features.

3.4.3 Viewing angle

Extreme views due to the high altitude of cameras, birds-eye
views, and highly angled views can make objects appear
very differently from popular ground-based data. Objects,
i.e. human, in aerial images may only have a top view and
could be arbitrary rotated [165]. If the training data contains
these novel views and rotations, most networks can learn
to cope with these large variations. However, this requires
a very large scale dataset to cover all possible variations.
Data augmentation [36], [171] and generative models such
as GANs [22] can be used to generate extra data to deal with
this challenge during training.
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Table 2: Winning entries of the VisDrone-DET2020 aerial
object detection challenge (AP - Average Precision) [36].

Method AP(%) AP50(%) AP75(%)
DPNetV3 37.37 62.05 39.10
SMPNet 35.98 59.53 37.41
DBNet 35.73 59.63 36.92
ECascade RCNN 34.09 56.77 35.30
FPAFS CenterNet 32.34 56.46 32.39
DOHR RetinaNet 21.68 44.59 18.73

3.4.4 Non-uniform distribution
The aerial community has departed from the uniform crop-
ping strategy [114], [142] by learning density-specific re-
gions to perform detection in parallel with detection on
the original image. Li et al. [77] designed a multi-column
CNN [182] to predict a density map and utilized a sliding
window on the density map to generate proposal regions for
cropping. Zhang et al. [174] designed a Difficult Region Esti-
mation Network to estimate the regions that contain difficult
targets and utilized a sliding window on the difficulty map
to generate proposal regions for cropping. Yang et al. [163]
designed a Cluster Proposal Network (CPNet) and Tang et
al. [135] designed a coarse network (CPEN) to predict cluster
chips which have similar object scales.

3.5 Techniques to improve aerial human detection

Context modeling: While feature pyramid networks have
the capacity to aggregate multi-scale features to deal with
the small and tiny object instances in aerial data, context
information can provide strong cues on the presence of
humans [97]. DBNet [36], which ranked the third place
in the VisDrone challenge, added a global context block
to improve detection. Contextual information can also be
captured by dilated convolution [159].
Auxiliary meta-data: Wu et al. [158] proposed to incorpo-
rate UAV-specific nuisance annotations which are freely
available as meta-data in aerial data. For example, for
UAVDT [169] and VisDrones [187], three nuisance annota-
tions (altitude, weather, and view angle) are used simul-
taneously with object classes to train the representation
network by a combining a object detection loss and a
nuisance prediction loss. Kiefer et al. [69] proposed a multi-
domain strategy to leverage those nuisance annotations.
The multi-domain strategy improves representation, which
subsequently boosts detection accuracy on both datasets.

3.6 Insights from the competitions

VisDrone challenge: results from the VisDrone object detec-
tion challenge organized and reported in ECCV 2020 [36],
as presented in Table 2, provide two major insights:

• The winning entry, DPNetV3, of the challenge achieved
an AP50 of 62.05% [36]. This huge increase in per-
formance compared to the generic detectors such as
Cascade R-CNN (16.09%) and approach the accuracy
level in the ground-based dataset MSCOCO.

• High-performing entries mainly focus on either (i) di-
rectly dealing with aerial challenges, or (ii) combining
powers via a network ensemble and data augmenta-
tion. For example, DPNetV3 combines Cascade R-CNN
with HRNet, Res2Net, FPN and Cascade R-CNN [36].

3.7 Aerial human detection beyond visible

Despite the benefits of performing human detection in spec-
trum other than visible such as 24h all weather scenarios
(i.e. fog), very few studies have been conducted regarding
this topic. Bondi et al. showed that Faster-RCNN and YOLO
only achieved an accuracy of 18.1% and 10.4% respectively
on the BIRDSAI [12] dataset. Haider et al. [55] proposed an
convolutional autoencoder architecture to map the human
heat signature in the input thermal image to the spatial
density maps. Portman et al. [115] and Ma et al. [88] showed
handcrafted approaches would struggle to deal with aerial
thermal human detection due to a large number of varia-
tions. Schedl et al. showed that aerial thermal person detec-
tion under occlusion conditions can be notably improved
by combining multi-perspective images before classification
[121]. Using a synthetic aperture imaging technique, they
achieve this with a precision and recall of 96% and 93%,
respectively on their own dataset.

4 AERIAL HUMAN TRACKING

Object tracking, aiming to estimate the location and scale
of an object (i.e. pedestrian in our case) in a video with
an initial bounding box given in the first frame, is a key
step in video analysis. Object tracking is the process of
estimating the trajectory of an object in a sequence and
consists of four components, i.e. object initialization, appear-
ance model, motion prediction and object positioning. To
this objective, numerous approaches have been proposed
by tackling the following questions: how to model the
objects’ motion, appearance and shape? which image feature
is suitable for tracking? which prior information could be
leveraged? The answers to these questions heavily depend
on the scenario in which the tracking is performed. For
instance, there are many differences between aerial object
tracking technology and standard ground object tracking
technology due to unique or additional challenges in aerial
surveillance settings.

4.1 Challenges for aerial human tracking

Section § 2.1 and Fig. 4 detailed the potential challenges in
the aerial-based imagery comparing to the ground-based
ones. However, there still exists some unique or additional
challenges for aerial human tracking. Examples of the per-
formance drop of state-of-the-art trackers are illustrated in
Fig. 6.

• Blurred imagery: Targets for which the image blurred
due to the shaking of the UAV fuselage, obstacle avoid-
ance or long imaging distance.

• Background clutter: The background around the target
has similar appearances as the target, i.e. the building
shadows.

• Severe occlusion: The tracked objects may be occluded
for a long time, and even disappear for several frames.

• Fast-moving targets: Targets may exhibit fast movement
in the image plane.

• Illumination variation: The illumination of the target
changes significantly across frames.



IEEE TRANSACTIONS 8

Table 3: Public datasets for aerial human tracking. ‘Spec.’,
‘#Con.’, ‘#Vid’,‘#ID’, and ‘#Box.’ respectively represent for
the imaging spectrum (V: Visible, T: Thermal-infrared, Z:
Depth), the context where data was collected, the number of
videos, identities and bounding boxes.

No. Dataset Spec. Con. #Vid. #ID #Box.

1 VisDrone [187] V Urban 400 50 2M

2 UAV123 [100] V Internet 123 632 1,264

3 Campus [118] V Real 8 192 11K

4 DTB70 [13] V Youtube 70 100 200

5 UAVDark135 [76] V Urban 2 632 1,264

6 BIRDSAI [12] VT Forest 2 119 34K

Figure 6: State-of-the-art generic tracking drop the perfor-
mance when shifting to the aerial data. The figure compares
the area-under-the-curve (AUC) score of ECO [25], DiMP [9]
and DROL [184] on one ground-based (DTB-2015 [157]) and
two aerial (UAV123 [100] and VisDrone [187]) datasets.

4.2 Datasets for aerial human tracking

To date, there is still a limited availability of annotated
datasets specific to UAVs where human trackers can be
rigorously evaluated or trained for precision and robustness
in aerial scenarios. Some drone-captured datasets do not
contain either pedestrians or annotations for pedestrians,
such as UAVDT dataset [37]. We thus do not list them here.

We summarize public datasets and their statistics in
Table 3. There are two notable large-scale datasets: VisDrone
[187] and UAV123 [100].

• VisDrone 2018-2021: The VisDrone team has compiled a
dedicated large-scale drone benchmark and organized
challenges for tracking, i.e. VisDrone-SOT2018 [156]
and VisDrone-SOT2019 [38]. The VisDrone-SOT2018
consists of 132 videos with 106K frames. Compared
with VisDrone-SOT2018, VisDrone-SOT2019 introduces
35 new sequences. To further increase the diversity
of videos and assess the performance of trackers in
the wild, VisDrone-SOT2020 [42] conducts extensive
evaluation of more tracking algorithms using the same
dataset in VisDrone-SOT2019. VisDrone2021 further in-
creases the dataset size to 400 videos with more diverse
scenarios.

• UAV123 2021: this dataset [100] contains 123 fully an-
notated HD sequences over 110K frames taken from
UAV platforms. Each video has 12 attribute categories.
A video may have a variety of attributes by the shoot-
ing conditions. The captured targets include pedestrian,
vehicles, boats, groups and etc. The video resolution is
between 720p and 4K.

Beyond visible: datasets captured at spectrum other than
visible have also been collected. BIRDSAI [12] was collected
by a thermal camera mounted on drones. UAVDark 135
[76] targets aerial tracking at night at various scenes such
as crossings, t-junctions, roads, and highways.

Details of these datasets can be found in Appendix § C.

4.3 Approaches for aerial human tracking

As mentioned earlier, aerial tracking presents its own chal-
lenges compared to generic tracking. In aerial imagery,
the target appearance changes severely. However, most of
prevailing aerial trackers are adopted from generic tracking
techniques. We review the representative approaches based
on the following two main streams: discriminative correla-
tion filter (DCF)-based and deep-learning-based.

Discriminative correlation filter (DCF)-based trackers
Due to the simplicity and efficiency of the models, DCF-
based trackers are widely used for object tracking in aerial
videos. Their main advantage is that they can generate
plenty of cyclic shift candidates and learn filters in the
frequency domain efficiently [65], [81]. Wang et al. [152] de-
veloped a stability measurement metric based on the peak-
to-sidelobe ratio, which makes the DCF-based aerial tracker
more robust to complicated appearance variations. Huang et
al. [62] proposed an aberrance repressed correlation filter,
which is capable of suppressing aberrances that is caused
by other background noise introduced by conventional DCF
and appearance changes of the tracked objects. He et al. [57]
introduced a unified tri-attention framework to leverage
multi-level visual information, including contextual, spatio-
temporal and dimension attention to improve UAV tracking
robustness and efficiency. Ye et al. [167] proposed a novel
tracking framework based on a multi-regularized corre-
lation filter, which leads to favorable adaption to object
appearance variations and enhancement of discriminability.
Zhang et al. [178] exploited a two-stage scheme that com-
bines a detection-based network (IoU-Net) with DCF-based
tracker for object tracking in aerial videos.

Deep-learning-based trackers
Even though deep-learning-based trackers have gained
tremendous success in ground-view videos, they find it hard
to cope with the nuances of aerial videos. The main reason
is lack of large-scale well-labeled training datasets and view-
invariant appearance model for fast-moving targets [129]. To
address these challenges, CRAC [129] introduced a GAN-
based tracker to model contextual relation and transfer the
relations from ground-view to the aerial-view videos while
retaining the discriminative features. C2FT [179] presented
a coarse-to-fine reinforcement learning architecture to ad-
dress the aspect ratio variation of targets in aerial tracking.
COMET [91] introduced a context-aware IoU-guided tracker
that exploits a multitask two-stream network and an offline
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reference proposal generation strategy to improve the per-
formance of aerial-view trackers.

4.4 Techniques to solve aerial tracking challenges
4.4.1 Blurred imagery
Environmental factors and equipment jitter lead to target
blur. Deblurring techniques could be used to mitigate this
effect. For example, [116] constructs a nonlinear blurred
core with multiple moving components. A blind deconvo-
lution technique that used a piecewise linear model was in-
troduced to estimate the unknown kernels, which provides
an efficient solution for deblurring motion blurred images.

4.4.2 Small targets
Tracking small targets (i.e. human in our case) involves
major difficulties comprising the lack of sufficient target
information to distinguish them from the background and a
large number of possible locations where the subject many
appear. Extracting complementary features by employing
additional information such as the context leads to more
robust feature representations for small objects. The work
of [91] introduces a context-aware IoU-guided tracker that
fully exploits target-related information by multi-scale fea-
ture learning and attention modules.

4.4.3 Occluded or fast-moving targets
Handling occluded or fast-moving targets is of crucial
importance in several applications of aerial tracking. The
typical solution is to determine the changes in the aspect
ratio since targets encounter with fast motion or occlusion
often cause aspect ratio variation [78].

4.5 Techniques to improve aerial human tracking

Integration of tracking and detection: In a long aerial video,
the targets may frequently leave and re-enter the view (full
occlusion). A promising scheme to address this challenges
is to incorporate a detection process into tracking for re-
detecting the tracked targets [186].
Motion modeling: Motion information is crucial for distin-
guishing tracked targets from clutter background. Motion
(including camera and target motion) modeling [164] is thus
necessary in the aerial tracking.
Domain adaptation: GANs have been exploited in the context
of unsupervised domain adaptation [144]. To alleviate the
lack of large-scale well-labeled human videos in aerial track-
ing, one may consider to transfer the data or feature with
diverse variations from ground-view to aerial-view via do-
main adaptation techniques. For instance, [129] proposes a
robust tracker with a dual GAN learning mechanism, which
can model contextual relation and transfer the ground-view
features to the aerial-view ones.

4.6 Insights from the competitions
We review the state-of-the-art aerial tracking methods based
on their superior performances on VisDrone single object
tracking 2020 challenge. Based on the observation, there are
several potential directions that warrant future research.

• Data augmentation: Data augmentation is an essential
part in network training with limited training data. The

augmentation operators for aerial tracking methods
include: resale, horizontal flop, rotation, shift, image
contrast by Gamma correction and Laplacian operator.

• Searching region: Since the fast-moving and occlusion
often occur in aerial setting, the tracking would benefit
from a large search region.

• Spatio-temporal context: the spatio-temporal context in-
formation takes an important role for improving the
robustness of the trackers. The trackers based on RNN
or 3D-CNN, which leverages the spatio-temporal in-
formation, are more effective in coping with the target
appearance variations across frames.

4.7 Aerial human tracking beyond visible
As near-infrared (NIR) and thermal infrared (TIR) sensors
become more affordable in aerial image acquisition, there
are increasing interests in tracking human through 24h all
weather scenarios (i.e. fog). There are obvious advantages
in NIR and TIR imagery, such as low sensitivities to il-
lumination variations and good capabilities for nightime
and bad weather. In addition, different sensory modalities
can complement each other in developing a more robust
multi-modality tracking framework (e.g. visible + infrared).
However, the challenges of background clutter, small target
size and occlusion still remain in infrared tracking. Besides,
public datasets for infrared aerial tracking, not surprisingly,
are very scarce. Thus, few studies [18], [89] have been
conducted regarding this topic.

5 AERIAL HUMAN IDENTIFICATION

Beyond detection and tracking, recognizing identity of the
object, i.e. human, is of paramount importance to aerial
surveillance. To identify humans, biological biometric traits,
e.g. face, periocular, iris, fingerprint, or behavioral biometric
traits, e.g. gait, keystroke, voice, signature, cognitive, have
been investigated. Aerial human identification is emerging
quickly as an important area of research as evidenced by
the recent call (in 2021) for Biometric Recognition and Iden-
tification at Altitude and Range (BRIAR) from The Intel-
ligence Advanced Research Projects Activity (IARPA) [63].
The BRIAR program aims to identify or recognize individ-
uals at long-range (e.g. 300+ meters), through atmospheric
turbulence, or from elevated and/or aerial sensor platforms
(e.g. > 20o sensor view angle from watch towers or UAV).
However, due to the unique characteristics of aerial footage,
human identification from aerial footage is very challenging,
even for humans [10], [43].

This section reviews face and gait recognition, and per-
son re-identification in the aerial surveillance setting.

5.1 Aerial Face Recognition
Aerial face recognition has sparked enormous interest in
recent years, from both positive and negative perspectives.
The prospect that police or army could use drones equipped
with facial recognition technology to monitor and recognize
the identity of each individual in a protest has raised rad-
ical concerns about privacy [53]. While facial recognition
technology of military and polices is usually kept secret, a
multitude of commercial, federal and academic efforts have
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Figure 7: State-of-the-art generic face recognizers drop the
performance significantly when shifting to the aerial data.
The figure compares the accuracy of VGGFace [108] and
FaceNet [122] on two ground-based (LFW and YTF) and two
aerial (DroneSURF (Active and Passive) and IJB-S) datasets.

been made to progress in this area. For example, FA6 Drone
claimed to identify a face from a distance of 800 meters
at a flying altitude of 100 meters [41]. Another example is
the IARPA initiated benchmark called IJB–S (IARPA Janus
Surveillance Video Benchmark) with surveillance videos
captured by cameras mounted on a small fixed-wing UAV
[67]. The recent Face In Video Evaluation (FIVE) challenge
organized by US National Institute of Science and Technol-
ogy (NIST) has identification challenges from facial images
captured from drones and other aerial vehicles.

5.1.1 Challenges for aerial face recognition
Despite the great success of the generic face recognition
methods trained and tested on ground images, an enor-
mous performance drop is observed when they are directly
applied to images captured by UAVs [40], [68]. Compared
with other tasks, aerial face recognition may exhibit the
most drop in performance when migrating from ground to
aerial data. Examples of the performance drop of state-of-
the-art face recognizers are illustrated in Fig. 7. The VG-
GFace [108] reduces the accuracy of face recognition from
99.13% in a ground dataset (LFW) to 16.78% in an aerial
dataset (DroneSURF-Active) where subjects are cooperative
and 4.95% in a dataset (DroneSURF-Passive) where subjects
are covertly surveiled [68]. The FaceNet [122] drastically
dropped its performance from 99.63% in a ground dataset
(LFW) to 3.33% in a aerial dataset (IJB-S) [40].

The unsatisfactory performance is owing to the domain
shift caused by the high flying altitude and the camera
characteristics. The small size of a face itself [99], [172] tends
to amplify all seven challenges discussed in Section § 2.1,
making aerial face recognition extremely challenging.

5.1.2 Datasets for aerial face recognition
Despite the wide fear of aerial facial recognition with respect
to privacy issues, the actual number of public datasets and
research in this area is extremely limited. The lack of public
datasets may be partially attributed to the privacy concern.
There are only three public datasets for this task: DroneFace
[60], IJB-S-UAV [67], and DroneSURF [68]. DroneFace 2017
[60] is not real aerial footage where a commercial sport
camera, i.e. GoPro Hero3+, was set up at a number of fixed
altitudes (1.5, 3,4,5m) and distances (2:0.5:17m) to simulate

Table 4: Public datasets for aerial face recognition. ‘Con.’,
‘#ID’, ‘#Frm’ and ‘#Vid.’ respectively represent the context
where data was collected, the number of identities, frames
and videos.

No. Dataset Height (m). Con. #ID. #Frm #Vid.

1 DroneFace [60] 1-5 Campus 11 2,057 -

2 IJB-S [67] 10 Marketplace 202 632 10

3 DroneSURF [68] - Various 58 411K 200

Figure 8: Examples of aerial facial images from two datasets:
(a) DroneSURF [68] and (b) IJB-S [67].

the context that a drone seeks lost people on the streets. IJB-
S-UAV 2018 [67] only contains a small number of videos,
i.e. 10 videos, captured by a fixed-wing UAV flying over a
marketplace.

DroneSURF 2019 [68] is the most realistic dataset for
aerial face recognition. It contains 200 videos of 58 subjects,
captured across 411K frames, having over 786K face an-
notations. The dataset demonstrates variations across two
surveillance use cases: (i) active and (ii) passive, two loca-
tions, and two acquisition times. DroneSURF encapsulates
challenges due to the effect of motion, variations in pose, il-
lumination, background, altitude, and resolution, especially
due to the large and varying distance between the drone
and the subjects. Examples of images from two datasets are
shown in Fig. 8.

Details of these datasets can be found in Appendix § D.

5.1.3 Approaches for aerial face recognition
Surprisingly the number of published work on aerial face
recognition is scarce. There is only one paper on the Drone-
Face [26], one paper on the DroneSURF [3], and four papers
on the IJB-S-UAV [40], [47], [48], [49]. While targeting aerial
facial recognition, all of these had no mechanism to deal
with the unique challenges of aerial footage. For example,
both [26] and [3] simply employed a classification approach
with a cross-entropy loss to classify a probe face into a
closed gallery list. All work [47], [48], [49] on the IJB-S-UAV
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Figure 9: Challenges in aerial gait recognition: large tilt
angles and low resolution. Images from the Aerial Gait
Dataset [110].

simply investigated different strategies to aggregate frames
in a video. However, these early attempts have shown the
difficulty of aerial facial recognition. For the IJB-S-UAV
dataset, the best model [47] only achieved a rank-1 accuracy
of 7.63% in a closed-set setting and 3.13% in an open-set
setting. For the DroneSURF dataset, the best model [3] only
achieved a recognition accuracy of 24.25% on the active use
case and 3.72% on the passive use case. When probe images
are carefully cropped, the accuracies can reach 60.87% on
the active use case and 45.84% on the passive use case.

5.2 Aerial Gait Recognition

Gait, the walking pattern of an individual, is one of im-
portant behavioral biometric modalities which can operate
at a distance without users’ cooperation. Gait recognition
has advantages in the aerial scenario, since the dynamic
information might be relatively more persistent and evident
at low-resolution imagery than the static biometric charac-
teristics such as the face.

5.2.1 Challenges for aerial gait recognition

Despite the great progress of generic gait recognition meth-
ods trained on ground-to-ground images, the performance
of a ground-data-trained model often degrades on aerial
data due to the domain shift issue caused by the large
discrepancy of pose, resolution and clothing appearance (as
shown in Fig. 9).

Large pose discrepancy: Most gallery gaits are captured
with ground cameras while the probe gaits are from aerial
views with large tilt angles, which makes gait recognition
challenging.

Low image resolution: Given the altitude of the aerial
sensor, the probe gait videos are often captured at lower
image resolutions, which diminishes the gait information.

Changing clothing: This is the classic challenge for gait
recognition where the subject in gallery and probe could
wear completely different clothing, resulting in large ap-
pearance discrepancy.

5.2.2 Datasets for aerial gait recognition

There is only one aerial gait recognition dataset in the
literature: Aerial Gait Dataset [110]. The gait sequences are
captured by a drone with heights ranging from 10m to 45m
while the subject was waling along a circle. All videos in
the dataset are in HD format (1920 × 1080). However, this
dataset is of a small scale with only 17 video sequences.

5.2.3 Approaches for aerial gait recognition
There are very few existing gait recognition methods specif-
ically working in the aerial domain. [126] proposes a
two-step framework which first detects human in a video
based a Single Shot Multi-box Detection (SSD), and then
leverages a LSTM-based recurrent processing structure to
perform gait recognition. [110] estimates the gait sequence
and movement trajectory of a person from an aerial video.
The proposed solution consists of perspective correction
module, feature extraction module, pose estimation module,
and trajectory estimation module.

5.3 Aerial Person Re-ID

Person Re-ID aims at retrieving a person of interest across
multiple non-overlapping cameras. Person Re-ID seeks to
answer questions such as “Where and when has this person
been seen in the surveillance network?”. The query person
can be represented by visual cues, i.e images or videos,
or/and textual descriptions [168]. Similar to ground-based
surveillance, aerial person re-ID is usually the most prac-
tical human recognition tool in unconstrained surveillance
conditions where noisy cameras and uncooperative subjects
hinder precise measurements of biometric traits such as the
face. However, due to the unique characteristics of aerial
footage, aerial person re-ID exhibits unique challenges to be
addressed.

5.3.1 Challenges for aerial person re-ID
Compared with other tasks, person re-id may exhibit the
least drop in performance when migrating from ground to
aerial data. Examples of the performance drop of state-of-
the-art person re-id algorithms are illustrated in Fig. 10. The
state-of-the-art Bag of Tricks [87] reduces the accuracy from
94.2% and 89.1% in two ground datasets, Market1501 and
DukeMTMC, to 63.4% in the aerial UAV-Human dataset
[80]. Similarly, the OSNet [185] reduces the accuracy from
84.9% and 73.5% in two ground datasets, Market1501 and
DukeMTMC, to 42.1% in the aerial PRAI-1581 dataset [177].

The performance gap is owing to the domain shift
caused by the high flying altitude and the camera charac-
teristics. Aerial Person Re-ID exhibits all seven challenges
discussed in Section § 2.1. Examples of these challenges are
illustrated in Fig. 11.

5.3.2 Datasets for aerial person re-ID
One of the first datasets for aerial person re-ID is MRP
which was collected by Layne et al. [74] in 2014. Since then,
due to the affordable availability of off-the-shelf drones with
higher resolution cameras, the number of aerial datasets has
quickly emerged in the last three year. We summarize public
datasets and their statistics in Table 5. Two notable large-
scale datasets are PRAI-1581 [177] and UAV-Human [80].

• PRAI-1581 2020 [177]: Zhang et al. recently collected a
large dataset for aerial person re-ID. The images were
shot by two DJI drones at an altitude ranging from
20 to 60 meters. The dataset consists of 39k images of
1581 unique subjects. The resolution of persons is low,
ranging from 30 to 150 pixels. The high flying altitude
makes the diversity of views, poses more extreme.
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Figure 10: State-of-the-art generic person re-ID algorithms
drop the performance when shifting to the aerial data. The
figure compares the re-identification accuracy of Bag of
Tricks [87] and OSNet [185] on two ground-based (Mar-
ket1501 and DukeMTMC) and two aerial (UAV-Human and
PRAI-1581) datasets.

Figure 11: Challenges for aerial person re-ID due to el-
evation angle, blur, lighting/illumination, and occlusion.
Images from two aerial person re-ID datasets: PRAI-1581
[177] and UAV-Human [80].

• UAV-Human 2021 [80]: Li et al. just published a new
dataset for aerial person re-identification in CVPR
2021. They flied UAVs in multiple urban and rural
districts in both daytime and nighttime over three
months, hence covering extensive diversities w.r.t. sub-
jects, backgrounds, illuminations, weathers, occlusions,
camera motions, and flying altitudes. It contains videos
and annotations for multiple tasks, including person re-
id and attribute recognition. There are 41,290 frames
and 1,144 identities for person re-id and 22,263 frames
for attribute recognition. The unique characteristic of
the dataset is that multimodal aerial data was captured
using a depth sensor (Azure DK), a fisheye camera, and
a night-vision camera.

Long-term Aerial Re-ID: two datasets, MEVA [24] and p-
DESTRE [71] provide footage captured over multiple days
where the actors may change in clothing and accessories.

Hetero Aerial Re-ID IR: two datasets, UAV-Human [80]
and MEVA [24] provide both RGB and thermal IR footage
that can be used for aerial person re-ID across RGB and IR
spectrum.

Aerial Human Attribute Recognition: UAV-Human [80]

Table 5: Public datasets for aerial person re-ID and search.
‘Height.’, ‘#Con.’, ‘#ID’ and ‘#Frm.’ respectively represent
the altitude, the context where data was collected, the num-
ber of subjects, and frames.

No. Dataset Height. Con. #ID. #Frm #Vid.

1 MRP 2014 [74] 10 Campus 28 4,096 -

2 DroneHIT [67] 25 Campus 101 46K -

3 p-DESTRE [71] 5-6 Campus 269 14.8M -

4 PRAI-1581 [177] 20-60 Various 1,581 39K -

5 UAV-Human [80] 10 Various 1,144 41K -

6 MEVA [24] 10 Various 100 - -

provides 7 human attributes (gender, hat, backpack, up-
per clothing color and style, as well as lower clothing
color and style), and p-DESTRE [71] provides 16 human
attributes (gender, age, height, body volume, ethnicity, hair
colour, hairstyle, beard, moustache, glasses, head acces-
sories’, ‘body accessories’, ‘action’ and ‘clothing informa-
tion’ (x3)). These attributes can be used for aerial attribute
recognition, person search or to support the aerial re-ID task.

Details of these datasets can be found in Appendix § E.

5.3.3 Approaches for aerial person re-ID

Closed-world Aerial Person Re-ID
Closed world person re-ID, refers to the search where the
person in the probe image is definitely present as one of the
candidates in the gallery images. The majority of prevailing
approaches for closed world person re-ID focus on do-
main invariant settings, i.e. ground-ground and aerial-aerial
person re-ID. Classical handcrafted features and classical
distance metrics have been prevalent in the early stages of
the development of closed world person re-ID techniques.

Handcrafted feature representation: Before the explosion of
deep learning in 2012, handcrafted features had been em-
ployed for aerial person re-ID. Oreifej et al. [106] directly
estimated the similarity between two human blobs by the
Earth Mover Distance (EMD). Layne et al. [74] classified
human detections into a pre-defined ID list using a number
of SVM variants. Schumann et al. [123] employed a covari-
ance descriptor [6] and a geodesic distance between two
covariance descriptors to measure their similarity.

Learnable feature representation: All modern approaches have
employed CNNs to learn representation directly from data.
There are two categories of applying CNNs in person re-
ID: discriminative and pairwise. Discriminative approaches
classify each human detections into a pre-defined ID list.
Schumann et al. [6], [124] designed their own CNN ar-
chitecture with Inception [133] and Residual layers [56] to
learn representation. One of the branch in the Grigorev et
al.’s framework [54] employed Resnet-50 [56] as a base net-
work. They trained the base network using a large margin
Gaussian mixture (L-GM) loss [147]. Pairwise approaches
seek to directly calculate the similarity between two human
detections, eliminating the need for a pre-collected gallery
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list. Most approaches in the literature combine both dis-
criminative losses and pairwise losses to train the backbone
network. Grigorev et al. [54] trained a backbone ResNet by
both a triplet loss and a L-GM loss [147]. Zhang et al. also
combine a triplet loss with an identification loss to train the
deep network. They experimented with multiple backbone
networks coupled with a subspace pooling layer to learn a
compact representation [177].

Data augmentation: Data augmentation during training can
be applied to increase the robustness against such error
sources as viewpoint variations and occlusions. Moritz et al.
proposed two augmentation approaches, random rotation
(RR) and random cropped rotation (RCR), to specifically im-
prove the robustness against diverse perspectives in UAV-
based person re-id [96]. Testing with the OSNet baseline
[185], these augmentation techniques can boost the accuracy
from 50.0% to 53.0% in the PRAI-1581 [177] dataset and from
80.1% to 83.7% in the p-DESTRE [71] dataset.

Transfer learning: Many approaches [54], [123], [124] take
advantages of a large number of existing datasets in a
classic ground-based setting such as for transfer learning. A
person re-ID model is first trained with these ground-based
datasets, then either applied directly [123] or fine-tuned [54],
[124] on the aerial dataset. While this strategy has shown
to be working, it is still an open question to what extent
the pre-training can help, since the characteristics of aerial
images and ground-based images differ.

Open-world Aerial Person Re-ID
Open-world person re-ID is a more difficult problem of per-
son re-ID where the person in the probe may or may not be
in the gallery. Many approaches for open world person re-
ID depart from the closed-world setting and explore aerial
person re-ID across multiple modalities. This includes across
domains (aerial-ground [123]), across spectrum (visible-
infrared [80]), and across modalities (aerial-attribute [71]).

Long-term aerial person re-ID: Long-term aerial person re-
ID relaxes the time constraints between the probe and
gallery imaging moment. Existing re-ID methods rely on
appearance features like clothes, shoes, hair, etc. Such fea-
tures, however, can change drastically from one day to the
next, leading to inability to identify people over extended
time periods. The p-DESTRE dataset [71] also provides a
baseline for long-term aerial person re-id based on facial
and body features. The facial feature representation was
obtained using the ArcFace model [28] and the body feature
representation was obtained using the COSAM [131] model.
The Euclidean norm was used as distance function between
the concatenated representations. This approach achieved
an mAP of 34.9%, but it is noticeable that the p-DESTRE
footage was captured with very low flying altitudes, i.e. 5-
6m.

Aerial-Ground person re-ID: Person re-ID between aerial im-
ages and ground-based images is of significant interest to
surveillance in such tasks as large scale search. However, the
differences in human appearances such as views, poses and
resolutions make it very challenging. The representation has
to be robust to these variations. There exists one work in
aerial-ground person re-id by Schumann et al. [123] where
the authors attempted to encode a robust representation

via covariance descriptors. However, the views of the aerial
footage and the ground-based footage are similar. In addi-
tion, the dataset is very small with only 1217 probe images
and 4244 gallery images [123]. The field is lacking large
scale datasets of aerial and ground-based footage for deep
networks to learn representation robust to the challenges in
views, poses and resolutions. In addition, the field is also
lacking approaches to explicitly deal with these challenges.
Such generative models such as Generative Adversarial
Networks (GANs) [154] can be used to synthesize new
views, poses or resolutions for robust matching.

Aerial-Attribute human recognition: Searching for persons in
aerial data based on attribute descriptions such as gen-
der, height, clothing, etc. is also of practical significance in
surveillance, which is imperative when the visual image of
query person cannot be obtained. The re-id task now can be
compiled as a human attribute recognition problem [161].
Kumar et al. [71] has addressed this issue by collecting the
aerial dataset, p-DESTRE, and annotating persons with 16
attributes. They employed the COSAM algorithm [131] to
search for human with facial and body attributes, which can
deal with the long-term re-id task.

6 AERIAL HUMAN ACTION RECOGNITION

6.1 Challenges for aerial action recognition

Despite the great success of the generic human action
recognition methods trained on ground-to-ground videos, a
huge performance drop is observed when they are directly
applied to images captured by UAVs [24], [80]. Examples
of the performance drop of the state-of-the-art action recog-
nition algorithm, I3D [19] are illustrated in Fig. 12. While
I3D [19] reached 98.0% and 80.9% on two popular ground-
based action datasets, UCF-101 [130] and HMDB-51 [70]
respectively, it only achieved 23.86%, 28.7% and 16.8% on
three aerial action recognition datasets: UAV-Human [80],
TinyVIRAT [27], and UCF-Aerial [141].

The unsatisfactory performance is owing to the domain
shift caused by the high flying altitude and the camera
characteristics. Aerial action recognition exhibits all seven
challenges discussed in Section § 2.1. Especially, the novel el-
evation views require the action recognition task to explore
more semantic attributes to be invariant to the change in
views and poses of subjects. The non-uniform distribution
requires effective algorithms to explore robust attention
mechanism and attend to partial features to be effective.
Examples of these challenges are illustrated in Fig. 13.

6.2 Datasets for aerial action recognition

A large number of datasets are captured and annotated for
aerial action recognition [8], [80], [111]. Most popular actions
of interest are running, walking, sitting, and standing [8],
[80], [111]. Among them, many actions are performed in
relation to the interaction with objects [8], [80] and other
humans [61], [119], [127]. Popular human-object interactions
are reading, carrying, pushing/pulling [8], fishing and cut-
ting tree [80], entering and exiting a vehicle [24], [105]. Pop-
ular human-human interactions can be in forms of violence
[111], [127], social interactions [80]. Two most notable aerial
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Figure 12: State-of-the-art generic action recognition algo-
rithms drop the performance significantly when shifting to
the aerial data. The figure compares the accuracy of I3D [19]
on two ground-based (UCF-101 and HMDB-51) and three
aerial (UAV-Human, TinyVIRAT and UCF-Aerial) datasets.

action and interaction datasets are UAV-Human [80] and
MEVA [24].

• UAV-Human [80]: beside the data and annotations for
person re-id and attribute recognition as discussed
before, the UAV-Human team has also compiled 67K
multi-modal video sequences and 119 subjects for ac-
tion recognition. The unique characteristic in multi-
modal aerial data including a depth sensor (Azure DK),
a fisheye camera, and a night-vision camera makes this
dataset very attractive to the research community.

• MEVA [24]: this collection observed approximately 100
actors performing scripted scenarios and spontaneous
background activity over a three-week period at an
access-controlled venue, collecting in multiple modali-
ties with overlapping and non-overlapping indoor and
outdoor viewpoints. The resulting data includes videos
from 38 RGB and thermal IR cameras, 42 hours of UAV
footage, as well as GPS locations for the actors.

Task-specific: many aerial human detection datasets are
aimed for specific tasks such as sport [23], search and rescue
[94], synthetic data from game engines [132], and multiview
[113]. AVI [127] is for violent recognition from aerial videos.

Beyond visible: other sensors have also been employed in
parallel with visible cameras. UAV-Human [80] employed
depth and infrared sensors in parallel to the visible cameras.
MEVA [24] employed infrared sensors simultaneously with
the visible cameras.

Fine-grained gesture recognition: some datasets are col-
lected to perform gesture recognition from aerial im-
ages/videos, which are usually employed for controlling
drones/UAVs, such as UAV-Gesture [112] and DDIR [7].
Due to the fine-grained recognition, the images/videos are
usually captured at short distances and low flying altitude.

Large scale crowd behaviors: Compared with ground-
based surveillance configurations, the aerial configuration is
much relevant to group activity understanding and crowd
analysis considering the large view of aerial sensors [98].
Datasets such as DroneCrowd [155] and DLR-ACD [5] focus
on crowd counting and density estimation while ERA [98]
classifies aerial videos into action classes.

Details of these datasets can be found in Appendix § F.

Table 6: Public datasets for aerial human action recognition.
‘Spec.’, ‘#Con.’, ‘#Vid’ and ‘#Box.’ respectively represent for
the action type (A: Action and Interaction, G: Gesture, C:
Group event/activity crowd analysis), the context where
data was collected, the number of videos, identities and
bounding boxes.

No. Dataset Lev. Con. #Vid. #ID #Hei. #Act.

1 UAV-Human [80] A Urban 67K 119 - 155

2 Drone-Action [111] A YT 240 10 8-12 13

3 Okutama-Action [8] A Urban 43 9 10-45 12

4 UCF-ARG [141] A Carpark 480 12 - 10

5 UCF-Aerial [140] A Carpark 480 12 - 10

6 MEVA [24] A Urban 4.6h 100 - 37

7 MOD20 [113] A YT 2K - - 20

8 VIRAT [105] A Carpark 17 - - 23

9 NEC-Drone [23] A Gym 5K 19 - 16

10 Game-Action [132] A Game 200 - - 7

11 AVI [127] A Urban 2K 25 2-8 5

12 DIASR [94] A Disaster 7K - 10-40

13 Youtube-Aerial [132] A YT 400 - - 6

14 UT-Interaction [119] A Forest 60 6 - 6

15 UAV-Gesture [112] G Forest 119 10 - 13

16 DDIR [7] G Various - 26 2-10 9

17 ERA [98] C YT 2.8K - - 25

18 DLR-ACD [5] C YT 2.8K - - 25

19 VisDroneCC [187] C YT 2.8K - - 25

6.3 Approaches for aerial action recognition

This section of the report discusses current and state-of-the-
art approaches to action recognition trained on the aerial or
drone datasets discussed in the previous section.

Single-frame classification: A number of approaches took ad-
vantage of existing 2D classification networks to perform
classification of single frames and subsequently fuse the
classification outputs of these frames in a video [46], [95],
[98]. Similar to other tasks, ResNet and InceptionNet are
among the most popular networks in such work as [46],
[94], [95], [98]. More advanced networks such as MobileNet
and DenseNet have also been used [7], [44], [98]. Mou et
al. experimented multiple networks on the ERA dataset [98]
and showed that DenseNet achieved the best performance
for the aerial action recognition task. Multiple fusion ap-
proaches have been employed subsequently such as major-
ity votes [95] or LSTM-based [46].

Two-stream CNNs: A number of researchers have employed
two-stream CNNs for aerial action recognition since they
are a natural way to combine appearance and motion [8],
[111], [113]. These two-stream CNNs can also be extended to
improve the representation capacity. Perera et al. employed
a subspace representation called KRP-FS to improve rep-
resentation [113]. Perera et al. employed a pose network
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Figure 13: Challenges for aerial action recognition due to the small size of subjects, elevation angle, extreme light-
ing/illumination, and occlusion. Images from two aerial datasets: UAV-Human [80] and Okutama-Action [8].

to detect body keypoints, cropping the input into multiple
patches to focus explicitly on body parts for more accurate
recognition [111], [112]. Body keypoints can also be used as
inputs for a conventional classifiers such as SVM for aerial
action classification [127].
3D CNNs: 3D CNNs are still the most popular networks for
aerial action recognition. Among the modern networks, I3D
[19] has been widely adopted for aerial action recognition
[23], [27], [80], [98], [132]. C3D [139] has also been utilized
for aerial action recognition [24], [98]. Others have also
upgraded existing 2D networks such as Inception-ResNet
[56], [133] with 3D convolutions to make the suitable for
video processing [109]. Mou et al. experimented multiple 3D
CNNs, i.e. C3D , I3D, P3D, TRN, on the ERA dataset [98] and
showed that TRN [183] achieved the best action recognition
[98]. Ding et al. [32] replaced the backbone network of
TSN [150] with a lightweight network, i.e. MobileNet [59],
coupled with a focal loss and the modern self-attention
mechanism in Transformer [143].

6.4 Techniques to solve aerial action recognition chal-
lenges
The distinct aerial challenges discussed in Section § 6.1
constitute a large number of fine-grained domains, across
which an effective aerial action recognition model has to
stay robust.

6.4.1 Low-resolution
The most challenging factor in aerial action recognition is
the low resolution or small size of objects due to the high fly-
ing altitude. A human may appear as tiny as ten pixels in an
aerial video. For example, the size of humans in the TinyVI-
RAT dataset [27] only accounts for less than 0.01% of a video
spatial size, compared with 0.15% in the classic ground-
based UCF-101 dataset [130]. The most explicit approach
for the low resolution challenge is super-resolution [103].
Demir et al. [27] proposed to employ a super-resolution
network first to increase the resolution of low-resolution
aerial videos before action classification. They proposed a
dedicated foreground branch in parallel to the video super-
resolution network to better focus on foreground objects
and humans, which are more critical for accurate action
recognition. The proposed approach improved the F1 score

of the baseline I3D [19] from 28.73% to 34.49% on the aerial
dataset TinyVIRAT [27].

6.4.2 Lack of data
Due to the high cost of capturing and labeling large scale
aerial videos with diverse actions, the aerial action recog-
nition community has addressed this challenge by domain
adaptation [23] and knowledge distillation [32]. Choi et
al. [23] proposed domain adaptation approaches to lever-
age existing annotated action datasets and unannotated
aerial videos. For same source and target label datasets,
they proposed unsupervised domain adaption with a cross-
entropy loss for classification and a domain adversarial loss
for cross-domain learning. For different source and target
datasets, the authors employed a triplet loss instead of the
cross-entropy loss. Domain adaptation from UCF-101 [130]
would increase the accuracy of the I3D baseline up to 70%
on the aerial dataset NEC-Drone [23]. Ding et al. [32] pro-
posed to use I3D [19] pre-trained on the Kinetics dataset as
a teacher network and learned a student network to fit both
the softmax output of the teacher network and the aerial
data labels. This knowledge distillation scheme improved
the recognition accuracy of the I3D baseline from 78.85% to
87.81% on their own UAV action recognition dataset [32].

6.4.3 Viewing angle
The unique top and vertical views of aerial footage are
challenging for action recognition. To deal with the lack
of these views, Sultani et al. [132] proposed to use game
engines such as GTA-5 and FIFA to synthesize action videos
where multiple views of one action can be easily generated.
The authors also proposed using conditional Wasserstein
Generative Adversarial Networks (WGANs [4]) to gen-
erate additional aerial images from real ground features.
Additional images with aerial views help to improve the
recognition accuracy of the baseline from 49.7% to 68.2%.

6.4.4 Fish-eye cameras
Fisheye cameras are widely used in UAVs due to their
ultra-wide view angles; however, their angles would cause
severe distortion in videos, which is much more challenging
for action recognition than in conventional RGB cameras.
Inspired by Spatial Transformer Network [64], Li et al. [80]
proposed a guided transformer module, GT-Module, which
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Figure 14: Three challenge dimensions of aerial surveillance:
low resolution, vertical perspective, and moving cameras.

can be inserted immediately before maxpooling layers in the
original I3D [19] to warp “pixel” in the featuremap extracted
from fisheye distorted aerial videos by learning a series
of unbounded transformation. This scheme improved the
action recognition accuracy on fisheye aerial videos from
20.76% to 23.24% on the UAV-Human aerial dataset.

7 AN OUTLOOK: AERIAL SURVEILLANCE
IN NEXT ERA

7.1 Challenges and Under-investigated Tasks

To fully exploit the potential of aerial surveillance, the chal-
lenges of unconstrained and uncooperative environment
have to be addressed. The high flying altitudes of airborne
platforms on which surveillance cameras and sensors are
mounted results in unique settings of aerial surveillance
compared to conventional ground-based surveillance in re-
gards to subject-camera placement, imaging conditions, and
moving cameras, as illustrated in Fig. 14. These settings
cause the key challenges in small resolution, elevation view,
non-uniform distribution, illumination, motion blur, and out
of focus data. In the in-depth analysis in four surveillance
tasks, we have shown that generic networks drop the per-
formance drastically when shifting to the aerial data. Early
approaches have been attempted to tackle these challenges
to improve the performance of the aerial surveillance tasks.

Our review of existing work has shown that four aerial
surveillance tasks, i.e. detection, tracking, re-id and action
recognition, have received most attention since they do not
require the fine details of human of interest in the scene to
perform well. There are a wide range of resources, including
public datasets, papers and even competitions available
addressing these tasks. In contrast, the human identification
task is the least investigated task arising from the small size
of face biometric when captured from an aerial platform.
The task of recognizing faces from long distance with cam-
eras in a moving aerial platform is extremely challenging
and requires further significant research efforts to achieve
satisfactory operational performance. On the other hand we
make a somewhat surprising observation that the relatively
easier task of gait precognition from aerial data has received
significantly less attention.

7.2 Open Issues
We discuss the open issues from two perspectives: data and
model development and model deployment.

7.2.1 Data
From a data perspective, three key aspects needing further
research are: scale, diversity, and annotation of data.

Large-scale Aerial Surveillance Data: ImageNet has
demonstrated the great importance of leveraging large,
comprehensive, and challenging benchmarks to advance
computer vision tasks. There is also a critical need for large-
scale public datasets in the aerial surveillance tasks. More
large-scale accurately annotated datasets akin to VisDrones
and UAV-Human with more diversified imaging conditions
will help to boost the attention and research.

Heterogeneous Aerial Surveillance Data: Current data
collections from aerial platforms have been mainly using
monocular RGB data even though there has been a few
multi-modal collection of RGB and thermal. To address the
main challenges of aerial surveillance including the reduced
number of pixels per sq.cm, extreme view angles, poor visi-
bility, and motion blur, multi-modal fusion techniques could
be explored. Multiple heterogeneous modalities beyond vis-
ible RGB cameras such as radars, LiDARs, multispectral and
hyperspectral sensors would generate rich information for
surveillance tasks.

Human Annotation Minimization: Collecting large scale
aerial data has been challenging, but labeling a large amount
of data compounds this challenge as the process is very ex-
pensive and labor-intensive. Besides unsupervised learning
techniques, active learning and learning from virtual data
can also help to minimize annotation requirement. However
it will require additional techniques, e.g. domain adaptation
and knowledge distillation, to adapt to the new data.

7.2.2 Model Development
From a model perspective, there are three key aspects
that need further research: model architecture, effects of
unconstrained data on model trustworthiness, prediction
uncertainties and model explainability.

Model Architecture: Many new network architectures
such as Transformers [34] and Res2Net [45], are emerging
through computer vision tasks. It would be interesting to
explore their performance in the aerial surveillance domain.

Effects of Unconstrained Data on Model Trustworthiness:
The unconstrained nature of aerial surveillance settings re-
sults in low quality data with noise. In the current literature,
there is no work to report their performance on adverse
conditions of blur arising from atmospheric turbulence and
motion, out of focus, low light, illumination and weather
conditions such as rain and fog. The ramifications of these
unconstrained data acquisition conditions are further ac-
centuated by the large stand-off distances and the unco-
operative nature of the human targets under surveillance.
Conventional image and video enhancement techniques
would be of limited value in aerial surveillance due to
the high levels of data impairments and further focused
research efforts in this direction is needed to mitigate the
effects of unconstrained data on model trustworthiness. The
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recent open call in 2021 by the US government [63] for the
development of BRIAR is an example of the importance of
the need for focused research to unlock the full capabilities
and potential of aerial surveillance.
Adversarial Attacks on Aerial Surveillance Tasks: Recent
research has proven that machine learning models are vul-
nerable to adversarial attacks, both digitally and physically.
Understanding the robustness of aerial surveillance models
against these attacks, e.g. [35], is critical to the security of
these models.
Prediction of Uncertainties in Aerial Surveillance: While
many models are emerging, there does not exist any ap-
proach to quantify how certain each model is of its pre-
dictions of the output. Two sources of uncertainties are
from data and model. For example, out of distribution
data usually leads to adversarial attacks [1]. For high stake
application such as aerial surveillance, it is important for a
model to notify when the output is not reliable.
Explainability of Models in Aerial Surveillance: Most cur-
rent surveillance models in general and aerial surveillance
models in particular are opaque and only output a scalar
prediction value, there is no method providing users se-
mantically understandable explanations for why the model
predicts what it predicts. The blackbox-ness could lead to
unexpected and detrimental outcomes. Explainable AI (XAI)
techniques such as [21] could help to make these models
more transparent and understandable to humans.

7.2.3 Deployment-aware Model Development
It is important to design efficient and adaptive models to
address scalability issue for practical model deployment.
Lightweight models: Deep learning models usually contain
tens to hundreds of millions parameters with hundreds of
layers, e.g. ResNet-101 has 44.6M parameters and 347 layers
[56]. Designing lightweight models is an important step
in deploying resource-constrained computing platforms.
Lightweight CNNs employ advanced model compression
techniques such as pruning, quantization and knowledge
distillation [29] to efficiently trade-off between resource and
accuracy, minimizing their model size and computations in
term of the number of floating point operations (FLOPs),
while retaining high accuracies.
Resource-Constrained Model Design: Most of the current
aerial surveillance systems are designed to work either off-
line or data is live streamed and processed at the ground
stations. There is an urgent need for them to be run on-
board. Onboard computing would enable rapid response to
surveillance events, reduce the cost and complexity of com-
munication with ground stations, reduce power consump-
tion and improve autonomy of the aerial surveillance sys-
tems. However, the limited resources of onboard computing
hardware should be taken into account when designing the
onboard models. To deal with this, differential constrained
design approaches [102] should be explored.

8 CONCLUDING REMARKS
Human-centric aerial surveillance, with its advantages in
scale, mobility, deployment and observation, presents new
capabilities to enable surveillance in geographically-difficult

conditions. The emerging of recent public datasets and
initiatives such as VisDrones has further boosted attention
and research from the academic community. However, the
research in this area is still very daunting. The physical
imaging conditions of airborne sensors leads to new chal-
lenges in small resolutions, multiple scales, extreme views,
motion blur, atmospheric turbulence, uniformity of distribu-
tion, illumination and noise, and calls for new innovations
from the computer vision signal processing and machine
learning community. This paper presents the very first com-
prehensive survey with in-depth analysis to understand the
state of four key aerial surveillance tasks: detection, track-
ing, identification (including re-identification) and behavior
analysis. While there are still many open issues which
require significant more research to progress, the future
outlook of aerial surveillance is very promising. We believe
this survey will provide important guidance for future aerial
surveillance research.
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APPENDIX

APPENDIX A
AIRBORNE PLATFORMS AND IMAGING SENSORS
FOR AERIAL SURVEILLANCE

A wide range of airborne platforms are available with
diverse characteristics in flying ranges and altitudes, en-
durance, speed, manoeuvrability, payload and vulnerabil-
ities as summarized in Table 7. These airborne platforms
are deployed with a wide range of sensors. In this paper,
we only consider techniques for analyzing data acquired
by RGB imaging sensors, which capture data with spatial
details to be analyzed by computer vision and deep learn-
ing. Imaging sensors are categorized by their spectrum as
summarized in Table 8.

APPENDIX B
DETAILS ON AERIAL HUMAN DETECTION DATASETS

VisDrone 2020
The VisDrone dataset [187] is collected by the AISKYEYE
team at Tianjin University, China. This dataset is behind
three “Vision meets drones” challenges in ECCV 2018,
CVPR 2019 and ECCV 2020. The benchmark dataset consists
of 400 video clips formed by 265,228 frames and 10,209 static
images, captured by various drone-mounted cameras, cov-
ering a wide range of aspects including location (14 different
cities separated by thousands of kilometers), environment
(urban and country), objects (pedestrian, vehicles, bicycles,
etc.), and density (sparse and crowded scenes). The dataset
was collected using various drone platforms (i.e. drones
with different models), in different scenarios, and under
various weather and lighting conditions. These frames are
manually annotated with more than 2.6 million bounding
boxes or points of targets of frequent interests, such as
pedestrians, cars, bicycles, and tricycles. Some important at-
tributes including scene visibility, object class and occlusion,
are also provided for better data utilization.

TinyPersons 2020
The TinyPerson dataset [173] is collected from Internet. This
dataset is behind two “Tiny Object Detection” challenges
in ICCV 2019 and ECCV 2020. The unique characteristic of
this dataset is the tiny resolution of humans. A majority
of human instances appear as tiny as [2,20] pixels, and as
small as [20,32] pixels. In total, there are 72,651 objects with
bounding boxes have been manually annotated. The dataset
is split into a training set, which has 794 labeled images with
42,197 annotations, and a testing set, which has 816 labeled
images with 30,454 annotations.

AU-AIR 2020
The AU-AIR dataset [14] is the first multi-modal UAV
dataset for object detection collected by Aarhus University,
Denmark. It meets vision and robotics for UAVs having
the multi-modal data from different on-board sensors (i.e.
visual, time, location, altitude, IMU, velocity). The AU-AIR
dataset has more than 2 hours raw videos, with 32,823
labeled frames and 132,034 object annotations from 8 object
categories related to traffic surveillance. Each frame is also
labeled with time, GPS, IMU, altitude, linear velocities of
the UAV.

BIRDSAI 2020
The BIRDSAI dataset [12] is a long-wave thermal infrared
dataset containing nighttime images of animals and humans
in Southern Africa. The dataset allows for benchmarking of
algorithms for automatic detection and tracking of humans
and animals with both real and synthetic videos. There
are 48 real aerial TIR videos and 124 synthetic aerial TIR
videos (generated with AirSim), for a total of 62k and 100k
images, respectively. The dataset breaks these into labels of
animals or humans, and also provides species information
when possible, including for elephants, lions, and giraffes.
Information about noise and occlusion for each bounding
box is also included.
StanfordDrones 2016
The StanfordDrones dataset [118] is collected by Stanford
University, originally aimed to predict human trajectory
in crowded scenes but the labels can be employed for
aerial human and vehicle detection. The dataset consists of
eight unique scenes, recorded in a university campus. The
dataset comprises more than 19K targets consisting of 11.2K
pedestrians, 6.4K bicyclists, 1.3k cars, 0.3K skateboarders,
0.2K golf carts, and 0.1K buses.
UAV123 2016
The UAV123 dataset [100] is collected by King Abdullah
University of Science and Technology, Saudi Arabia, origi-
nally aims for low altitude UAV target tracking. There are
123 videos with 112,578 fully annotated frames. The UAV123
dataset contains 3 subsets: (i) Set1 contains 103 sequences
captured using an off-the-shelf professional-grade UAV (DJI
S1000) following different objects at altitudes varying be-
tween 5–25 m. (ii) Set2 contains 12 sequences captured
from a boardcam (with no image stabilization) mounted
to a small low-cost UAV following other UAVs. (iii) Set3
contains 8 synthetic sequences captured by the proposed
UAV simulator.
Mini-drone 2015
The Mini-drone dataset [13] is collected by the Ecole Poly-
technique Fédérale de Lausanne (EPFL), originally aimed
for drone-based surveillance, helping in managing parking
spaces, controlling crowds and reporting useful information
such as suspicious behaviors, mis-parked cars, number of
free parking spots, etc. The created dataset consists of 38
different contents captured in full HD resolution, with a
duration of 16 to 24 seconds each, shot with the mini-drone
Phantom 2 Vision+ in a parking lot. The dataset contents
can be clustered in three categories: normal, suspicious,
and illicit behaviors. The low altitude and high resolution
of videos are sufficient for fody silhouette, face detection,
vehicle license plate and accessories such as bags, backpack,
sunglasses, hat, wallet or bottle.
HERIDAL 2018
The HERIDAL database [15], [90] is collected to support
search and rescue missions using drones. It contains over
68,750 image patches of wilderness acquired from an aerial
perspective, 29,050 positive samples containing person as
well as 39,700 negative samples.Of these, approximately
3,000 image patches are synthetically generated; the oth-
ers are cropped from real images. Additionally, the HERI-
DAL database contains approximately 500 labeled, full-size
4, 000 × 3, 000 pixel real-world images. Full size images
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Table 7: Airborne platforms for aerial surveillance.

Range Endurance Speed Altitude (km) Manoeuvrability Payload Vulnerabilities

Drones Low Low Slow Low
0.5 km High Very low Easily detected

UAVs Low to High
(1-1,000km)

Low to Medium
(15 minutes
to 20 hours)

Medium
10-300km/h

Low
5 km High Low

(1-150kg)

Weather-
dependent,
esp. wind

Balloons
(Free or
tethered)

Low
(up to 100km
per day)

Medium
(10 or more
days)

Stationary
or very
slow

Low
5 km

Very low
(wind-
dependent)

Low to Medium
(500kg) Easily targeted

Rotary aircraft
(manned
helicopter)

Medium
(300km)

Low
(3 hours)

Medium
(up to
350km/h)

Medium
10 km

Very High
(easy turn and
stationary
capacity)

Medium
(10,000kg) Possible fatalities

Fixed-wing
aircraft
(manned)

High
(10,000km)

Low
(15 hours) High High

20 km

High
(but cannot
flyas slowly)

High
(250,000kg) Possible fatalities

Stratollite High High
(months) Slow High

20 km Low Low
(50kg)

Satellite
Very High
(but has fixed
trajectory)

Very High
(years but
revisit time
can be days)

Very High
(25,000km/h)

Very High
100-1,000 km

Low
(only certain
types)

Medium
(5,000kg)

Limited availability
at specific time
and place

Table 8: Imaging sensors for aerial surveillance.

Sensor Type Categories Wavelength Resolution Distance Visibility Weather
Affected Passive Output Cost

Electro-Optical
Visible 0.39-0.75um High Medium Medium High 2Dx3 Low
Infrared 5-14um Low Long Medium Low 2Dx1 Medium
Hyperspectral 0.4-2.5um Medium Medium 2DxM Very high

Radio-Wave Radar 1mm-300cm Low Very Long~
~100km Low Low x 2Dx1* Medium

LiDAR 0.9-1.5um Medium High Medium x 3Dx1 Very high

could be used for training (Fast or Faster R-CNN) as well
as for testing purposes. At the moment 101 images have
been selected for testing purposes.
SARD 2021
The SARD database [120] is also collected to support search
and rescue missions using a DJI Phantom 4A drone. The
videos were recorded at a resolution of 1, 920 × 1, 080 at
50Hz. The drone flew at different altitudes ranging from 5
to 50 meters. The dataset comprises 1,981 manually labeled
images from 9 actors.
AgriDrone 2021
AgriDrone is a self-captured data set with focus on person
detection in agricultural applications. All 4,586 images have
been captured by two different drones: DJI Mavic2 Enter-
prise and DJI Mavic Pro between Spring and Winter. They
share the same resolution of 3840 × 2160 pixels. The data
set is split into 70% training, 10% validation and 20% test
data. Due to the rural application area, the average number
of humans per image is about two only, which results in a
smaller dataset than in the case of the VisDrone data, while
the humans are usually bigger.

APPENDIX C
DETAILS ON AERIAL PERSON TRACKING DATASETS

UAV123: UAV123 dataset [100] contains 123 fully annotated
HD sequences over 110K frames taken from UAV platforms.
Each video has 12 attribute categories. A video may have a
variety of attributes by the shooting conditions. The cap-
tured targets include pedestrian, vehicles, boats, groups and
etc. The video resolution is between 720p and 4K.

Campus: The large-scale campus dataset [118] has images
and videos of various classes of targets that move and
interact in a real-world university campus. The dataset
comprises over 19K targets consisting of 11.2K pedestrian,
6.4K bicyclists, 1.3k cars, 0.3K skateboarders, 0.2K golf
carts, and 0.1K buses. The resolution of these UAV videos is
1920× 1080.

DTB70: Drone Tracking Benchmark (DTB) [79] collects 70
videos of UAV collected data where the bounding boxes
are manually annotated. Some of the videos are captured in
a campus, which are for the purpose of tracking pedestrian,
animals and vehicles. In order to enhance the diversity of the
scene, some videos are collected from YouTube. The original
resolution of each video frame is 1280× 720.

VisDrone: The VisDrone team has compiled a dedicated
large-scale drone benchmark and organized challenges
for tracking, i.e. VisDrone-SOT2018 [156] and VisDrone-
SOT2019 [38]. The VisDrone-SOT2018 consists of 132 videos
with 106K frames. Compared with VisDrone-SOT2018,
VisDrone-SOT2019 introduces 35 new sequences. To further
increase the diversity of videos and assess the performance
of trackers in the wild, VisDrone-SOT2020 [42] conducts
extensive evaluation of more tracking algorithms using the
same dataset in VisDrone-SOT2019. VisDrone2021 further
increases the dataset size to 400 videos with more diverse
scenarios. The annotated targets of VisDrone datasets in-
clude pedestrians, dogs, bicycles, vehicles, etc.

BIRDSAI: BIRDSAI [12] is the first aerial dataset captured
by a thermal infrared camera. This dataset includes 48
real videos with a variety of attributes, such as motion
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blur, large camera motions, background clutter and high
altitude. The dataset comprises over 154K targets consisting
of 120K bounding boxes of wild animals (i.e. giraffes, lions,
elephants, etc.) and about 34K human bounding boxes.

UAVDark135: UAVDark135 dataset [76] contains fully an-
notated 135 videos captured by a standard UAV at night.
The benchmark includes various tracking scenes, e.g. cross-
ings, t-junctions, road, highway, and consists of different
kinds of tracked objects like pedestrian, boat, bus, car, truck,
athletes, house, etc. To extend the covered scenes, the bench-
mark also contains some YouTube videos, which are shot on
the sea. The total frames, mean frames, maximum frames,
and minimum frames of the benchmark are 125, 466, 929,
4571, and 216 respectively, making it suitable for large-scale
evaluation. The videos are captured with the resolution of
1920× 1080. at a frame-rate of 30 frames/s (FPS),

APPENDIX D
DETAILS ON AERIAL FACE RECOGNITION DATASETS

DroneFace 2017 [60]: The DroneFace is an open dataset to
simulate the context that a drone seeks lost people on the
streets, and tries to recognize the specific target from the
air based on the face recognition model established from
a few portrait photos. The aerial images are captured by
a commercial sports camera (GoPro Hero3+) mounted on
a UAV flying at different altitude (1.5, 3, 4, and 5 meters)
and captured still images of subjects from 17 meters away
from the subjects to 2 meters with 0.5 meters ahead in each
step. There are 11 subjects and 2,057 pictures including 620
aerial images, 1,364 frontal face images, and 73 portrait
images. The resolution of face regions ranges from 23×31 to
384× 384. Examples of images from this dataset are shown
in Fig. 8.

IJB-S-UAV 2018 [67]: The IJB-S dataset is an open-source
surveillance video benchmark from the Intelligence Ad-
vanced Research Projects Activity (IARPA) to investigate
performance of surveillance face recognition. IJB-S stands
for IARPA Janus Surveillance Video Benchmark. Aerial
facial videos are a part of the dataset. There are 10 UAV
videos, captured by a small fixed-wing UAV flying over the
collection area, specifically the marketplace, opportunisti-
cally capturing surveillance video. There are 5 recognition
protocols, one of them is UAV Surveillance-to-Booking,
which perform face recognition from UAV video probe to
a curated gallery of multiple high resolution mug-shot style
photos. Examples of images from this dataset are shown in
Fig. 8.

DroneSURF 2019 [68]: The DroneSURF dataset is a bench-
mark dataset to investigate performance of face recognition
on aerial footage. DroneSURF stands for Drone Surveillance
of Faces. The dataset contains 200 videos of 58 subjects,
captured across 411K frames, having over 786K face annota-
tions. The proposed dataset demonstrates variations across
two surveillance use cases: (i) active and (ii) passive, two
locations, and two acquisition times. DroneSURF encap-
sulates challenges due to the effect of motion, variations
in pose, illumination, background, altitude, and resolution,
especially due to the large and varying distance between

the drone and the subjects. Examples of images from this
dataset are shown in Fig. 8.

APPENDIX E
DETAILS ON AERIAL PERSON RE-ID DATASETS

MRP 2014 [74] Layne et al. collected one of the very first
aerial datasets for person re-ID. They used a standard
remote-operated quadrocopter to capture videos at a res-
olution of 640× 360 at 5Hz. Two sets of data were collected.
Set 1 contains three flights across an outdoor and indoor
environment. These consists of 436, 652, 848 video frames,
from which 233, 471, 797 person detections were obtained
from 6, 7, 10 distinct people. Set 2 is significantly larger
with 6 flights in three unconstrained and heavily crowded
outdoor environments. Across each flight, there are between
10k and 30k frames and an average of 8.6k person detections
from an unknown number of distinct people. Of this data,
they selected 28 uniqre identities and 4,096 images.
DroneHIT 2019 [54] Grigorev et al. also employed a stan-
dard remote-operated quadrocopter to collect aerial data
around a university campus. The drone was flying at a alti-
tude of 25m, capturing videos at a resolution of 1920×1080
at 30fps. A total of 101 unique identities are extracted, where
each person has about 459 images.
P-DESTRE 2020 [71] Kumar et al. collected a comprehensive
dataset for re-identification across multiple days with the
change in clothing of persons. The authors also provided 16
human attributes of person instances for the person search
task. The annotations for the attributes include demographic
information: gender, ethnicity and age, appearance informa-
tion: height, body volume, hair color, hairstyle, beard, mus-
tache; accessories information: glasses, head accessories,
body accessories; clothing information and action informa-
tion. The dataset was collected in two universities using DJI
Phantom 4 drones at two altitudes: 5.5 and 6.7 meters. The
videos are captured at a resolution of 3, 820×2, 160 at 30fps.
There are a total of 269 unique subjects with 14.8M person
detections. The re-ID task can be performed based on visual
input, i.e. image or video, or heterogeneously textual input
of attributes.
PRAI-1581 2020 [177] Zhang et al. recently collected a large
dataset for aerial person re-ID. The images were shot by two
DJI drones at an altitude ranging from 20 to 60 meters. The
dataset consists of 39k images of 1581 unique subjects. The
resolution of persons is low, ranging from 30 to 150 pixels.
The high flying altitude makes the diversity of views, poses
more extreme.
UAV-Human 2021 [80] Li et al. just published a new
dataset for aerial person re-identification in CVPR 2021. The
dataset was collected by a flying UAV in multiple urban
and rural districts in both daytime and nighttime over
three months, hence covering extensive diversities w.r.t.
subjects, backgrounds, illuminations, weathers, occlusions,
camera motions, and flying altitudes. The dataset contains
videos and annotations for multiple tasks, including action
recognition, pose estimation and person re-identification.
There are 41,290 frames and 1,144 identities for person re-
identification and 22,263 frames for attribute recognition.
The unique characteristic of the dataset is multimodal aerial
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data was captured and provided using a depth sensor
(Azure DK), a fisheye camera, and a night-vision camera.
MEVA 2021 [24] MEVA is a new and very-large-scale dataset
for human activity recognition. The collection observed
approximately 100 actors performing scripted scenarios and
spontaneous background activity over a three-week period
at an access-controlled venue, collecting in multiple modal-
ities with overlapping and non-overlapping indoor and
outdoor viewpoints. The resulting data includes video from
38 RGB and thermal IR cameras, 42 hours of UAV footage,
as well as GPS locations for the actors.

APPENDIX F
DETAILS ON AERIAL HUMAN BEHAVIOR DATASETS

UAV-Human 2021 [80] Li et al. recently published a new
dataset for aerial human behavior understanding in CVPR
2021. The dataset was collected by a flying UAV in multiple
urban and rural districts in both daytime and nighttime over
three months, hence covering extensive diversities w.r.t.
subjects, backgrounds, illuminations, weathers, occlusions,
camera motions, and flying altitudes. The dataset contains
videos and annotations for multiple tasks, including action
recognition, pose estimation and person re-identification.
There are 67,428 multi-modal video sequences and 119
subjects for action recognition. The unique characteristic of
the dataset is multimodal aerial data was captured and pro-
vided using a depth sensor (Azure DK), a fisheye camera,
and a night-vision camera.
Drone-Action 2019
The Drone-Action dataset [111] was collated by a team of
academics out of the University of South Australia, this
dataset was developed in order to fill the gap of limited
outdoor footage. Most datasets were filled with footage
captured in doors. Published in 2019, Drone-Action con-
sists of 10 actors performing 13 different actions; Walking,
walking side, jogging, jogging side, running, running side,
hitting with bottle, hitting with stick, stabbing, punching,
kicking, clapping and waving hands. In total 240 videos
were collated, consisting of 66,191 frames annotated with
body joint estimations and bounding boxes.
Okutama-Action 2019
The Okutama-action dataset [8] is a comprehensive dataset
published in 2019 out of the University of Tokyo. The
dataset consists of fully annotated sequences similar to
Drone-action this dataset consists of 12 action classes; hand-
shaking, hugging, reading, drinking, pushing/pulling, car-
rying, calling, running, walking, lying down, sitting and
standing. Which are all categorized as either human-human,
human-object, or none-interaction. The dataset consists of
43 videos and 77365 frames fully annotated with bounding
boxes and body joint estimations. Fig. 15 below depicts a
sample from the Okutama dataset.
UCF-ARG: action features videos collected at an altitude
of 400-450ft (122-137m). Collated in 2008, the videos were
captured using a camcorder attached to a blimp [140]. UCF
Aerial action is part of the UCF-ARG dataset which consists
of footage collected from cameras stationed in different
positions; Aerial, Rooftop and ground. It consists of 48 aerial
videos of 12 actors performing 10 actions; boxing, carrying,

clapping, digging, jogging, open/closing trunk, running,
throwing, walking and waving [141].

Game-Action 2020: A unique approach to collecting aerial
videos is the use of video game characters instead of real
people. UCF along with a team out of ITU Pakistan in-
troduced the first of its kind dataset, games action dataset,
which uses human action footage from video games [132].
This footage is of characters in Grand Theft Auto 5 (GTA5)
performing 7 different human actions; cycling, fighting,
soccer kicking, running, walking, shooting and skydiving.
The team used the game FIFA to collect the footage of soccer
kicking. The dataset consists of 200 videos, 100 of which are
aerial footage. Sample of the aerial footage in the dataset is
depicted in Fig. 16 below.

DIASR 2020: Search and rescue implementations of drone-
based technology has garnered little interest from re-
searchers so far, however, due to the increasing capabilities
of drones and requirements to monitor remote areas drone
surveillance has become popular. To fill the gap of a lack of
search and rescue implementations [94] have proposed an
search and rescue dataset; Drone image action dataset for
search and rescue (DIASR) which consists of 30,000 frames
of HD video and images of multiple actors performing
6 different actions.The actions performed are intended to
mimic a person signaling / asking for help and include;
waving, standing, sitting, laying and handshaking. As the
name suggests the primary reason this dataset was curated
was to cultivate the implementation of search and rescue
implementations of drones using computer vision. A sample
of the dataset is depicted in Fig. 17 below.

AVI 2020: The AVI dataset [127] was developed to identify
violent individuals in public areas. The complete datasets
consist of 2,000 images with 10,863 humans where 5,124
(48%) engaged in one or more of the five violent activities
of (1) Punching, (2) Stabbing, (3) Shooting, (4) Kicking, and
(5) Strangling. These activities are performed by 25 subjects
between the ages of 18–25 years. These images are recorded
from the parrot drone at four heights of 2m, 4m, 6m and 8m.

Youtube Aerial 2020:

UT-interaction 2009
Published in 2009, UT-interaction [119] is a dataset con-
taining 6 different actions similar to Drone-Action; shake-
hands, point, hug, push, kick and punch. This dataset is
not as comprehensive as Drone-Action, UT-interaction is
comprised of 20 videos, shot at 720x480 resolution.

MOD 2020: is another dataset produced by the team at
the University of South Australia, it is their most recent
dataset. The dataset is curated to combat the challenges of
the angle / viewpoint of aerial footage and for this reason
the dataset fills a gap in the current literature regarding a
scarcity of multi viewpoint datasets. The dataset follows in
the footsteps of the others in that it is specifically focused
on outdoor scenes of action recognition. The dataset is a
collection of 2324 video clips, 503,086 frames, sourced from
YouTube or recorded on an unspecified drone by the team.
[113].

UAV-Gesture 2018
The same team out of the University of South Australia
produced another dataset, UAV-Gesture [112]. The aim of
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Figure 15: Sample frames from the Okutama-action dataset
[8].

Figure 16: Sample from the games-action dataset [132].

this dataset was that action recognition datasets where
aimed specifically at actions similar to those discussed in
the previous dataset. UAV-Gesture was designed to fill the
gaps in command signaling/gesturing datasets, the team
found there was a lack of data collected in an outdoor
environment. Published the year prior to Drone-Action in
2018, UAV-Gesture comprises of 10 actors performing 13
different gestures, all of which are aimed at being able to
control/command the drone to maneuver in a programmed
way upon recognition of the action. The dataset contains 119
videos with 37151 frames annotated with bounding boxes
and body joints estimations.

DDIR 2020: Systems that implement human action recogni-
tion are typically focused on identifying multiple different
actions, such as all the datasets highlighted in this section
so far. In contrast to this [7] have proposed an approach that
builds a natural interaction system to guide autonomous
drones. The approach focuses on fine grained variations of
the same human action; pointing and in order to validate
their framework, and foster future innovation in the same
area they have curated a dataset with variability in user
appearance, viewpoint camera distance and scenery. The
dataset presented is called Direction Dataset for Interaction
with Robots (DDIR) and is divided into 5 subsets denoted
DDIR1 to DDIR5. The number of actors range from 5 to
7 with up to 22,628 frames of VGA and FWVGA video.
Recorded on an unspecified drone, the dataset consists of
26 different actions, representing a different direction.

Figure 17: Sample from the DIASR dataset [94].

DLR’s Aerial Crowd Dataset (DLR-ACD): The DLR-ACD
dataset [5] is a collection of aerial images for crowd counting
and density estimation, as well as for person localization at
mass events. It contains 3 large RGB aerial images withaver-
age size of 3619× 5226 pixels acquired through 16 different
flight campaigns at various mass events and over urban
scenes involving crowds, such as sport events, city centers,
open-air fairs and festivals.

The images were recorded using a camera system com-
posed of three standard DSLR cameras (a nadir-looking and
two side-looking cameras) mounted on an airborne platform
installed on a helicopter flying at an altitude between 500
m to 1600 m with spatial resolution (or ground sampling
distance – GSD) ranges from 4.5 to 15 cm/pixel. The dataset
was labeled manually with point-annotations on individual
people and contains 226,291 person annotations in total,
ranging from 285 to 24,368 annotations per image.


