
Voxel-based 3D Detection and Reconstruction of
Multiple Objects from a Single Image

— Supplementary Material

Feng Liu Xiaoming Liu
Department of Computer Science and Engineering
Michigan State University, East Lansing MI 48824

{liufeng6, liuxm}@msu.edu

In this supplementary material, we provide:

� Additional implementation details including network structures, 3D heatmap calculation and data
preparation.

� Additional experimental results including visualization of the learned voxel features, additional
detection and reconstruction results, and shape representation comparison.

1 Implementation Details

1.1 Network Structures

We use a ResNet-34 without bottleneck layers as the backbone to extract features. The detailed
architecture is depicted in Fig. 1. The network takes an image as input and generates a D-channel
multi-scale 2D feature maps F ∈ RWF×HF×D. In our experiments, the image size of Pix3D,
ShapeNet-pairs and -triplets data is 256× 256 pixels, and 480× 640 for ScanNet-MDR data. The
3D keypoint, regression and coarse-level voxelization branches are separately implemented using
a two-convolution-layers network with sizes of 3× 3× 128 and 1× 1× ∗, where ∗ is the feature
channel of the respective output branch, i.e., 8 for the regression branch.

Figure 1: The architecture of the 2D feature extraction network. We reshape the feature maps to the original
image size with bilinear interpolation.
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Figure 2: Visualizations of the learned voxel features G. Feat #1: the preliminary G before feeding to
positional encoding and 3D U-Net. Feat #2: the output of the 3D U-Net. We visualize the feature maps in both
bird’s-eye view (BEV) and side view (SV) by applying average pooling to G. As can be seen, the learned voxel
features indeed reflect the object geometry and scene context information. The red boxes show the ground-truth
position of the objects.

1.2 3D Heatmap Calculation

For each ground-truth 3D keypoint of class c, we locate it at the pre-defined 3D grid and obtain its
corresponding voxel center c∗3d = [xc, yc, zc]

T . We then splat the center point onto the 3D grid and
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generate a heatmap using a Gaussian kernel

Y∗
xyzc = exp

(
− (x− xc)2 + (y − yc)2 + (z − zc)2

2σ2
c

)
, (1)

where σc is an object size-adaptive standard deviation, and is set to the diagonal length of the 3D
box in our experiments. If two Gaussians of the same class overlap, we take the element-wise
maximum [1].

1.3 Data Preparation

The training of our local PCA-SDF model needs a regular of point-SDF pairs for each boundary
voxel. We first voxelize and binarize the surface in our pre-defined 3D grid V. For each occupancy
voxel of the binary grid, we sample a regular lattice q ∈ Rk×k×k×3 (see Fig.3 (c) in the main paper)
and compute their SDFs s ∈ Rk×k×k×1 toward the surface by the work [2]. Based on the computed
SDFs, each voxel can be further divided into full occupancy voxel or boundary voxel. For instance,
if all elements of s are negative, it is a full occupancy voxel; otherwise, it is a boundary voxel.
Additionally, we can obtain the continuous coarse-level voxelization by measuring the ratio of the
number of negative elements for every voxel.

2 Experimental Results

2.1 Visualization of the Voxel Features

A central claim of our approach is that we learn geometry and context preserving voxel feature
representation which boosts the 3D detection and reconstruction performances. To investigate this,
we visualize the learned voxel feature G via two different views: bird’s-eye view (BEV) and side
view (SV). For either view, we apply average pooling across the feature channels. As shown in
Fig. 2, we show the features at two different stages: before feeding to positional encoding and 3D
U-Net (Feat #1) and output of the 3D U-Net (Feat #2). As can be observed, the voxel features (Feat
#2) visualize the objects’ contours, which indicates that the voxel features indeed learn the object
geometry information. Additional, the voxel features reflect the context information (i.e., position
and distance) of objects. Moreover, as mentioned in the main paper, the 2D-to-3D feature lifting
operator suffers from the feature smearing issue, wherein all voxels along a camera ray receive the
same feature information (see Feat #1). Thanks to the positional encoding and 3D U-Net, as shown
in Fig. 2, our voxel features can be semantically queried for any 3D location, even if it is not visible
from the input view.

2.2 Additional Reconstruction and Detection Results (video)

We provide additional reconstruction and detection results on Pix3D, ShapeNet-triplets and
ScanNet-MDR datasets (please also refer to the supplementary video). Since CoReNet [3] and
Points2Objects [4] do not release the models trained on Pix3D, we only provide qualitative compar-
isons with SOTA single object reconstruction method Liu et al. (CVPR21’) [5] on Pix3D. As can
be observed in Fig. 3 and the supplementary video, our reconstructions closely match the ground
truth. Figure 4 and 5 show qualitative results of detection and reconstruction on ShapeNet-triplets
and ScanNet-MDR datasets respectively.

2.3 Shape Representation Comparison (video)

In this experiment, we additionally provide qualitative shape representation comparisons with
DeepSDF [6] and DeepLS [7] in Fig. 6 and the supplementary video. For the local PCA-SDF
model, we also show the reconstructions on unseen categories with the models trained on one cate-
gory in Fig. 7 (please also refer to the dynamic version in supplementary video). As can be seen, the
model trained on one category (i.e., chair) can reconstruct other categories’ shapes at high quality.
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Figure 3: Qualitative single object reconstruction comparison with Liu et al. [5] on Pix3D dataset.

[2] Fun Shing Sin, Daniel Schroeder, and Jernej Barbič. Vega: non-linear fem deformable object
simulator. In Computer Graphics Forum, 2013.

[3] Stefan Popov, Pablo Bauszat, and Vittorio Ferrari. CoReNet: Coherent 3D scene reconstruction
from a single RGB image. In ECCV, 2020.

[4] Francis Engelmann, Konstantinos Rematas, Bastian Leibe, and Vittorio Ferrari. From points to
multi-object 3D reconstruction. In CVPR, 2021.

[5] Feng Liu, Luan Tran, and Xiaoming Liu. Fully understanding generic objects: Modeling,
segmentation, and reconstruction. In CVPR, 2021.

[6] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
DeepSDF: Learning continuous signed distance functions for shape representation. In CVPR,
2019.

[7] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and
Richard Newcombe. Deep local shapes: Learning local SDF priors for detailed 3D reconstruction.
In ECCV, 2020.

4



Input
image Proposed Ground-truth Input

image Proposed Ground-truth

Figure 4: Qualitative results on ShapeNet-triplets dataset.
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Figure 5: Qualitative results on ScanNet-MDR dataset.
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Figure 6: Qualitative comparison of our local PCA-SDF with DeepSDF [6] and DeepLS [7] on some shapes
from the ShapeNet dataset.

Figure 7: Two reconstructed examples on unseen categories with the models trained on one category.
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