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Abstract

In the supplementary material, we illustrate predicted
radar-camera association. Second, we evaluate the in-
fluences of two factors, depth and the angle between ac-
tual velocity and radial direction, on the performance of
point-wise full velocity estimation. Moreover, we report the
computational time of three components of the estimation
pipeline. Finally, we present a video showing point-wise
velocity estimation in real driving scenes.

1. Visualization of Predicted Radar-Camera
Association

Fig. 1 shows the mean of predicted association A for the
test set. It appears the radar point is more likely associated
with pixels above the raw projection, as the measured radar
height is always on the radar plane which is typically lower
than vehicle height.

Figure 1: Mean of predicted association over the test set in the
neighborhood of raw projection (marked by a red square). The
neighborhood region has a size of 9 × 15 pixels and association
estimation skips every other pixel to improve the computational
efficiency.

2. Velocity Estimation Error for Different
Depths and α

This experiment extends the evaluation of point-wise ve-
locity estimation discussed in Section 4.1 of the main paper.
In Fig. 2, each heat map shows point-wise velocity error un-
der different depth ranges, i.e [0, 25), [25, 50) and [50,∞)

meters as well as various α ranges, i.e. [0, 30), [30, 60) and
[60, 90] degrees, where α is the angle between actual mov-
ing direction and radial direction of a radar point and ranges
from 0 to 90 degrees. Results of the proposed method and
baseline are show in the first row and second row, respec-
tively. The baseline (second row), with only radial mea-
surement, suffers from large α since the the actual moving
direction is very different from radial direction under large
α. The proposed method outperforms the baseline in all
depth and α ranges for full velocity estimation.

3. Inference Time

The pipeline of our full velocity estimation includes
three major components, optical flow computation, radar-
camera association estimation and closed-form solution of
full velocity. The time used by each component per frame is
listed in Table 1. Our computational platform includes Intel
Core i7-8700 CPUs and a NVIDIA GeForce RTX 2080 Ti
GPU. The proposed closed-form solution achieves highly
efficient computation. Note the computational cost of op-
tical flow can be improved by limiting the region of flow
computation to areas with radar projections.

Components Time per Frame (s)
Optical Flow [1] 4.47× 10−1

Radar-camera Association 2.58× 10−3

Closed-form Velocity Computation 2.49× 10−4

Table 1: Computational time of three components in the method
pipeline.

4. Video File

In the video, we show point-wise velocity estimation
(black arrow) of dynamic radar points in bird-eye view of
radar coordinates. Moving radar points are also plotted with
radial velocity (red arrow) and static points are shown in or-
ange. The true velocity of vehicles are plotted as green ar-
row. The GT moving and static vehicles are plotted as solid
and dashed bounding boxes, respectively. Images with radar
projections are shown at top-left corner for reference.



(a) Full Velocity Error (b) Tangential Component Error (c) Radial Component Error

Figure 2: Comparison of average error (in meters) of point-wise velocity estimates by the proposed method (first row) and baseline
(second row). Columns 1, 2 and 3 are error of full velocity, tangential component and radial component, respectively. Each heat map
shows the error for radar points in different depth and α ranges, where α is the angle between full velocity and radial direction.
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