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Abstract

A distinctive feature of Doppler radar is the measure-
ment of velocity in the radial direction for radar points.
However, the missing tangential velocity component ham-
pers object velocity estimation as well as temporal integra-
tion of radar sweeps in dynamic scenes. Recognizing that
fusing camera with radar provides complementary informa-
tion to radar, in this paper we present a closed-form so-
lution for the point-wise, full-velocity estimate of Doppler
returns using the corresponding optical flow from camera
images. Additionally, we address the association problem
between radar returns and camera images with a neural
network that is trained to estimate radar-camera correspon-
dences. Experimental results on the nuScenes dataset ver-
ify the validity of the method and show significant improve-
ments over the state-of-the-art in velocity estimation and
accumulation of radar points.

1. Introduction
Radar is a mainstream automotive 3D sensor, and along

with LiDAR and camera, is used in perception systems for
driving assistance and autonomous driving [34, 18, 2]. Un-
like LiDAR, radar has been widely installed on existing ve-
hicles due to its relatively low cost and small sensor size,
which makes it an easy fit into various vehicles without
changing their appearance. Thus, advances in radar vision
systems have potential to make immediate impact on ve-
hicle safety. Recently, with the release of a couple of au-
tonomous driving datasets with radar data included, e.g.,
Oxford Radar RobotCar [1] and nuScenes [5], there is great
interest in the community to explore how to leverage radar
data in various vision tasks such as object detection [24, 37].

In addition to measuring 3D positions, radar has the spe-
cial capability of obtaining radial velocity of returned points
based on the Doppler effect. This extra capability is a sig-
nificant advantage over other 3D sensors like LiDAR, en-
abling, for instance, instantaneous moving object detection.
However, due to the inherently ambiguous mapping from
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Figure 1: (a) Full motion cannot be determined with a single sen-
sor: all motions ending on the blue dashed line (i.e., blue dashed
arrows) map to the same optical flow and all motions terminated
on the red dashed line (i.e., red dashed arrows) fit the same ra-
dial motion. However, with a radar-camera pair, the full motion
can be uniquely decided: only the motion drawn in black satis-
fies both optical flow and radial motion. (b) Optical flow in the
camera-image and (c) a bird’s-eye view of the observed vehicle.
This shows measured radar points with radial velocity (red), our
predicted point-wise, full velocity (black), and ground truth full
velocity of the vehicle (green).

radial velocity to full velocity, using radial velocity directly
to account for the real movement of radar points is inad-
equate and sometimes misleading. Here, the full veloc-
ity denotes the actual velocity of radar points in 2D or 3D
space. While radial velocity can well approximate full ve-
locity when a point is moving away from or towards the
radar, these two can be very different when the point is
moving in the non-radial directions. An extreme case oc-
curs for objects moving tangentially as these will have zero
radial velocity regardless of target speed. Therefore, ac-
quiring point-wise full velocity instead of radial velocity is
crucial to reliably sense the motion of surrounding objects.



Apart from measuring the velocity of objects, another
important application of point-wise velocity is the accumu-
lation of radar points. Radar returns from a single frame
are much sparser than LiDAR in both azimuth and eleva-
tion, e.g., typically LiDAR has an azimuth resolution 10×
higher than radar [37]. Thus, it is often essential to accu-
mulate multiple prior radar frames to acquire sufficiently
dense point clouds for downstream tasks, e.g., object detec-
tion [26, 6, 7]. To align radar frames, in addition to com-
pensating egomotion, we shall consider the motion of mov-
ing points in consecutive frames, which can be estimated
by point-wise velocity and time of movement. As the radial
velocity does not reflect the true motion, it is desirable to
have point-wise full velocity for point accumulation.

To solve the aforementioned dilemma of radial velocity,
we propose to estimate point-wise full velocity of radar re-
turns by fusing radar with a RGB camera. Specifically, we
derive a closed-form solution to infer point-wise full veloc-
ity from radial velocity as well as associated projected im-
age motion obtained from optical flow. As shown in Fig. 1,
constraints imposed by optical flow resolve the ambiguities
of radial-full velocity mapping and lead to a unique and
closed-form solution for full velocity. Our method can be
considered as a way to enhance raw radar measurement by
upgrading point-wise radial velocity to full velocity, laying
the groundwork for improving radar-related tasks, e.g., ve-
locity estimation, point accumulation and object detection.

Moreover, a prerequisite for our closed-form solution
is the association between moving radar points and image
pixels. To enable a reliable association, we train a neural
network to predict radar-camera correspondences as well
as discerning occluded radar points. Experimental results
demonstrate that the proposed method improves point-wise
velocity estimates and their use for object velocity estima-
tion and radar point accumulation.

In summary, the main contributions of this work are:

• We define a novel research task for radar-camera per-
ception systems, i.e., estimating point-wise full veloc-
ity of radar returns by fusing radar and camera.

• We propose a novel closed-form solution to infer full
radar-return velocity by leveraging the radial velocity
of radar points, optical flow of images, and the learned
association between radar points and image pixels.

• We demonstrate state-of-the-art (SoTA) performance
in object velocity estimation, radar point accumula-
tion, and 3D object localization.

2. Related Works

Application of Radar in Vision Radar data differs from
LiDAR data in various aspects [4]. In addition to the pop-
ular point representation (also named radar target [27]), an

analogy to LiDAR points, there are other radar data repre-
sentations containing more raw measurements, e.g., range-
azimuth image and spectrograms, which have been applied
in tasks such as activity classification [33], detection [20],
and pose estimation [30]. Our method is based on radar
points, with the format available in the nuScenes dataset [5].

The characteristics of radar have been explored to com-
plement other sensors. The Doppler velocity of radar points
is used to distinguish moving targets. For example, RSS-
Net [15] uses radial velocity as a motion cue for image se-
mantic segmentation. Chadwick et al. [6] use radial velocity
to detect distant moving vehicles—difficult to detect with
only images. Fritsche et al. [10] combine radar with LiDAR
for measurement under poor visibility. With a longer detec-
tion range than LiDAR, radar is also deployed with LiDAR
to better detect far objects [37].

The sparsity of radar makes it difficult to directly ap-
ply well-developed techniques for LiDAR on radar [20, 24].
For example, Danzer et al. [8] adopt PointNets [28] on radar
points for 2D car detection, while sparsity limits it to large
objects like cars. Similar to LiDAR-camera depth comple-
tion [12, 13], Long et al. [22] develop radar-camera depth
completion by learning a probabilistic mapping from radar
returns to images. To obtain denser radar points, Lom-
bacher et al. [21] use occupancy grid [9] to accumulate
radar frames. Yet, the method assumes a static scene and
cannot cope with moving objects. Radar points are pro-
jected on images and represented as regions near projected
points, such as vertical bars [26] and circles [6, 7], to ac-
count for uncertainty of projection due to measurement er-
ror. While accumulating radar frames is desirable, without
reliably compensating object motion, these methods need to
carefully decide the number of frames to trade off between
the gain in accumulation and loss in accuracy due to de-
lay [26]. Our estimated point-wise velocity can compensate
object motion and realize more accurate accumulation.

Velocity Estimation in Perception Systems Researchers
have used monocular videos [3] or radial velocity of radar
points to estimate object-wise velocity. With only radar data
of a single frame, Kellner et al. [16, 17] compute full veloc-
ity of moving vehicles from radial velocities and azimuth
angles of at least two radar hits. However, for a robust solu-
tion, the method requires that 1) radar captures more radar
hits on each object, 2) radar points have significantly differ-
ent azimuth angles and 3) object points are clustered before
velocity estimation [16, 32, 31]. Obviously due to sparsity
of radar in a single frame, it is difficult to obtain at least two
radar hits on distant vehicles, let alone objects of smaller
sizes. Also, it is common that radar points on the same ob-
ject, e.g., a distant or small object, have similar azimuth.

Recognizing the density and accuracy limitation of radar,
researchers fuse radar with other sensors, e.g., LiDAR and
camera, for object-wise velocity estimation. Specifically,
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Figure 2: Full velocity estimation and learning to associate radar points to camera pixels. (a) A 3D point, p, is observed by a camera
at B. A short interval, ∆t, later, the point has moved by ṁ∆t to q while the camera has moved by ċ∆t to A. At the same time, the
radar measures both the position of q and the radial speed ṙ, which is the radial component of ṁ. Using radial speed ṙ and the associated
optical flow of q in images, we derive a closed-form equation (denoted as f()) to estimate q’s full velocity ṁ. (b) As the closed-form
solution requires point-wise association of two sensors, we train a Radar-2-Pixel (R2P) network to take a multi-channel input and predict
the association probabilities for pixels within a neighborhood of the raw projection (white dot) obtained via known pose A

RT . A pixel
with the highest probability (yellow arrow) is deemed as the associated pixel of a radar point. To obtain labels for training R2P, our label
generation module uses f() to compute velocities of all neighboring pixels, then calculates velocity error Em by using the ground truth
velocity ṁGT , and finally obtains association probabilities of these neighbors based on Em.

existing techniques [38, 36, 19] for images or LiDAR are
employed to obtain preliminary detections. Radar data, in-
cluding radial velocity, once associated with the initial de-
tections, are used as additional cues to predict full velocities
of objects. For instance, in RadarNet [37] temporal point
clouds of radar and LiDAR, modeled as voxels, are used to
acquire initial detections and their motions. Object motion
direction is used to resolve the ambiguities in radar-point
association by back-projecting their radial velocities on the
motion direction. Yet, a sequence of LiDAR frames is re-
quired to obtain the initial detection and motion estimation.

CenterFusion [24] integrates radar with camera for
object-wise velocity estimation. Well-developed image-
based detector is applied to extract preliminary boxes. After
associating radar points with detections, the method com-
bines radar data, radial velocity and depth, with image fea-
tures within detected regions to regress a full velocity per
detection. However, without a closed-form solution, the
mapping from radial to full velocity needs to be learned
from a great number of labeled data. In contrast, we present
a point-wise closed-form solution for full-velocity estima-
tion of radar points, without performing object detection.
To our knowledge, there is no prior method able to perform
point-wise full-velocity estimation for radar returns.

3. Proposed Method

We consider the case of a camera and radar rigidly at-
tached to a moving platform, e.g., a vehicle, observing mov-
ing objects in the environment. In this section we develop
equations relating optical flow measurements in the camera

to position and velocity measurements made by the radar.

3.1. Physical Configuration and Notation

The physical configuration of our camera and radar mea-
surements is illustrated in Fig. 2(a). Three coordinate sys-
tems are shown: A and B specifying camera poses and R
specifying a radar pose. The camera at B observes a 3D
point p. A short interval later, ∆t, the point has moved to q,
the camera to A and the radar to R, and both the camera and
radar observe the target point q. These 3D points are spec-
ified by 4-dim homogeneous vectors, and when needed, a
left-superscript specifies the coordinate system in which it
is specified, e.g., Aq indicates a point relative to a coordi-
nate system A. The target velocity, ṁ, and camera velocity
ċ are specified by 3-dim vectors, again optionally with a left
superscript to specify a coordinate system.

Coordinate transformations, containing both a rotation
and translation, are specified by 4×4 matrices, such as B

AT ,
which transforms points from the left-subscript coordinate
system to the left-superscript coordinate system. In this case
we transform a point from A to B with:

Bq = B
AT

Aq. (1)

Only the rotational component of these transformations is
needed to transform velocities. For example, Aṁ is trans-
formed to Bṁ by the 3× 3 rotation matrix B

AR:

Bṁ = B
AR

Aṁ. (2)

A vector with a right subscript, e.g., pi, indicates the i’th
element of p, while a right subscript of “1:3” puts the first 3



elements in a 3-dim vector. For a matrix, the right subscript
indicates the row. Thus B

ARi is a 1×3 row vector containing
its i-th row. A right superscript “T” is a matrix transpose.

The projections of points p and q are specified in either
undistorted raw pixel coordinates, e.g., (xq, yq) or their nor-
malized image coordinates (uq, vq) given by:

uq = (xq − cx)/fx, vq = (yq − cy)/fy. (3)

Here cx, cy, fx, fy are intrinsic camera parameters, while
the right subscript of the pixel refers to the point being pro-
jected. Vectors for 3D points can be expressed in terms of
the normalized image coordinates:

Aq =


uqdq
vqdq
dq
1

 and Bp =


updp
vpdp
dp
1

 . (4)

Here dq and dp are depths of points Aq and Bp respectively.
We assume dense optical flow is available that maps tar-

get pixel coordinates observed in A to B as follows:

Flow ((uq, vq))→ (up, vp). (5)

Further, we assume the following are known: camera mo-
tion, BAT , relative radar pose, A

RT , and intrinsic parameters.

3.2. Full-Velocity Radar Returns

The Doppler velocity measured by a radar is just one
component of the three-component, full-velocity vector of
an object point. Here our goal is to leverage optical flow
from a synchronized camera to augment radar and estimate
this full-velocity vector for each radar return.

3.2.1 Relationship of Full Velocity to Radial Velocity

The target motion from p to q is modeled as constant veloc-
ity, ṁ, over time ∆t, such that

ṁ =
q1:3 − p1:3

∆t
. (6)

Our goal is to estimate the full target velocity, ṁ. Radar
provides an estimate of the target position, q, but not the
previous target location p. Radar also provides the signed
radial speed, ṙ, which is one component of ṁ. In the
nuScenes dataset ṙ is given by:

ṙ = r̂Tṁ. (7)

Here r̂ is the unit-norm vector along the direction to the
target Rq. Note that this equation is coordinate-invariant,
and could be equally written in A using Ar̂ and Aṁ. Now
Eq. (7) is actually the egomotion-corrected Doppler speed.
The raw Doppler speed, ṙraw, is the radial component of

the relative velocity between target and sensor, ṁ− ċ, and
this constraint is given by:

ṙraw = r̂T(ṁ− ċ), (8)

where ċ is the known ego-velocity. Either Eq. (7) or (8) can
be used in our formulation, depending on whether ṙ or ṙraw
is available from the radar.

3.2.2 Relationship of Full Velocity to Optical Flow

In solving the velocity constraints, we first identify the
known variables. The radar measures Rq, and transform-
ing this we obtain Aq = A

RT
Rq which contains dq as the

third component. Image coordinates (uq, vq) are obtained
by projection, and using optical flow in Eq. (5), we can also
obtain the (up, vp) components of Bp. The key parameter
we do not know from this is the depth, dp, in B.

Next we eliminate this unknown depth from our con-
straints. Eq. (6) can be rearranged and each component ex-
pressed in frame B:

Bp1:3 = Bq1:3 − B
AR

Aṁ∆t, (9)

where the second term on the right is the transformation of
the target motion into B coordinates. The third row of this
equation is an expression for dp:

dp = Bq3 − B
AR3

Aṁ∆t. (10)

Substituting this for dp, and the components of Bp from
Eq. (4), into the first two rows of Eq. (9), we obtain[
up(Bq3 − B

AR3
Aṁ∆t)

vp(Bq3 − B
AR3

Aṁ∆t)

]
=

[
Bq1 − B

AR1
Aṁ∆t

Bq2 − B
AR2

Aṁ∆t

]
, (11)

and rearrange to give two constraints on the full velocity:[
B
AR1 − up

B
AR3

B
AR2 − vp

B
AR3

]
Aṁ =

[(
Bq1 − up

Bq3

)
/∆t(

Bq2 − vp
Bq3

)
/∆t

]
. (12)

3.2.3 Full-Velocity Solution

We obtain three constraints on the full velocity, Aṁ, from
Eq. (12) and by converting Eq. (7) to A coordinates. Com-
bining these we obtain:B

AR1 − up
B
AR3

B
AR2 − vp

B
AR3

Ar̂T

Aṁ =

(Bq1 − up
Bq3

)
/∆t(

Bq2 − vp
Bq3

)
/∆t

ṙ

 . (13)

Then inverting the 3 × 3 coefficient of Aṁ gives a closed
form solution for the full velocity:

Aṁ =

B
AR1 − up

B
AR3

B
AR2 − vp

B
AR3

Ar̂T

−1 (Bq1 − up
Bq3

)
/∆t(

Bq2 − vp
Bq3

)
/∆t

ṙ

 . (14)
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Figure 3: (a) Optical flow; (b) Bird’s-eye view of GT bounding
box, radial velocity (red) and GT velocity (green); (c) and (d) show
Em, computed by using Eq. (16), for two radar projections (white
square) over 41 × 41 pixel regions, respectively. For radar hits
reflected from the vehicle, Em is small for neighboring pixels on
the car and large on the background.

Recall in Fig. 1(a) the red/blue dashed lines show the ve-
locity constraints from radar/flow. The solution of Eq. (14)
is the full velocity that is consistent with both constraints.
We note that this can handle moving sensors, although
Fig. 1(a) shows the case of a stationary camera for simplic-
ity. Further, if we set ∆t < 0, Eq. (14) also applies to the
case that the point shifts from q to p as the camera moves
from A to B. And one limitation is that Eq. (14) cannot es-
timate full velocity for radar points occluded in the camera
view, although we can typically identify those occlusions.

3.3. Image Pixels and Radar Points Association

Our solution for point-wise velocity in Eq. (14) assumes
that we know the pixel coordinates (uq, vq) of the radar-
detected point, Rq. It appears straightforward to obtain this
pixel correspondence by projecting a radar point onto the
image using the known radar-image coordinate transforma-
tion, A

RT . We refer to this corresponding pixel as “raw pro-
jection”. However, there are a number of reasons why raw
projection of radar points into an image is inaccurate. Radar
beam-width typically subtends a few degrees and is large
relative to a pixel, resulting in low resolution target loca-
tion in both azimuth and elevation. Also, a radar displaced
from a camera can often see behind an object, as viewed
by the camera, and when these returns are projected onto
an image they incorrectly appear to correspond to the fore-
ground occluding object. Using flow from an occluder or
an incorrectly associated object pixel may result in incor-
rect full-velocity estimation. To address these issues with
raw projection, we train a neural network model, termed
Radar-2-Pixel (R2P) network, to estimate associated radar

pixels in the neighborhood of raw projection and identify
occluded radar points. Similar models have been applied to
image segmentation [14] and radar depth enhancement [22].

3.3.1 Model Structure

Our method estimates association probabilities (ranging
from 0 to 1) between a moving radar point and a set of pix-
els in the neighborhood of its raw projection. The R2P net-
work is an encoder-decoder structure with inputs and out-
puts of image resolution. Stored in 8 channels, the input
data include image, radar depth map (with depth on raw
projections) and optical flow. The output has N channels,
representing predicted association probability for N pixel
neighbors. The association between the radar point, Aq,
and the k-th neighbor of raw projection (x, y) is stored in
A(x, y, k), where k = 1, 2, ..., N .

3.3.2 Ground Truth Velocity of Moving Radar Points

The nuScenes [5] provides the GT (ground truth) velocity
of object bounding boxes. We associate radar hits on an ob-
ject to its labeled bounding box, and assign the velocity of
the box to its associated radar points. The association is de-
termined based on two criteria: 1) in radar coordinates, the
distance between radar points and associated box is smaller
than a threshold Td; and 2) the percentage error between the
radial velocity of a radar point and the radial component of
the velocity of associated box is smaller than a threshold Tp.

3.3.3 Generating Association Labels

We can project a radar point expressed in corresponding
camera coordinates, Aq, to pixel coordinates (uq, vq), but
as mentioned before, often this image pixel does not corre-
spond to the radar return. Our proposed solution is to search
in a neighboring region around (uq, vq) for a pixel whose
motion is consistent with the radar return. This neighbor-
hood search is shown in Fig. 2. If a pixel is found, then we
correct the 3D radar location Aq to be consistent with this
pixel, otherwise we mark this radar return as occluded.

We learn this radar-to-pixel association and correction
by training the R2P network. We generate true association
score between a radar point and a pixel according to the
compatibility between the true velocity and the optical flow
at that pixel: high compatibility indicates high association.
To quantify the compatibility, assuming a pixel is associated
with a radar point, we compute a hypothetical full velocity
for the radar point by using the optical flow of that pixel
according to Eq. (14). The flow is considered compatible if
the hypothetical velocity is close to the GT velocity. Specif-
ically, the hypothetical velocity can be computed as

Aṁest(x, y, k) = f
(
ŭq, v̆q, ŭp, v̆p, dq, ṙ,

B
AT ,ART

)
, (15)



where k = 1, · · · , N , f(·) is the function to solve full ve-
locity via Eq. (14), and (x, y) is the raw projection of the
radar point. Note that ŭq = uq [x + ∆x(k), y + ∆y(k)], v̆q
is defined similarly, and [∆x(k),∆y(k)] is the coordinate
offset from raw projection to the k-th neighbor. Using flow,
Eq. (5), we obtain (ŭp, v̆p) from (ŭq, v̆q).

Second, we calculate the L2 norm of errors between
Aṁest(x, y, k) and ground truth velocity AṁGT (x, y) by

Em(x, y, k) = ‖Aṁest(x, y, k)− AṁGT (x, y)‖2. (16)

Fig. 3 shows examples of Em for two radar hits on a car.
Finally, we transform Em to an association score with

L(x, y, k) = e−
E2

m(x,y,k)

c , (17)

where L is used as a label for association probability be-
tween a radar and its k-th neighbor. Note that L increases
with decreasing Ev , and c is a parameter adjusting the tol-
erance of velocity errors when converting errors to associa-
tion. We use the cross entropy loss to train the model.

3.3.4 Estimate Association and Identify Occlusion
With a trained model, we can estimate association proba-
bility between radar points and N pixels around their raw
projections (x, y), i.e., A(x, y, k). Among the N neighbors,
the radar return velocity may be compatible with a number
of pixels, and we select the pixel with the maximum associ-
ation, Amax, as the neighbor ID kmax:

kmax = arg max
k

[A(x, y, k)]. (18)

If Amax is equal or larger than a threshold Ta, we estimate
the associated pixel as [x + ∆x(kmax), y + ∆y(kmax)].
Otherwise there is no associated pixels in the neighborhood,
and an occlusion is identified.

4. Experimental Results
4.1. Comparison of Point-wise Full Velocity

To the best of our knowledge, there is no existing method
estimating point-wise full velocity for radar returns. Thus,
we use point-wise radial velocity from raw radar returns as
the baseline to compare with our estimation. We extract
data from the nuScenes Object Detection Dataset [5], with
6432, 632, and 2041 samples in training, validation and test-
ing set, respectively. Each sample consists of a radar scan
and two images for optical flow computation, i.e., one im-
age synchronizing with the radar and the other is a neigh-
boring image frame. The optical flow is computed by the
RAFT model [35] pre-trained on KITTI [11]. The R2P net-
work is an U-Net [29, 23] with five levels of resolutions
and 64 channels for intermediate filters. The neighborhood
skips every other pixel, and its size (in pixels) is (left: 4,

Mean Error (STD) Ours Ours Baseline
(m/s) (R2P Network) (Raw Projection)

Full Velocity 0.433 (0.608) 0.577 (1.010) 1.599 (2.054)
Tangential Comp. 0.322 (0.610) 0.472 (1.024) 1.536 (2.083)

Radial Comp. 0.205 (0.196) 0.205 (0.196) 0.205 (0.196)

Table 1: Comparison of point-wise velocity error of our methods
and the baseline (raw radial velocity).

Methods Error (m/s)
Ours 0.451

CenterFusion [24] 0.826

Table 2: Comparison of object-wise velocity errors. For a fair
comparison we inherit the same set of detected objects from [24].

right: 4, top: 10, bottom: 4) and an example of the neigh-
borhood is illustrated in Fig. 2(b). The threshold of associ-
ation scores Ta is 0.3. Parameters associating radar points
with GT bounding box are set as Td = 0.5m and Tp = 20%.
Parameter c in Eq. (17) is 0.36. To obtain GT point-wise ve-
locity, based on the criteria in Sec. 3.3.2, we first associate
moving radar points to GT detection boxes, whose GT ve-
locity is assigned to associated points as their GT velocity.
The GT velocity of bounding boxes is estimated from GT
center positions in neighboring frames with timestamps.

Tab. 1 shows the average velocity error for moving
points. The proposed method achieves substantially more
accurate velocity estimation than the baseline. For instance,
the error of our tangential component is only 21% of that
of the baseline. We also have much smaller standard de-
viation, indicating more stable estimates. In addition, we
list in Tab. 1 velocity error of our method using raw radar
projection for radar-camera association. Results show that,
compared with using raw projection, using R2P network
achieves higher estimation accuracy. Fig. 4 illustrates qual-
itative results of our point-wise velocity estimation.

4.2. Comparison of Object-wise Velocity

Although there are no existing methods for point-wise
velocity estimation for radar, a related work, CenterFu-
sion [24], estimates object-wise full velocity via object de-
tection with image and radar inputs. To fairly compare with
CenterFusion, we convert our point-wise velocity to object-
wise velocity. Specifically, we use the average velocity of
radar points associated with the same detected box as our
estimate of object velocity. Points are associated with de-
tected boxes according to distance. Note the point-wise
velocity to object-wise velocity conversion is straightfor-
ward for comparison purposes, and there would be more
advanced approaches to integrate point-wise full velocities
in a detection network, which is beyond the scope of this
work. Tab. 2 shows that with our estimated full velocity, the
velocity estimation for objects is significantly improved.
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Figure 4: Visualization of point-wise velocity estimation: (a) depth of all measured radar returns as well as flow, (b) optical flow in the
white box region, (c) association scores around the selected radar projections as well as predicted mapping from raw radar projections to
image pixels (yellow arrow) and (d) radial velocity (red), estimated full velocity (black) and GT velocity (green) in bird’s-eye view.

4.3. Radar Point Accumulation

Accumulating radar points over time can overcome the
sparsity of radar hits acquired in a single sweep, achiev-
ing dense point cloud for objects and thus allowing tech-
niques designed for processing LiDAR points to be appli-
cable for radar. The point-wise velocity estimate makes it
possible to compensate the motion of dynamic objects ap-
pearing in a temporal sequence of measurements for accu-
mulation. Specifically, for a moving radar point (with esti-
mated velocity ṁ) in a previous frame i captured at time ti,
its motion from ti to the time at the current frame, t0, can
be compensated by,

p0 = pi + ṁ(t0 − ti), (19)

where pi and p0 are the radar point coordinates at ti and t0
in radar coordinates of ti. Then p0 is transformed to current
radar coordinates by known egomotion from ti to t0.

Qualitative results Fig. 6 shows accumulated points of
moving vehicles in radar coordinates. For comparison, we
show accumulated radar points compensated by our esti-
mated full velocity, compensated with radial velocity (base-
line) and without motion compensation. Compared with
the baseline and no motion compensation, our accumulated
points are more consistent with the GT bounding boxes.

Quantitative results To quantitatively evaluate the accu-
racy of radar point accumulation, we use the mean distance

Figure 5: Error comparison when accumulating radar points from
increasing number of frames. The lines represent mean error and
shaded area ±0.1× STD. Our full velocity based accumulation
outperforms the ones with radial velocity, or no compensation.

from accumulated points (of up to 25 frames) to their corre-
sponding GT boxes as the accumulation error. This distance
for points inside the box is zero, and outside it is the distance
from the radar point to the closest point on the box’s bound-
ary. In Fig. 5, we compare the accumulation for our method,
the baseline and accumulation without motion compensa-
tion. While error increases with the number of frames for
all methods, our method has the lowest rate of error escala-
tion.

Application of pose estimation To demonstrate the utility
of accumulated radar points for downstream applications,
we apply a pose estimation method, i.e., BoxNet [25], on
the accumulated 2D radar points via our full velocity and



(a) (b) (c) (d) (e)

Figure 6: Moving radar points are plotted with point-wise radial (red) and full (black) velocity, including image with bounding box (a),
single-frame radar points in bird’s-eye view (b), accumulated radar points from 20 frames without motion compensation (c), with radial
velocity based compensation (d), and with our full-velocity based compensation (e). Our accumulated points are tightly surrounding the
bounding box, which will benefit downstream tasks such as pose estimation and object detection.

Metric Ours Baseline
Center Error (m) ↓ 0.834 0.997

Orientation Error (degree) ↓ 6.873 7.517
IoU ↑ 0.546 0.462

Table 3: Comparison of pose estimation performance: average er-
ror in center and orientation as well as Intersection over Union
(IoU), by using BoxNet [25] on radar points accumulated using
our velocity and the radial velocity as a baseline.

radial velocity (baseline), respectively. BoxNet takes pre-
segmented 2D point clouds of an object as input and pre-
dicts a 2D bounding box with parameters as center position,
length, width and orientation. We use accumulated radar
points of 5702, 559 and 2001 moving vehicles with cor-
responding GT bounding boxes as training, validation and
testing data, respectively. Tab. 3 shows our accumulated
radar achieves higher accuracy than the baseline.

5. Conclusion

A drawback of Doppler radar has been that it provides
only the radial component of velocity, which limits its util-
ity in object velocity estimation, motion prediction and
radar return accumulation. This paper addresses this draw-
back by presenting a closed-form solution to the full veloc-
ity of radar returns. It leverages optical flow constraints to
upgrade radial velocity into full velocity. As part of this
work, we use GT bounding-box velocities to supervise a
network that predicts association corrections for the raw
radar projections. We experimentally verify the effective-
ness of our method and demonstrate its application on mo-
tion compensation for integrating radar sweeps over time.

This method developed here may apply to additional
modalities such as full-velocity estimation from Doppler Li-
DAR and cameras.
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