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Abstract

As a direct depth sensor, radar holds promise as a tool to
improve monocular 3D object detection, which suffers from
depth errors, due in part to the depth-scale ambiguity. On the
other hand, leveraging radar depths is hampered by difficulties
in precisely associating radar returns with 3D estimates from
monocular methods, effectively erasing its benefits. This paper
proposes a fusion network that addresses this radar-camera
association challenge. We train our network to predict the
3D offsets between radar returns and object centers, enabling
radar depths to enhance the accuracy of 3D monocular de-
tection. By using parallel radar and camera backbones, our
network fuses information at both the feature level and detec-
tion level, while at the same time leveraging a state-of-the-art
monocular detection technique without retraining it. Exper-
imental results show significant improvement in mean aver-
age precision and translation error on the nuScenes dataset
over monocular counterparts. Our source code is available at
https://github.com/longyunf/radiant.

1 Introduction
Three-dimensional object detection is a core vision problem
where the task is to infer 3D position, orientation, and classi-
fication of objects in a scene. Applications that rely on this
include robotics (Saxena, Driemeyer, and Ng 2008), gaming
(Rematas et al. 2018), and automotive safety (Simonelli et al.
2020). In the latter application, Advanced Driver Assistance
Systems can move beyond automated braking and use pre-
cise location and orientation of nearby vehicles and other
objects to perform collision avoidance maneuvers. However,
a key limiting factor is the relatively poor accuracy of 3D ob-
ject detection, both in current systems and in state-of-the-art
(SOTA) methods that rely on widely used sensors, namely
cameras (Park et al. 2021; Lu et al. 2021) and radars (Yang
et al. 2020). Thus, there is a significant need for improved
3D object detection, which is the goal of this paper.

Image-based object detection achieves high 2D accuracy
(Brazil and Liu 2019b); for instance, DD3D (Park et al. 2021)
achieves 94% 2D mean average precision (mAP) for cars on
KITTI (Geiger, Lenz, and Urtasun 2012). However, the per-
formance of these same SOTA methods drops precipitously
on 3D object detection with DD3D (Park et al. 2021) only
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Figure 1: Predicted radar-offsets (cyan arrows) from radar points
(dots) to object centers (orange plus) in (a) pixel space and (b) bird’s-
eye view (BEV) in meters. RADIANT trains a network to predict
these offsets and improves monocular 3D detection. Orange boxes
represent the GT bounding boxes, and dashed lines denote borders
of the camera field of view.

achieving 16.9% 3D mAP of cars on KITTI. The lower 3D
performance of monocular detection comes largely from poor
depth estimation (Ma et al. 2021; Kumar et al. 2022). This
is expected as image projection removes depth, and recover-
ing object depth from an image suffers from the depth scale
ambiguity (Tang, Dorn, and Savani 2020), and is therefore
error-prone. Indeed, when (Xu et al. 2021) uses precise depth
from LiDAR, mAP of cars increases to over 90%. Typically
LiDAR is a specialized sensor that is relatively expensive
(Kumar, Brazil, and Liu 2021) and only available on a small
fraction of vehicles. On the other hand, radar is small (Lien
et al. 2016), inexpensive, and widely available on existing ve-
hicles so we choose to use radar for the broader impact. Thus,
this paper explores the fusion of direct depth measurements
available from the radar with a 3D monocular detector.

The choice to use automotive radar rather than LiDAR
presents several challenges. At first glance, one might con-
sider using a similar 3D object-detector on radar points as
for LiDAR (Wang et al. 2021f). However, that does not work
because the radar data has completely different characteris-
tics from the LiDAR point cloud (Wang et al. 2021f). First,
each radar-point sweep is much sparser than a typical LiDAR
measurement in azimuth (Yang et al. 2020) and has a single
row in elevation, leaving radar coordinates without height in-
formation. Thus, differing from LiDAR, radar cannot acquire
accurate shapes with dense point clouds. Additionally, the
radar point positions have significant azimuth errors (Yang
et al. 2020) and are much less accurate (Wang et al. 2021f) as
measurements of object surfaces. Next, for each radar scan



there is often only a single radar return at longer ranges and
sometimes no radar returns for small objects. This sparsity
makes 3D object detection solely based on radar points diffi-
cult. Thus, rather than detection-level fusion, our approach
uses feature-level fusion to augment radar points and these
augmented radar points to refine monocular object depths.
Finally, since the widely-used KITTI dataset (Geiger, Lenz,
and Urtasun 2012) does not include radar data, we use the
nuScenes dataset (Caesar et al. 2020) for experiments.

The association and fusion of image and radar modalities
is possible at input-level, feature-level, or even at detection-
level. However, any such association must address the miss-
ing height, imprecise angular location of radar returns and
the observation that occluded portions of objects also return
radar points (Long et al. 2021b). Rather than using inaccurate
radar projections on image for association, this paper uses
a neural network to explicitly predict point-wise 3D object
centers (see Fig. 1). Predicting these point-wise object cen-
ters from a trained network allows us to use radar to correct
depth errors of monocular detection, which results in a new
SOTA for radar-camera 3D object detection.

This paper presents a radar-camera fusion method named
RADar-Image Association NeTwork (RADIANT) for 3D
object detection, including the following contributions:

• Our method enhances radar returns to obtain 3D object
center detections from each radar return.

• We achieve camera-radar association at the detection level
using the enhanced radar locations.

• Our architecture can leverage multiple different pre-
trained SOTA monocular methods.

• We improve monocular object depth estimates by fusing
enhanced radar depths and achieve new improved SOTA
performance on nuScenes.

2 Related Work
Monocular Detection Differing from LiDAR-based detec-
tion (Shi, Wang, and Li 2019), monocular 3D detection
is widely applied for its low cost and simple configura-
tion (Brazil and Liu 2019a). Researchers have been improv-
ing detection performance via upgrading detection frame-
works (Wang et al. 2021d; Liu et al. 2019), losses (Simonelli
et al. 2020), joint detection and 3D reconstruction (Liu and
Liu 2021), and non-maximum suppression (Kumar, Brazil,
and Liu 2021). To reduce 2D to 3D ambiguities, various
strategies have been developed, e.g., Pseudo-LiDAR (Wang
et al. 2019; Ma et al. 2019, 2020; Simonelli et al. 2021;
Park et al. 2021), novel convolutions (Ding et al. 2020),
backbones (Kumar et al. 2022), considering camera geome-
try (Zhou et al. 2021), using shape models (Liu et al. 2021;
Chabot et al. 2017) and leveraging videos (Brazil et al. 2020).
Radar-Camera Fusion Radar has been fused with LiDAR
and camera. Radar-LiDAR fusion has been utilized in 3D
object detection (Yang et al. 2020) and object tracking (Shah
et al. 2020) as radar complements LiDAR in long range and
motion (i.e., Doppler velocity) measurements. Nevertheless,
most works combine radar with camera for advantages listed
in Sec. 1. There has been a surge in research of radar-camera

fusion recently since the release of new autonomous driving
datasets (Ouaknine et al. 2021; Dong et al. 2020; Barnes
et al. 2020; Wang et al. 2021e; Shuai et al. 2021; Caesar
et al. 2020) with images and radar data collected. The radar
data is in raw data format (Ouaknine et al. 2021; Dong et al.
2020; Barnes et al. 2020; Wang et al. 2021e) (such as range-
azimuth-doppler format (Major et al. 2019)) or processed
format (i.e., radar point clouds (Shuai et al. 2021; Caesar
et al. 2020)). Raw radar format contain denser measurement
while point clouds are sparser but have less noise. Algorithms
are designed according to specific radar format used. In this
paper, we use the radar point cloud format from the nuScenes
dataset (Caesar et al. 2020). The goals for radar-camera fu-
sion include depth completion (Long et al. 2021b; Lee, Jo-
vanov, and Philips 2021), full-velocity estimation (Long et al.
2021a), object tracking (Nabati, Harris, and Qi 2021) and
object detection (Nabati and Qi 2019, 2021).

A focus of radar-camera fusion is 2D object detection on
images (Li and Xie 2020; Shuai et al. 2021; Nabati and Qi
2019; Yadav, Vierling, and Berns 2020), where projected
radar points are used as extra features or candidates for poten-
tial objects. For example, method (Nabati and Qi 2019) maps
radar detections to the image coordinate system and generates
anchor boxes for each mapped radar detection point. Here
radar plays an important role when the image is not clear
because of darkness or long distances. However, the research
on 3D object detection via radar-camera fusion is still at
an early stage with few publications. One top-performing
work is centerFusion (Nabati and Qi 2021), which directly
combines monocular detections with raw radar points in the
neighborhood followed by a regression head to refine the
depth estimate. In light of the significant gap between radar
points and object centers, we believe this apples and oranges
combination limits the utility of radar depths in CenterFusion.
Our method, on the other hand, estimates the 3D object center
for each radar return. This geometric correction performed by
the radar branch then enables our fusion module to effectively
combine multiple estimates of 3D center points from radar
and camera for better 3D detection.

3 Background and Definitions

Radar-Positives. A key component of training a detection
network involves the choice of candidates and the rule to
construct positives. FCOS3D (Wang et al. 2021b) treats each
pixel as an object candidate, and positive pixels for training
detections are defined as small regions in the neighborhood
of projected centers of 3D objects. To train the network to
predict radar offsets, RADIANT follows the same strategy
but now treats each radar return as an object candidate and
considers the associated projected radar pixel as positive.
Association of radar returns with an object is easy if the
radar projection always falls on the object. However, radar
returns returned by an object are sometimes outside the ob-
ject bounding box due to the measurement error (Yang et al.
2020). Moreover, the nuScenes dataset also does not provide
GT object label for radar points. Thus, we carry out the radar-
object association for training according to the position and
velocity consistency. If the distance between an outside radar
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Figure 2: Overview of RADIANT. RADIANT architecture has two parallel input branches, an image branch and a radar branch that both
operate in the image space. More details of these branches are shown in Fig. 3. The depth fusion module combines depth estimates from both
the camera and radar heads to obtain a refined overall depth for each detection.

Figure 3: RADIANT Architecture Details. RADIANT architecture includes two parallel branches. On the right (in magenta) is the unchanged
monocular detection pipeline. On the left (in blue), the radar network processes image-projected radar points and borrows features from the
monocular network to predict offsets to the radar pixels and to their depths in the shared radar head block.

point and the object GT bounding box is smaller than a thresh-
old as well as the projection of GT object velocity on radial
detection is close to the Doppler velocity from radar point,
we associate the radar pixel with the object and consider that
radar pixel as positive.
Radar Depth Offset. Radar depth offset ∆ẑr is the depth
difference between the 3D center of its associated object z
and a positive radar point zr, and is thus given by

∆ẑr = z − zr. (1)

As mentioned, this residual depth is a result of radar mea-
surement error and relative position of radar hit on object
surfaces. We infer the residual depth from both radar and
image information around.

4 RADIANT
Monocular 3D detection without depth as input suffers from
inaccurate depth estimation (Ma et al. 2021; Wang et al.

2021a), especially for far objects. Our goal is to upgrade
3D camera detections with more accurate depth from radar
with minimal changes to the image detection pipeline. To
achieve this we address two difficulties. (1) While radar re-
turns typically provide more precise depth than camera-based
detections, which part of an object they measure can be diffi-
cult to determine as it may be the front surface or an internal
or occluded point on the object. This unknown offset can add
significant error to a radar depth estimate when combined
with an image-based detection. (2) The radar return point can
sometimes be outside the true object bounding box, and this
complicates the association between radar points and objects.

Our solution is to train a radar-focused network to predict
the unknown offsets between radar points and object cen-
ters. These offsets include both an image-plane offset to the
projection of the 3D center, and a depth offset to the object
center. Assuming these offsets are correctly estimated, the
association between radar points and objects becomes much
easier. Furthermore, since they predict the object center, we



use the offsets to correct the object center depth.
Our architecture consists of two branches and a fusion

block as shown in Fig. 2. The upper branch is a monocular
3D detection network, such as FCOS3D (Wang et al. 2021b),
which remains unchanged, while the lower branch is the radar
detection branch. The image branch predicts object centers
and pixel offsets to these centers in the image plane. Now
radar points are projected into the image plane, providing
coarse alignment with image detections, and processed with
the radar backbone network. Since radar points are sparse
and lack contextual information, we bring features from the
image backbone into the radar network providing image-
plane spatial information to the radar pipeline. Then the radar
neck and head portions perform the radar-based detection in
the image space, but only at radar pixels, i.e., the projection
of radar points onto the image plane, at five resolutions to
maintain consistency with FCOS3D. We then fuse these two
sets of detections through a depth fusion module that updates
the predictions’ depths using a confidence score.

4.1 Radar Branch
One of the goals in designing RADIANT is to make minimal
changes to the existing monocular architectures. Therefore,
RADIANT builds seamlessly on top of an existing SOTA
monocular network, such as FCOS3D (Wang et al. 2021b),
which can be separately trained. While it would be natural to
simply augment color images with additional radar channels
and retrain the image network, we found this ineffective, with
the resulting network unable to benefit from the radar data.
Instead, we use a separate backbone, ResNet-18 (He et al.
2016), for the radar processing and freeze the image branch
while training, see Fig. 3.

The inputs to the radar branch are in image coordinates
with values on radar projections, consisting of radar depth,
radar bird’s-eye view (BEV) coordinates, Doppler velocity,
and a mask for radar pixels. Except for the backbone and
losses, the majority of the radar branch is similar to the im-
age branch, with a radar backbone processing inputs and
generating radar features, which are concatenated with image
features at three resolution levels, then go through an indepen-
dent neck consisting of a feature pyramid network (FPN) and
the radar heads. The radar branch outputs data in the same
space, i.e., five levels of image resolutions, and uses the same
classification and regression losses. This makes the radar
branch outputs compatible with the image branch outputs.
RADIANT performs image and radar fusion at two stages: a
feature-level fusion from the backbone, and detection-level
fusion after the heads.

4.2 Radar Heads
Radar heads take in fused radar and image features of five
resolutions and predict class scores as well as relative posi-
tions to the object center, namely the depth offset and the
pixel offset. The radar head ignores prediction of object sizes
as radar points are too sparse to reveal shape information.
We build radar heads independently from monocular cam-
era heads because of the differences in what they predict as
well as the definition and positions of positive pixels: (1)
camera heads estimate the full depth of objects while radar

heads estimate offset depth with respect to radar measured
depth; (2) positive camera pixels are only a 3 × 3 region
at the object center while positive radar pixels may be fur-
ther away from the center. Nevertheless, we use the same
strategy of FCOS3D (Wang et al. 2021b) to assign positive
pixels to different resolution levels so that larger objects are
detected at lower resolutions. In summary, the radar head
is complementary to the camera head with more accurate
position estimation for those objects with radar hits on them.

4.3 Depth Fusion Module
Detection heads generate detection candidates for pixels clas-
sified as positive. As the depths from radar and camera heads
are predicted independently, to take advantage of both depths,
they are fused in the Depth Fusion module as follows. First,
radar pixels are associated with monocular detection candi-
dates. This is straight forward as the radar head outputs depth
and pixel offsets, and these can be matched to 3D centers of
detection candidates. Second, a confidence-based weight is
predicted for each radar pixel enabling its depth to be com-
bined with the monocular-based depth. Note that we focus on
using radar to enhance only depth prediction since the depth
accuracy is a primary merit of radar compared to camera,
while other aspects of detection such as object size and image
position are unlikely to be improved by radar. This fusion
process is described in detail as follows.
Radar-Camera Association. RADIANT outputs two sets
of detections from each head: {bci}i from camera head and
{brj}j from radar head, where i and j represent indices of
detections from camera and radar head, respectively. Typical
outputs from the camera head are box proposals for detection
bci , consisting of projected center (ûci ,v̂

c
i ), depth ẑci , classifi-

cation index Ŷci , detection scores σ̂ci , dimensions of the 3D
box, orientation and deltas for 2D detections. The outputs
from the radar head are box deltas for detection which con-
tain the pixel offsets (∆ûrj ,∆v̂rj ) from the projected radar
point (urj ,v

r
j ), depth offset ∆ẑrj of the object center from the

radar depth zrj , radar classification index Ŷrj and detection
score σ̂rj .

Since the radar head does not affect 2D detection, 3D di-
mensions and orientations, we omit these variables in the
camera outputs bci in the subsequent paragraphs for brevity.
In other words, we only specify the relevant portion of 13D
bci vector in the following text. We now write these two set
of detections as

bci =
�
ûci , v̂

c
i , ẑ

c
i , Ŷci , σ̂ci

�
,

brj =
�
∆ûrj ,∆v̂rj ,∆ẑrj , Ŷrj , σ̂rj

�
. (2)

We then filter the box proposals from both camera and
radar as follows. The camera head outputs a maximum of
1,000 boxes with the highest scores on each level and with
σ̂ci > Tc where Tc denotes the minimum threshold for the
box to be valid. We employ a similar procedure for radar
detection candidates and consider radar projections and with
σ̂rj > Tr. After the filtering step, we have good box proposals
from the two modalities.



We now have the radar pixel
�
urj , v

r
j

�
and corresponding

depth/pixel offsets which we use for the radar-camera associ-
ation. We calculate the projected centers

�
ûrj ,v̂

r
j

�
and depths

ẑrj of the boxes as�
ûrj ,v̂

r
j

�
=
�
urj ,v

r
j

�
−
�
∆ûrj ,∆v̂rj

�
,

ẑrj = zrj +∆ẑrj . (3)

We consider a camera proposal is associated with the
radar proposal if the predicted class labels of the two modali-
ties match, and the projected centers and the depths are close
to each other. In other words, we take a camera proposal
bci and iterate through the radar propsals brj and a match is
found if the following conditions are satisfied:

Ŷci = Ŷrj (4)

|| (ûci ,v̂ci )−
�
ûrj ,v̂

r
j

�
||2 < Tp (5)

|ẑci − ẑrj | < Td, (6)

where Tp and Td denotes the distance threshold on pixels
and the depth respectively. We use different thresholds for
projected centers and depth as the errors in the two spaces are
different. Thus, we obtain a set of potential corresponding
radar detections {brj} for each bci . The complexity of match-
ing is O (MN), where M and N is the number of camera
and radar proposals. The score based thresholding limits the
running time of the downstream matching algorithm.
Depth Weighting Network. The high-level idea of RADI-
ANT is to update the monocular depth of the boxes with
better depth from radar. Although the radar depth is generally
more accurate than the camera depth, the camera depth may
be better for nearby objects because of the richer semantic
information. Thus, always preferring radar depth over cam-
era is not beneficial. In other words, there should be a better
weighting mechanism between the two depths. Hence, to bet-
ter determine association and depth weights for a potential
camera-radar detection pair extracted with Eqs. (4) to (6),
we train another depth weighting network (DWN) to output
relative confidence in radar and camera depths.

The DWN is a 4 layer multi-layer perceptron that outputs a
classification score α̂ between 0 and 1 where 1 indicates radar
is more accurate and 0 if monocular is more accurate. Its input
is a 14-element vector comprised of head output features, raw
depths, distance, and Doppler/predicted velocity consistency.
Details of the input vector are described in the supplementary
material. The training labels to this network are binary. We
assign the GT label for training as follows. If the GT depth z
of a box is closer to the radar estimated depth, the GT label
α = 1 else it is zero. In other words,

α =

�
1, |ẑrj − z| < |ẑci − z|
0, otherwise.

(7)

Fused Depth Calculation. Fusion of camera and radar
depths occurs as follows. Assuming there are N radar as-
sociations brj for j ∈ set(i) potentially associated with a
given camera detection bci . We run inference over this DWN
for all these N pairs to obtain a sequence of confidence scores

Table 1: Depth prediction error (in meters) on nuScenes Val sub-
set using monocular heads and radar heads on image/radar pixels
labeled as object over close, medium and long range objects.

Method ≤ 10 10− 30 ≥ 30 All
Monocular Heads 0.563 1.442 6.042 3.415

Radar Heads 0.413 0.649 1.017 0.791
Raw Radar Depth 1.056 1.082 1.361 1.204
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Figure 4: Histograms of predicted and GT depth offsets between
radar returns and object centers. Both these distributions are in close
agreement with each other.

αj . We then calculate the fused depth ẑfuse from radar depths,
weights αj and the monocular depth as

ẑfuse =

8><>:
∑
j
�j ẑ

r
j∑

j
�j

, if ∃ j, αj > T�

ẑci , if ∀ j, αj ≤ T�

, (8)

where T� denotes depth weighting threshold.

5 Experiments
We apply the proposed method on detection task of nuScenes
dataset (Caesar et al. 2020), a widely used dataset with both
image and radar points collected in urban driving environ-
ment. The nuScenes detection dataset consists of 28,130
training samples, 6,019 validation samples and 6,008 test
samples. We experimentally show improvements in depth
estimation accuracy and overall detection performance after
enhancing monocular methods with the proposed strategy.
The proposed method also achieves the SOTA performance
in object detection via radar-camera fusion.

5.1 Depth Errors for Camera and Radar Heads
To show the advantage of the proposed radar head over
monocular head in object depth estimation, We quantitatively
compare the depth estimation accuracy of the radar head with
the monocular head FCOS3D (Wang et al. 2021b) on random
900 images from the nuScenes validation set in Tab. 1.

We compute the mean absolute error for camera estimated
depth, radar estimated depth and raw radar depth for monoc-
ular/radar pixels where GT depths are known. For a fair
comparison, the depths are compared for objects having both
positive camera and radar pixels as labels and the error for
each object is averaged over all pixels associated with it and
final error over all objects. In addition, we also show the
error if we directly use radar depth as object depth without



Table 2: Performance comparison on nuScenes test set. Best and second best among fusion methods. R, C, CV, TC, ped. and motor. stand for
radar, camera, construction vehicle, traffic cone, pedestrian and motorcycle, respectively.

Modality Method mATE(

−
� ) AP( −�)

R C Mean Car Truck Bus Trailer CV Ped. Motor. Bicycle TC Barrier
✓ MonoDIS-M (2020) 0.738 0.304 0.478 0.220 0.188 0.176 0.074 0.370 0.290 0.245 0.487 0.511
✓ CenterNet (2019) 0.658 0.338 0.536 0.270 0.248 0.251 0.086 0.375 0.291 0.207 0.583 0.533
✓ FCOS3D (2021b) 0.690 0.358 0.524 0.270 0.277 0.255 0.117 0.397 0.345 0.298 0.557 0.538
✓ PGD (2021c) 0.646 0.360 0.547 0.268 0.253 0.243 0.087 0.422 0.379 0.300 0.584 0.525

✓ ✓ CenterFusion (2021) 0.631 0.326 0.509 0.258 0.234 0.235 0.077 0.370 0.314 0.201 0.575 0.484
✓ ✓ FCOS3D + RADIANT 0.622 0.374 0.582 0.301 0.257 0.248 0.145 0.439 0.386 0.302 0.579 0.500
✓ ✓ PGD + RADIANT 0.609 0.380 0.602 0.302 0.267 0.242 0.107 0.444 0.416 0.312 0.604 0.503

Table 3: Performance comparison on nuScenes validation set. Best and second best among fusion methods.

Modality Method mATE(

−
� ) AP( −�)

R C Mean Car Truck Bus Trailer CV Ped. Motor. Bicycle TC Barrier
✓ FCOS3D (2021b) 0.739 0.326 0.494 0.236 0.316 0.115 0.057 0.416 0.306 0.303 0.549 0.465
✓ PGD (2021c) 0.658 0.368 0.546 0.290 0.378 0.148 0.063 0.441 0.374 0.343 0.595 0.504

✓ ✓ CenterFusion (2021) 0.649 0.332 0.524 0.265 0.362 0.154 0.055 0.389 0.305 0.229 0.563 0.470
✓ ✓ FCOS3D + RADIANT 0.653 0.363 0.587 0.291 0.371 0.120 0.073 0.447 0.364 0.568 0.581 0.467
✓ ✓ PGD + RADIANT 0.617 0.384 0.616 0.310 0.382 0.141 0.068 0.462 0.395 0.374 0.604 0.487

compensating with estimated residual depth. Tab. 1 shows
that the radar heads achieve better depth estimation compared
with camera heads, especially for the far objects.

We also plot the distribution of estimated and GT offset
depths in Fig. 4. The estimated residual depth follows the GT
distribution. It can be seen that typically, the object center
is a little farther than measured depth of radar points. It
demonstrates the usefulness of offset depth to compensate
the error from direct radar measurement.

5.2 nuScenes Quantitative Results
The nuScenes (Caesar et al. 2020) leaderboard evaluates de-
tection with metrics including mAP, mean average translation
error (mATE), mean average size error, mean average orien-
tation error and mean average velocity error. As this paper
focuses on using radar to improve the monocular depth es-
timation of objects, mAP and mATE are the most relevant
metrics and are reported. Other metrics are not reported since
we did not update them with radar.

To show the effectiveness of the proposed camera-radar fu-
sion on both test set (Tab. 2) and validation (Tab. 3), we com-
pare the performance, i.e., mATE and mean/classwise average
precision (AP), of monocular methods, i.e., FCOS3D (Wang
et al. 2021b) and PGD (Wang et al. 2021c), before and after
being fused with the proposed radar heads outputs and it
shows significant improvements over mAP and mATE after
combined with the proposed radar heads. Note for fairness,
we compare monocular and corresponding RADIANT with
the same monocular weights because the performance of
RADIANT is partly determined by the performance of un-
derlying monocular detection.

Next, we compare with CenterFusion (Nabati and Qi 2021),
the best published radar-camera fusion method on nuScenes
test set. Our method outperforms CenterFusion in both mAP
and mATE, which indicates that our method acquires more
correct detections and smaller localization error for those
positive detections. For classwise results, RADIANT shows

a gain of over 18% and 20% in AP over CenterFusion (Nabati
and Qi 2021) on Cars and Pedestrians, respectively, in Tab. 2.
This improvement is significant as cars and pedestrians are
common participants in traffic, with Cars accounting for
about 50% of total objects in nuScenes detection dataset.

5.3 nuScenes Qualitative Results
Fig. 5 shows the detection of the monocular detector
FCOS3D (Wang et al. 2021b) (in magenta), detections with
fusion from our proposed RADIANT (in cyan) and GT
bounding boxes (in dashed orange) on image and BEV, re-
spectively. In addition, we plot estimated position offsets for
radar pixels with score larger than 0.3. Fig. 5 shows that the
estimated residual depths compensate the depth gap between
radar measurements and actual object positions. As a result,
the proposed RADIANT corrects the localization error of
the FCOS3D (Wang et al. 2021b) detections and achieves
accurate 3D position estimates leading to better 3D detection
performance. The detections from monocular and fusion have
the same orientations because only depths are updated during
fusion. Fig. 5b and Fig. 5h show the effectiveness of depth
correction in both near and long ranges respectively.

5.4 Ablation Studies
Our proposed RADIANT model uses DWN to predict the
confidence of radar depths for depth fusion and therefore,
carries out the intelligent merging of the depths. We therefore
carry the ablation of this component on the nuScenes valida-
tion set in Tab. 4 on both the monocular methods FCOS3D
(Wang et al. 2021b) and PGD (Wang et al. 2021a). In addi-
tion, we also consider an alternative strategy of averaging out
the depth of camera box proposals and neighboring radar pro-
posals which we call it as Average Fusion in the table. Tab. 4
results show that fusion methods outperform the monocular
counterparts (non-fusion) methods. This is expected because
the depth remains the hardest parameter to estimate for the
monocular methods (Ma et al. 2021). More importantly, the




