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Abstract

Boosting has been widely applied in computer vision,
especially after Viola and Jones’s seminal work [23].
The marriage of rectangular features and integral-image-
enabled fast computation makes boosting attractive for
many vision applications. However, this popular way of ap-
plying boosting normally employs an exhaustive feature se-
lection scheme from a very large hypothesis pool, which re-
sults in a less-efficient learning process. Furthermore, this
poses additional constraint on applying boosting in an on-
line fashion, where feature re-selection is often necessary
because of varying data characteristic, but yet impracti-
cal due to the huge hypothesis pool. This paper proposes
a gradient-based feature selection approach. Assuming a
generally trained feature set and labeled samples are given,
our approach iteratively updates each feature using the gra-
dient descent, by minimizing the weighted least square error
between the estimated feature response and the true label.
In addition, we integrate the gradient-based feature selec-
tion with an online boosting framework. This new online
boosting algorithm not only provides an efficient way of up-
dating the discriminative feature set, but also presents a uni-
fied objective for both feature selection and weak classifier
updating. Experiments on the person detection and tracking
applications demonstrate the effectiveness of our proposal.

1. Introduction
Boosting refers to a simple yet effective method of

learning an accurate prediction machine by combining a
set of well selected weak classifiers [6]. It has shown
greater performance than many traditional machine learning
paradigms, when applied to solve challenging tasks in vari-
ous domains [7]. Given a set of labeled training data, the
boosting-based learning algorithm proceeds with the fol-
lowing iterative steps: 1) weak classifier selection from the
hypothesis space to strength the already found strong classi-
fier and 2) weight updating of the training data to focus the
later learning process on more challenging data samples.
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Figure 1. In boosting-based vision applications, the rectangular
features/weak classifiers need to be updated due to varying appear-
ance and shape of the object. This paper proposes a gradient-based
approach to efficiently perform feature updating.

It is the seminal work of Viola and his colleagues [21,23]
that bridges the gap of weak classifier design in boost-
ing and the feature selection step, a critical component in
any vision application. The introduced integral image [23]
brings the fast computations of visual features, enabling
the possibility of performing exhaustive search over a very
large feature (hypothesis) space.

Such an exhaustive feature selection might be fine for of-
fline learning tasks. However, it becomes a less satisfactory
option for online applications, such as object tracking [2,9],
where an adaptive method is needed to continuously update
the existing classifiers to handle the appearance/shape vari-
ations of the object over time. With the real-time constraint,
the exhaustive feature selection over a very large hypothe-
sis space is obviously prohibited. To remedy this problem,
Grabner and Bischof [8] propose a novel feature selection
method, where a batch of selectors are constructed to take a
random guess selection of the features. It might be effective
to eventually pick up the discriminative features, this ran-
dom selection, however, is still far from efficiency. It does
not fully take advantage of the nature that for online applica-
tions, such as object tracking, the sequential data consumed
by the online algorithm usually shows very high correlation
over time, while the random selection in [8] does not really
capture this time dependency.

To better exploit the correlation of sequential data, as
shown in the notional example of Figure 1, this paper pro-



poses a gradient-based feature selection approach for on-
line boosting. Assuming a feature set generally trained
from offline data is available, and during online learning
newly labeled samples are sequentially given, our approach
iteratively updates each feature using the gradient descent
method. Formulated into the GentleBoost framework [7],
the gradient-based feature selection proceeds by continu-
ously minimizing the weighted least square error between
the estimated feature response and its true label. When in-
tegrated into the online boosting, the proposed approach
presents a unified objective for both feature selection and
weak classifier updating. As shown in Figure 1, the three
colorized rectangular features get updated by minimizing
the objective in a gradient descent sense.

Our scientific findings and contributions can be summa-
rized as follows:
¦ We propose a novel non-exhaustive feature selection

approach based on the gradient descent method. This is a
much more efficient scheme of learning discriminative fea-
tures compared to the common way of searching the feature
hypothesis space exhaustively.
¦We present an online boosting algorithm by integrating

this gradient-based feature selection with the GentleBoost
framework. It leads to a unified objective for both feature
selection and weak classifier updating.
¦ We pick two popular applications to demonstrate the

effectiveness and efficiency of the proposed approach, i.e.,
online learning of person detector and discriminative track-
ing of walking person. The quantitative analysis and com-
parison highlight the advantage of our proposal compared to
the offline boosting and previous online boosting methods.

2. Related Work
As a general machine learning algorithm, boosting is

well known for several nice properties, such as simple im-
plementation, good generalization to unseen data, and ro-
bustness to outliers [16]. Considerable progress has also
been made on applying boosting to various computer vision
problems, such as image retrieval [21], face detection [24],
person detection [11,25], object tracking [2,9], image align-
ment [15], etc. During boosting learning, how to efficiently
select features is an important issue, especially critical to
vision applications. To avoid the costly exhaustive feature
selection, Treptow and Zell [22] propose a random feature
search method via evolutionary algorithm. Dollar et al. [5]
recently present a notion of feature selection using gradient
descent. In above applications, boosting mainly serves as
an offline learning machine, i.e., once learned from training
data, the boosted classifier is fixed during testing.

Recently, research interests are also raised to apply learn-
ing methods to online vision applications [2, 3, 9, 10, 14, 17,
18]. For example, in object detection, Nair et al. [17] and
Javed et al. [10] utilize a co-training approach to classify

each incoming data and use it in incrementally online up-
dating of the object classifier. In object tracking, Collins et
al. [3] and Lim et al. [14] continuously update the appear-
ance trackers through online discriminant learning.

Boosting algorithms have also been applied to online vi-
sion. Avidan [2] proposes to combine an ensemble of weak
classifiers into a strong classifier using AdaBoost to han-
dle object appearance variations, though their classifier up-
dating is still treated in an offline learning mode. Online
applications deal with sequential data, thus require the ca-
pability of weak classifiers updated in an online fashion.
Oza and Russell [19] make the primary efforts on studying
the sequential learning of boosted classifiers, called online
boosting. They prove that with the same training set, online
boosting converges statistically to offline one as the number
of iterations goes to infinity. Based on [19], Grabner and
Bischof [8, 9] propose a novel online boosting framework,
which we refer by “OB”, and apply it to vision applications.
Our online boosting differs from OB in that a gradient-
based approach is proposed to perform feature selection and
weak classifier updating given the sequential data. Detailed
comparisons between these two methods are presented in
later sections. Our work also advances the gradient-based
feature selection notion of Dollar et al. [5] by providing the
explicit formula of gradient-based updating.

3. Offline Boosting
We start with the introduction of the conventional boost-

ing in the offline training mode, which we refer by “offline
boosting” (OFB). Boosting-based learning iteratively se-
lects weak classifiers to form a strong classifier using sum-
mation: F (x) =

∑M
m=1 fm(x), where F (x) is the strong

classifier and fm(x) is the weak classifier. There are dif-
ferent variants of boosting proposed in the literature [16].
We use the GentleBoost algorithm [7] based on two consid-
erations. First, unlike the commonly used AdaBoost algo-
rithm [6], the weak classifier in the GentleBoost algorithm
is a soft-decision classifier with continuous output. This en-
ables the strong classifier’s score to be smoother and favor-
able for computing derivatives. In contrast, the hard weak
classifiers in the AdaBoost algorithm lead to a piecewise
constant strong classifier that is difficult to optimize. Sec-
ond, as shown in [13], for object detection tasks, the Gentle-
Boost algorithm outperforms other boosting methods in that
it is more robust to noisy data and more resistant to outliers.

Algorithm 1 summarizes the GentleBoost algorithm. To
apply it to vision applications, we firstly define the weak
classifier. Given the recent success of Histogram of Ori-
ented Gradient (HOG) feature in object detection [4, 12],
we adopt it in our weak classifier design and evaluate HOG
by integral histogram computation [20]. As shown in Fig-
ure 2(a), the HOG can be parameterized by (x0, y0, x1, y1),
where (x0, y0) and (x1, y1) are the two corners of a cell. To



Input: Training data {xi; i ∈ [1, K]} and their
corresponding class labels {yi; i ∈ [1, K]}.

Output: A strong classifier F (x).
1. Initialize weights wi = 1/K, and F (x) = 0.
2. for m = 1, 2, ..., M do

(a) Fit the regression function fm(x) by weighted least
square of yi to xi with weights wi

fm(x) = argminf∈F ε(f) =
∑K

i=1 wi(f(xi)− yi)
2.

(b) Update F (x) = F (x) + fm(x).
(c) Update the weights by wi = wie

−yifm(xi) and
normalize the weights such that

∑K
i=1 wi = 1.

end
3. Output the classifier sign[F (x)] = sign[

∑M
m=1 fm(x)].

Algorithm 1: The GentleBoost algorithm.
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Figure 2. (a) The parametrization of a cell; (b) The gradient map;
(c) The HOG of a block; (d) The HOG features of positive and
negative samples.

incorporate spatial information into HOG, a 2×2 cell array
is used to form a block. For each cell, the b-bin histogram
of the gradient magnitude at each orientation is computed.
The concatenation of the HOG for 4 cells within one block
forms a 4b-dimensional vector, as shown in Figure 2(c). The
large hypothesis space F , where (x0, y0, x1, y1) resides,
is obtained via an exhaustive construction within the tem-
plate coordinate system. For example, there are more than
300, 000 such block features for a template with the size of
30 × 30. Hence, the exhaustive feature selection process,
Step 2(a) in Algorithm 1, is the most computationally in-
tensive step in the GentleBoost algorithm.

When a multi-dimensional feature vector, such as the
histogram, is used in the weak classifier, the conventional
method of computing the threshold in the decision stump
classifier, which often works comfortably with a 1-D fea-
ture, can not be directly applied. In this paper, we em-
ploy the idea of boosted histogram proposed by Laptev [11].
As shown in Figure 2(d), a weighted Linear Discriminative
Analysis (LDA) is applied to the histogram features of pos-
itive and negative samples, and results in the optimal pro-
jection direction β. Thus, all histograms can be converted
to 1-D features by computing the inner product with β.

In summary, we use the following weak classifier:

f(x;p) =
2
π

atan(βTh(x0, y0, x1, y1)− t), (1)

where β is the LDA projection direction, t is the thresh-
old and p are the parameters of the weak classifier p =
[x0, y0, x1, y1, β, t]T. Given a cell location (x0, y0, x1, y1),
the histogram features h are computed from all training data
via the integral histogram. Weighted LDA is applied to
compute β, and finally t is obtained through binary search
along the span of LDA projections of all training data, such
that the weighted least square error (WLSE) is minimal.
Similar to [15], we use the atan() function in the weak
classifier, instead of the commonly used decision stump, be-
cause of its derivability with respect to the parameters p.

4. Gradient Feature Selection
4.1. Problem definition

We define the feature selection as a process of updating
the parameters of each weak classifier pm. As shown in
Step 2(a) of Algorithm 1, the WLSE is used in selecting the
weak classifier from the hypothesis space during the boost-
ing iteration. Hence, it is natural to use the WLSE as the
objective function for the feature selection (updating). This
leads to the following problem we are trying to solve

min
p

ε(f(x;p)) = min
p

K∑

i=1

wi(f(xi;p)− yi)2. (2)

In the context of feature selection, solving this problem
means that given the initial parameters p(0), we look for
the new parameters of the weak classifier that can lead to
smaller WLSE on the dataset {xi} with K samples in total.
We choose to use the gradient descent method to solve this
problem iteratively.

4.2. Algorithm derivation

Plugging Eq. 1 into Eq. 2, the function to be minimized
is

ε =
K∑

i=1

wi(
2
π

atan(βThi(x0, y0, x1, y1)− t)− yi)2. (3)

Taking the derivative with respect to p gives

dε

dp
=

K∑

i=1

2wi(f(xi)− yi)
dfi

dp
, (4)

where dfi

dp = [ ∂fi

∂x0

∂fi

∂y0

∂fi

∂x1

∂fi

∂y1

∂fi

∂β
∂fi

∂t ]T. Based on Eq. 1, we
have

∂fi

∂z
=

2
π

βT ∂hi

∂z

1 + (βThi − t)2
, z = x0, y0, x1, y1,

∂fi

∂β
=

2
π

hi

1 + (βThi − t)2
,

∂fi

∂t
=

2
π

−1
1 + (βThi − t)2

.

(5)



As an example, we show how to compute the deriva-
tive of the histogram feature with respect to one of the cell
location parameters x0, i.e., ∂hi

∂x0
. The remaining partial

derivatives, ∂hi

∂x1
,∂hi

∂y0
and ∂hi

∂y1
, can be computed similarly.

As mentioned in Section 3, hi is a 4b-dimensional vec-
tor hi(x0, y0, x1, y1) = [hi,1, hi,2, · · · , hi,4b]T computed
from the 4 cells of a block. Given a labeled image xi,
the gradient map is computed and a set of integral im-
ages of the magnitude of the gradient at each orientation
{x̄i,1, x̄i,2, · · · , x̄i,b} is obtained. Since all 9 corners of
the 2 × 2 cells can be fully described by the cell location
(x0, y0, x1, y1), each bin of the histogram can be computed
via accessing the integral image x̄i,j at the corresponding
pixel location defined as follows

hi,j = x̄i,j(x0, y0) + x̄i,j(x1, y1)− x̄i,j(x0, y1)
−x̄i,j(x1, y0),

hi,j+b = x̄i,j(x1, y0) + x̄i,j(2x1 − x0, y1)− x̄i,j(x1, y1)
−x̄i,j(2x1 − x0, y0),

hi,j+2b = x̄i,j(x0, y1) + x̄i,j(x1, 2y1 − y0)− x̄i,j(x1, y1)
−x̄i,j(x0, 2y1 − y0),

hi,j+3b = −x̄i,j(2x1 − x0, y1)− x̄i,j(x1, 2y1 − y0)
+x̄i,j(x1, y1) + x̄i,j(2x1 − x0, 2y1 − y0).

(6)
where i ∈ [1,K] and j ∈ [1, b]. The Eq. 6 defines to-
tal 4b equations to compute the 4b-dimensional orientation
histogram hi. Given above hi definition, the derivative of
hi with respect to x0 can be computed by

∂hi,j

∂x0
=

∂x̄i,j

∂x
|(x0,y0) −

∂x̄i,j

∂x
|(x0,y1),

∂hi,j+b

∂x0
= −∂x̄i,j

∂x
|(2x1−x0,y1) +

∂x̄i,j

∂x
|(2x1−x0,y0),

∂hi,j+2b

∂x0
=

∂x̄i,j

∂x
|(x0,y1) −

∂x̄i,j

∂x
|(x0,2y1−y0),

∂hi,j+3b

∂x0
=

∂x̄i,j

∂x
|(2x1−x0,y1) −

∂x̄i,j

∂x
|(2x1−x0,2y1−y0),

(7)

where ∂x̄i,j

∂x |(x0,y0) is the partial derivative of x̄i,j with re-
spect to the horizontal axe x and evaluated at (x0, y0), and
can be easily computed via discrete differentiation such as
∂x̄i,j

∂x |(x0,y0) = 1
2 [x̄i,j(x0 + 1, y0)− x̄i,j(x0 − 1, y0)].

Please note that the above feature gradient derivations
are not necessarily only suitable to the HOG feature. In fact,
all integral-image-enabled features can have similar formu-
las to compute the gradients, thus can all be used in the
proposed framework.

5. Online Boosting
5.1. Online boosting with gradient feature selection

Understanding that feature gradients, such as
[ ∂hi

∂x0
, ∂hi

∂x1
, ∂hi

∂y0
, ∂hi

∂y1
], bring the connection between

Input: Training data {xi; i ∈ [1, K]}, their corresponding
class labels {yi; i ∈ [1, K]}, and an initial set of
weak classifiers {fm(pm); m ∈ [1, M ]}.

Output: An updated strong classifier F (x).
1. Initialize weights wi = 1/K, and F (x) = 0.
2. for m = 1, 2, ..., M do

(a) Compute ε(pm) and dε
dp
|pm using Eq. 3 and Eq. 4.

(b) if ε(pm) is decreasing then
Update pm = pm − dε

dp
|pm .

Jump to (a).
end
(c) Update F (x) = F (x) + fm(x;pm).
(d) Update the weights by wi = wie

−yifm(xi) and
normalize the weights such that

∑K
i=1 wi = 1.

end
3. Output the classifier
sign[F (x)] = sign[

∑M
m=1 fm(x;pm)].

Algorithm 2: The proposed gradient-based online
boost algorithm (GOB).

minimizing the WLSE of the weak classifier and feature
updating, now we introduce our online boosting algorithm.
Our online boosting follows the basic scheme of the con-
ventional offline boosting. That is, weak classifier selection
and weights updates are performed in each iteration of
the boosting. However, these two approaches differ in the
weak classifier selection step. In the offline boosting, this
step is achieved by exhaustively evaluating all classifier
candidates in a hypothesis space, which is often huge due
to the over-complete feature set. Hence, this is a very
computationally demanding operation. In contrast, our
online boosting treats the weak classifier selection as a
gradient descent optimization problem. Our approach
takes an initial set of weak classifiers and a number of
labeled training samples as inputs. For each weak classifier
fm(pm), the online boosting iteratively updates the feature
parameters pm according to the above computed gradient
dε
dp . The objective function ε(pm) is computed at each
iteration and expected to keep decreasing. The iteration
will cease if the objective arrives at a minimum, or the
magnitude of the gradient | dε

dp | is smaller than a threshold.
Algorithm 2 summarizes our algorithm, which we refer as
“Gradient-based Online Boosting” (GOB).

5.2. Comparison between OB and GOB

We briefly describe the conventional OB [8] in Algo-
rithm 3, in order to compare it with the proposed GOB. In
OB, the strong boosted classifier is composed of a batch
of selectors, and each selector contains a random subset of
weak classifiers. During the updating, given a new training
sample, each selector is responsible for selecting the best
weak classifier from its subset, by updating all classifiers
in its subset simultaneously and choosing the one with the



for each selector do
(a) for each weak classifier in the selector do

Update the weak classifier and compute error.
end
(b) Choose the weak classifier with lowest error.
(c) Update sample importance weights.
(c) Replace the worst weak classifier with a randomly
selected feature.

end
Algorithm 3: The simplified description of the conven-
tional online boost algorithm (OB).

lowest error. All selectors will conduct the same updating
sequentially. Note that, unlike GOB that both the feature
(block location) and the weak classifier (LDA direction and
threshold) get updated, OB only updates the weak classifier
(threshold) [8]. The selector will also update its feature set
by replacing the worst weak classifier in its subset with a
randomly selected feature.

OB depends on random selections of the discrimina-
tive features, which may show good performance when the
object being tracked is rigid, and camouflage features are
around. However, this method might suffer from the large
object deformation. Once object deformation appears, most
of the local rectangular/block features may become invalid
due to the local mis-alignment. This consequently will re-
sult in OB continuously looking for new features to add
into the selector. However, such a process is blindly ran-
dom without considering the nature that a local deforma-
tion strongly implies that a local shifting of the originally
found rectangular feature is still very likely to be a good
discriminative feature. In essence, the proposed gradient-
based feature selection method is to train each rectangular
feature doing exactly this local object deformation tracking
in a discriminative sense. Therefore, the overall capacity
of our algorithm to handle the object deformation is much
better than OB, which we will demonstrate in Section 6.2.

We can also compare the computational costs of OB and
GOB to see the efficiency of our method. Assuming M
weak classifiers (GOB) or selectors (OB) are trained in to-
tal, each one of the M selector has N weak classifiers and
the cost of updating each weak classifier is C, the average
cost of updating all weak classifiers is O(NCM) for OB.
Similarly, in our proposal, assuming the average number
of iterations for updating one weak classifier is n, the cost
of updating all weak classifiers is O(nCM). For OB, it is
reported that N = 250 [8]. However, we experimentally
learn that n = 2. Thus, a huge computational gain is ob-
served using our approach. [8] also mentions an efficient
version of the algorithm by using the same N weak clas-
sifiers for all selectors. Hence, the computation cost will
reduce to O(NC + M) where our algorithm is still more
efficient than OB in this case.

Figure 3. Positive samples of the person detection database.

6. Experiments
We demonstrate the proposed gradient-based online

boosting idea with two popular applications: person detec-
tion and person tracking.

6.1. Person detection

Person detection is often achieved by learning a dedi-
cated classification-based detector from labeled data. Given
large amount of positive training samples and infinite num-
ber of negative samples in theory, the computation and stor-
age burden can make the training impractical, especially
when new samples are received sequentially and detector
updating is needed. There are three ways to handle this
issue via boosting. First, if the computation and storage
allow, we can re-train the detector with all available data
using OFB. Second, when the computation burden exceeds
the limit, we can test the detector on all available data first,
and only re-train on a challenging subset of the original
data. We call this approach as “Offline Selective Boost-
ing” (OFSB). Third, GOB can be used to update the detec-
tor with the newly received samples.

We use a labeled person database with 915 positive and
6361 negative samples. Some of the typical samples are
shown in Figure 3. To imitate the real-world scenario of
continuously receiving new data in sequential learning, we
partition this database into three distinct sets: the train-
ing set s1, the updating set s2, and the test set s3, where
each has 2

5 , 2
5 , and 1

5 positive and negative samples of the
database. Furthermore, s2 is evenly partitioned into 6 sub-
sets, {s2,1, · · · , s2,6}, which are assumed to arrive sequen-
tially. Figure 4 illustrates our experimental design. To be-
gin the experiments, an initial classifier is trained from s1

using OFB. When a new data set arrives, such as s2,1 or
s2,2, OFB is re-trained on all available data up to the cur-
rent time. However, when s2,3 arrives, it is assumed that
re-training on all data starts to become impractical due to
the demanding computation cost and memory requirement.
Hence, OFSB is used in this case, and the present classi-
fier is tested on the set of {s1, s2,1, s2,2, s2,3}. The sample,
which is closer to the classification boundary (measured by
the strong classifier response), is added into a subset, un-
til the size of this subset reaches the allowed limit, i.e., the
size of {s1, s2,1, s2,2}. Finally, offline boosting is used to
re-train a classifier based on this chosen subset. In contrast,
when each subset of s2 sequentially arrives, we can also use
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Figure 4. Experimental design. Three learning schemes, offline
boosting (OFB), offline selective boosting (OFSB) and gradient-
based online boosting (GOB), are used to train and update a de-
tector from s1 and s2. After each update, s3 is used to test the
detection performance.
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Figure 5. Detection performance of continuously learned boosted
classifier from new data sets. The horizontal axis represents the
index of the new data set while the vertical axis represents the
detection rate of the updated classifier tested on s3. Stable and
increasing performance can be observed from our gradient-based
online boosting (GOB) algorithm.
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Figure 6. Updating of the weak classifiers in GOB. The vertical
axes is the new data set index, from 1 to 6. The horizontal axes is
the index of weak classifier. The brightness of each grid indicates
the amount of changes for the parameter of each weak classifier.
(a) MSE of the box location change; (b) Angle change of the LDA
projection; (c) Change of the threshold.

GOB to continuously update the present classifier based on
the new subset only.

After each re-training or updating, the performance of
the resulting boosted classifier is tested on s3, as shown in
Figure 5. For clear illustration purpose, the detection rate-
false alarm curve is not shown. Instead we sample the curve
at four particular false alarm rates (FAR), namely 0.1, 0.05,
0.01, 0.005. Note that the dash line represents OFB when
the new data set index is less than 3. Otherwise, it is OFSB.
Figure 6 shows the amount of changes in the weak classi-
fiers during GOB learning. It can be seen that majority of

the weak classifiers actually being updated when receiving
new data.

A number of observations can be made. First, as ex-
pected, overall both online and offline boosting increase
their performance as taking more data for training. Second,
since the re-training process of OFB/OFSB throws away
previously trained classifier, it is more likely to obtain a
classifier that has unstable performance. While GOB al-
ways starts with the prior knowledge, i.e., the present classi-
fier, to improve its capacity on the new data, meanwhile still
maintain its discriminative power on the old data. Hence,
the online boosting demonstrates a stable and increasing
performance on the unseen data set s3.

GOB also has a huge computational advantage over
OFB/OFSB. For the experiments in Figure 5, GOB takes
around 15 minutes to finish updating when receiving each
new data set. However, OFB/OFSB take more than 7 hours
to finish re-training once. Both time costs are based on a
MatlabTM implementation and exclude the computation of
feature extraction (computing integral images of oriented
gradients).

6.2. Person tracking

Following the same weak classifier design as in person
detection, the proposed GOB is also applied to person track-
ing application. The main idea of applying online boost-
ing in this domain is to formulate the tracking problem as a
discriminative training process, which continuously updates
the boosted classifier to discriminate the human region from
its nearby backgrounds.

We take a similar tracking-and-updating process cycle
as [8]. Once an optimal human region is tracked with the
previously trained boosted classifier, a set of new training
data is cropped from this location (positive data) and nearby
neighborhoods (negative data). The weak classifiers are up-
dated with this new data set. Essentially, a boosted classi-
fier trained in this way manages to learn a drifting detec-
tor of the tracker. As long as the tracker keeps following
the person with accurate alignments, the drifting detector
will report higher classification scores; on the contrary, if
the tracker deviates from its optimal location, negative re-
sponses will be returned.

One example of applying the proposed GOB algorithm
to person tracking in surveillance videos is shown in Fig-
ure 7(a), where as the person walks towards the camera,
his body pose also gradually changes from a side view to
the front view. GOB is capable of learning to follow this
turning action, and continuously track the person. The col-
orized small rectangles illustrate the weak classifiers that
have changed their box location parameters (x0, y0, x1, y1)
by GOB at the corresponding frame. Due to the balance be-
tween the classification performance and efficiency, we se-
lect 50 weak classifiers in total for all tracking experiments.



Figure 7. Tracking results by the proposed GOB algorithm. (a) a person changing pose; (b) a person under severe occlusion and continu-
ously turning over; (c) a person making a full turn.
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Figure 8. Strong classifier scores (GOB vs OFB) evaluated at the
optimal location returned by GOB.

Without surprise, an offline trained frontal view person
classifier can not reliably track the subject, and loses track-
ing at the very early stage of the sequence. From Figure 8, it
is easy to see the benefits of online classifier updating. The
strong classifier responses with the gradient updating are
much higher than the one without updating. It verifies the
power of the gradient-based boosting to keep learning bet-
ter discriminant features (weak classifiers) to separate the
person from backgrounds.

The proposed GOB framework is particularly suitable
for the tracking application, since, during the successive
frames, the object of interest will generally only show mi-
nor changes in terms of appearance and shape. These minor
but non-ignorable changes could be best captured by the
gradient learning framework. During the updating within
two continuous frames, most of the weak classifiers will not
change their feature locations, reflecting the fact that the ob-
ject parts corresponding to these feature locations show no
difference between two frames, while only a few feature lo-
cations will get updated, implying those regions are under-
going local shape deformation and/or appearance change.

This property is demonstrated in Figure 7(a), where
the number of colorized rectangles (weak classifiers with
changed locations) only represents a small portion of total
weak classifiers (50) we applied to the sequence. Further-
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Figure 9. (a) The number of weak classifiers that change their fea-
ture box locations over time. Higher number indicates relative
larger shape and appearance deformation; (b) MSE of the box lo-
cation changes over time. The intensity reflects the magnitude of
the feature location changes.

more, in Figure 9(a), we show the plot of the number of
weak classifiers with changed locations through updating
for the sequence in Figure 7(a). It is observed that during
the whole sequence at most one-fifth (10/50) of the weak
classifiers update their locations between successive frames.
It validates that GOB is very efficient, yet still effective to
capture the minor appearance changes using discriminative
training. Also, the higher number of updating indicates
relative larger shape and appearance deformation. In Fig-
ure 9(b), we illustrate a similar figure as in Figure 6(a),
while here the updating is for online tracking application.
Again, the relative less updating reflects the fact that the un-
seen new data received over time is actually showing strong
correlations with the previous ones. Hence, only minor up-
dating is needed, which is particularly true for tracking ap-
plication.

In Figure 7(b), we show a challenging sequence that our
GOB can tackle. The object being tracked is under very
severe occlusion, when a girl wearing the white clothes is
approaching and passing the object of interest. GOB shows
great performance on learning the relatively stable yet dis-



Sequence ID 1 2 3 4 5 6 7 8 9 10

Conventional online boosting (OB) 15.1 Lost 14.1 Lost Lost Lost 5.0 Lost 4.6 Lost
Gradient-based online boosting (GOB) 6.2 10.9 7.1 Lost 7.7 11.0 5.5 5.4 4.4 8.8

Table 1. Average tracking errors of two online boosting-based trackers. The average size of the tracking window is 140× 46 pixels.

criminant features (the head and shoulder in this example),
thus managing to follow the person even under such a chal-
lenging situation. Figure 7(c) is another example where the
person makes a full turn and walks back.

Finally, we also carry out a quantitative study on track-
ing using two methods: the GOB tracker and the OB
tracker [8,9]. We strictly follow the OB algorithm presented
in [8] to repeat their implementation, where each selector
has a different subset of the weak classifiers. We test on ten
video sequences (4000+ frames in total) from the CAVIAR
database [1]. The ground truth locations of these data are
given. The average tracking errors against the ground truths
are reported in Table 1. The tracking error is defined as
the pixel distance between the center of the bounding box
returned by the trackers and that of the ground truth. Con-
sistent with the discussion in Section 5.2, our GOB tracker
outperforms the OB tracker. The gained performance is at-
tributed to the local gradient search capability in each weak
classifier updating, so as to keep following its discrimina-
tive yet shifted/deformed features.

7. Conclusions

We have introduced a novel gradient-based feature se-
lection approach for online boosting. Assuming a generally
trained feature set and labeled samples are given, our ap-
proach iteratively updates each feature using the gradient
descent method, by minimizing the weighted least square
error between the estimated feature response and the true
label. Furthermore, we integrate the gradient-based fea-
ture selection with an online boosting framework. The pro-
posed online boosting is applied to the person detection and
tracking applications. Extensive experiments demonstrate
the effectiveness and efficiency of our proposal. Future di-
rections of this work include extending online learning for
other variants of boosting and applying online boosting into
other vision applications.
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