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Abstract. It is a challenging vision problem to discover non-rigid shape
deformation for an image ensemble belonging to a single object class, in
an automatic or semi-supervised fashion. The conventional semi-supervised
approach [1] uses a congealing-like process to propagate manual land-
mark labels from a few images to a large ensemble. Although effective
on an inter-person database with a large population, there is potential
for increased labeling accuracy. With the goal of providing highly accu-
rate labels, in this paper we present a parametric curve representation
for each of the seven major facial contours. The appearance informa-
tion along the curve, named curve descriptor, is extracted and used for
congealing. Furthermore, we demonstrate that advanced features such
as Histogram of Oriented Gradient (HOG) can be utilized in the pro-
posed congealing framework, which operates in a dual-curve congealing
manner for the case of a closed contour. With extensive experiments
on a 300-image ensemble that exhibits moderate variation in facial pose
and shape, we show that substantial progress has been achieved in the
labeling accuracy compared to the previous state-of-the-art approach.
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1 Introduction

This paper addresses the problem of estimating semantically meaningful facial
contours from an image ensemble using semi-supervised congealing. The shape
of an object can be described by object contours, which include both the overall
object boundary and boundaries between key components of the object. By
facial contour, in particular, we refer to the boundary of chin and cheek, as well
as the facial features including eyes, eyebrows, nose, and mouth. Given a large
set of face images, semi-supervised congealing [2, 1] is defined as a process of
propagating the labeling, which is the facial contour in this work, across the
entire ensemble from a few labeled examples (See Fig. 1).

There are many applications of semi-supervised congealing. In computer vi-
sion, landmark labeling is necessary for learning models of the object shape, such
as Active Appearance Models (AAM) [3, 4] and Boosted Appearance Model [5]
for faces, which is often conducted manually for a large set of object instances/images.
However, this is a labor-intensive, time-consuming, and error-prone process. Our
semi-supervised approach will dramatically alleviate this problem. Furthermore,
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Fig. 1. Given an image ensemble with an overlayed initial contour via face detection
(top right), together with manual labels of contours on a few images (top left), our
proposed algorithm estimates the contour parameters for all images in the ensemble
(bottom), regardless of the variations of facial shape, pose, and unseen subjects.

our approach can be used to discover the non-rigid shape deformation of a real-
world object, when applied to an image ensemble of an object class.

Given the wide application space of semi-supervised congealing, there is a
surprisedly limited amount of prior work concerning ensemble-based non-rigid
shape estimation for objects with greatly varying appearance, such as faces. The
work by Tong et al. [1] might be the most relevant one to ours. They use least-
square-based congealing to estimate the set of landmarks for all images in an
ensemble given the labels on a few images. The least square term between any
image pair is evaluated on a common rectangle region, which is where the image
pair warps toward based on the landmark location. By gradually reducing the
size of rectangle, the precision of landmark estimation is improved.

Although [1] has shown some promise, the accuracy of the labeling has poten-
tial for further improvement. First of all, the coarse-to-fine scheme and measure-
ment in the warped space poses fundamental limitation on the accuracy. Also,
the intensity feature is not salient enough to capture edge information, which
is where all landmarks reside. To alleviate these problems, we propose a novel
approach in this paper. With the goal of providing high accuracy in labeling, we
use a parametric curve to represent the facial contour, rather than a landmark
set. Hence, the appearance feature along the curve, named curve descriptor, can
be extracted and drives the congealing process. Since two curve functions are
used to represent a closed contour such as the eye, we present a dual-congealing
algorithm operating jointly on both curves, with the help of a geometric con-
straint term. We demonstrate that advanced features such as HOG [6] can be
utilized in the proposed congealing framework. With extensive experiments, we
show that large progress has been achieved in the labeling accuracy compared
to the state-of-the-art approach.

2 Prior Work

There is a long history of unsupervised group-wise registration in computer
vision [7], particularly in the area of medical image analysis. Learned-Miller [2,
8] names this process “congealing”, where the basic idea is to minimize a cost
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function by estimating the warping parameters of an ensemble. The work by Cox
et al. [9] is a recent advance in least-squares-based congealing (LSC) algorithm.
However, these approaches estimate only affine warping parameters for each
image, rather than the non-rigid deformation addressed here.

There is also work on unsupervised image alignment that allows more gen-
eral deformation models, such as [10–18]. However, almost all approaches report
results on images with small intra-class appearance variation, such as brain im-
age, digits, and faces of a small population. In contrast, the semi-supervised
congealing algorithm of [1] demonstrates promising performance on an ensemble
of over 1000 images from hundreds of subjects, which motivates us to use the
semi-supervised approach for facial contours.

There is a rich literature concerning contour and edge detection [19]. We
should note that in dealing with real-world images, the dominant edge from low-
level image observations might not be consistent with the high-level semantic-
meaningful contour. For example, the double eyelid can have stronger edge infor-
mation compared to the inner boundary between the conjunctiva and the eyelid,
which is often what we are interested in extracting for describing the shape of
eyes. Thus, semi-supervision seems to be a natural way to allow the human ex-
pert to label the to-be-detected contours on a few examples, so as to convey the
true contour that is of real interests for the application at hand.

3 Semi-supervised Least-Squares Congealing

First we will describe the basic concept and objective function of the conventional
semi-supervised least-square congealing (SLSC) by using image warping [1].

Congealing approaches operate on an ensemble of K unlabeled images I =
{Ii}i∈[1,K], each with an unknown parameter pi, such as the landmark set in [1],
that is to be estimated. Semi-supervised congealing also assumes there is a small
set of K̃ labeled images Ĩ = {Ĩn}n∈[1,K̃], each with a known parameter p̃n. We
denote the collection of all unknown parameters with P = [p1, · · · ,pK ]. The
goal of SLSC is to estimate P by minimizing a cost function defined on the
entire ensemble:

ε(P) =
K∑
i=1

εi(pi). (1)

The total cost is the summation of the cost of each unlabeled image εi(pi):

εi(pi) =
1− α
K − 1

K∑
j=1,j 6=i

‖f(Ij ,pj)− f(Ii,pi)‖2 +
α

K̃

K̃∑
n=1

‖f(Ĩn, p̃n)− f(Ii,pi)‖2,

(2)
where f(I,p) is the feature representation of image I evaluated at p. Hence,
εi(pi) equals the summation of the pairwise feature difference between Ii and
all the other images in the ensemble, including both the unlabeled images (the
1st term of Eqn. (2)) and the labeled image (the 2nd term of Eqn. (2)).

In [1], the feature representation is defined as,

f(I,p) .= I(W(x; p)), (3)
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where W(x; p) is a warping function that takes x, which is a collection of pixel
coordinates within the common rectangle region, as input, and outputs the cor-
responding pixel coordinates in the coordinate space of image I. Given this
warping function, I(W(x; p)) denotes the corresponding warped image vector
obtained by bilinear interpolation of the image I using the warped coordinates
W(x; p). Note that in [1], W(x; p) is a simple 6-parameter affine warp, rather
than a complex non-rigid warp such as the piecewise affine warp [4]. This is
due to the high dimensionality in the non-rigid warp, as well as the needs to
optimize p for all images simultaneously. Hence, by applying affine-warp-based
optimization multiple times, each at a different rectangle region with decreasing
size, the non-rigid natural of the warp can be approximated.

Since the total cost ε(P) is difficult to optimize directly, [1] chooses to iter-
atively minimize the individual cost εi(pi) for each Ii. The well-known inverse
warping technique [20] is utilized and after taking the first order Taylor expan-
sion, Eqn. (2) can be simplified to:

1− α
K − 1

K∑
j=1,j 6=i

‖bj + cj∆pi‖2 +
α

K̃

K̃∑
n=1

‖b̃n + c̃n∆pi‖2, (4)

where

bj=f(Ij ,pj)−f(Ii,pi), cj=
∂f(Ij ,pj)

∂pj
. (5)

The least-square solution of Eqn. (4) can be obtained by setting the partial
derivative of Eqn. (4) with respect to ∆pi to be equal to zero. We have:

∆pi=−

 1− α
K − 1

K∑
j=1,j 6=i

cTj cj +
α

K̃

K̃∑
n=1

c̃Tn c̃n

−1 1− α
K − 1

K∑
j=1,j 6=i

cTj bj +
α

K̃

K̃∑
n=1

c̃Tn b̃n

 .
(6)

4 Facial Contour Congealing

In this section, we will present our facial contour congealing approach in detail.
Three key technical components will be covered: parametric curve representa-
tion, curve descriptor, and contour congealing.

4.1 Parametric Curve Representation

In computer vision, it has been very popular to use a set of landmarks to describe
the shape of an object by placing the landmarks along the object contour, such
as the Point Distribution Model (PDM) applied to faces. However, there are dis-
advantages to using the landmark representation. First, an excessive number of
landmarks are needed in order to approximate the true contour of facial images,
especially for high quality images. Second, for the semi-supervised congealing
application, little constraint can be applied on the distribution of landmarks
since there are very few labeled images, which poses a challenge for landmark
estimation on unlabeled images.
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Fig. 2. (a) The entire facial shape is described by contours on 7 facial components;
(b) The closed contour (such as the eye) is represented by two connected parametric
curves, where each curve’s parameter can be estimated via curve fitting on labeled
landmarks (5 landmarks in this case).

In this paper, we propose to use a parametric curve representation to describe
the facial contour. As shown in Fig. 2(b), we use two parametric curves to
represent the closed contour of one of the seven facial components, such as eye.
For simplicity of notation, we will initially focus on one of the two curves, which
covers half of the contour. A 2D parametric curve is defined by the n-order
polynomials:

x(t) = px,nt
n + px,n−1t

n−1 · · ·+ px,1t+ px,0, (7)

y(t) = py,nt
n + py,n−1t

n−1 · · ·+ py,1t+ py,0, (8)

where usually we consider t ∈ [0, 1], and the collection of coefficients,

p = [px py ]T =
[
px,n px,n−1 · · · px,1 px,0 py,n py,n−1 · · · py,1 py,0

]T
, (9)

is called the curve parameter, which fully describes the shape of the curve. Given
a known p, we can generate any number of points on the curve by varying t.

In practice, when we manually label face images, we label landmarks rather
than the curve directly. Suppose there are m landmarks being manually labeled
along the contour, we have:

x = [x(t1) y(t1) · · · x(tm) y(tm) ]T = Tp, (10)

where

T =


tn1 tn−1

1 · · · t1 1 0 0 · · · 0 0
0 0 · · · 0 0 tn1 tn−1

1 · · · t1 1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
tnm tn−1

m · · · tm 1 0 0 · · · 0 0
0 0 · · · 0 0 tnm tn−1

m · · · tm 1

 . (11)

By assuming the landmarks are evenly spaced, we have [t1, t2, · · · , tm] =
[0, 1

m−1 , · · · , 1]. Hence, the curve parameter can be directly computed from the
landmark set:

p = (TTT)−1TTx. (12)
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Fig. 3. An array of point coordinates are computed within the band following the target
curve. Appearance information, such as pixel intensity or HOG, can be extracted from
these coordinates and form a curve descriptor for the target curve.

4.2 Curve Descriptor

Having introduced the mapping between the curve parameter and the landmark
set, we will present our method to extract the appearance feature for a curve,
which is called curve descriptor, given the known curve parameter.

For landmark-based shape representation, e.g. Active Shape Model (ASM) [21],
the appearance information is often extracted within a small rectangle region
around the landmark. Similarly, for curve-based representation, the curve de-
scriptor will be extracted from a band-like region along the curve.

As shown in Fig. 3, let us denote the U points along the central target curve
as {[x̆u,0, y̆u,0]}u=1,··· ,U , where [x̆u,0, y̆u,0] = [x(tu), y(tu)]. We can allocate V
synthetic curves on both sides of the target curve, where the distance between
any neighboring curves is r. Specifically, for the uth point on the curve, we have
a point [x̆u,v, y̆u,v] on its normal direction with a distance |v|r, which is then
located on the vth synthetic curve,[

x̆u,v
y̆u,v

]
=
[
x(tu)− vrsinθu
y(tu) + vrcosθu

]
, (13)

where θu is the tangent angle for the uth point on the curve:

θu = arctan(
dy

dx
|tu) = arctan(

T′upy
T′upx

), (14)

and T′u is the derivative of polynomial evaluated at tu:

T′u =
[
ntn−1
u (n− 1)tn−2

u · · · 1 0
]
. (15)

Hence, with a set of point coordinates x̆ = {[x̆u,v, y̆u,v]}u=1,··· ,U,v=−V,··· ,V ,
as well as their corresponding angles θ = {θu}u=1,··· ,U , we can extract the curve
descriptor. The simplest descriptor is to use the pixel intensity evaluated at x̆,
i.e., f(I,p) .= I(x̆). Motivated by the work of [6, 22, 23], we can also use the
powerful HOG feature as the curve descriptor:

f(I,p) .= h(x̆, θ) = [ĥ(x̆u,v, y̆u,v, θu)]u=1,··· ,U,v=−V,··· ,V , (16)

which is a concatenation of U(2V +1) L2-normalized HOG vectors, each centered
at [x̆u,v, y̆u,v] with angle θu. Note that the HOG feature we employ makes use
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of the tangent angle θ. Hence it will better capture the appearance information
along the curve, as well as on either side of the curve.

4.3 Contour Congealing

With the presentation on contour representation and curve descriptor, we now
introduce how to conduct contour congealing for an ensemble of facial images.
The basic problem setup is the same as the SLSC in Section 3. That is, given
the unlabeled image set {Ii} and its initial label {p′i}, as well as a small number
of labeled images {Ĩn} and their known labels {p̃n}, we need to estimate the
true curve parameters {pi}.

In this work, our semi-supervised contour congealing is applied on each of
the seven components independently. Notice that 5 out of the 7 components are
closed contours, where two curve functions are needed to represent the entire
contour. In contrast to the SLSC in Section 3, now we face a new challenging
problem of congealing two sets of curve parameters simultaneously, where simply
applying Eqn. 2 is not sufficient.

By denoting p1 and p2 as the curve parameters for the top curve and bot-
tom curve respectively, we can utilize one simple geometric constraint. That is,
the points on both ends of the 1st curve should overlap with those of the 2nd

curve. With that, our semi-supervised congealing for a closed contour utilizes
the following objective function:

εi(p1
i ,p

2
i ) = εi(p1

i ) + εi(p2
i ) + β‖x1

i − x2
i ‖2, (17)

where x1
i = T01p1

i , x2
i = T01p2

i , and T01 is a sub-matrix of T including its first
two rows and last two rows. This objective function is basically the summation
of the error terms from two curves, and their geometric constraint weighted by
β.

By employing inverse warping technique [20] and similar simplification as
Eqn. 4, we have:

εi(∆p1
i , ∆p2

i ) =
1− α
K − 1

K∑
j=1,j 6=i

(‖b1
j + c1

j∆p1
i ‖2 + ‖b2

j + c2
j∆p2

i ‖2)+

α

K̃

K̃∑
n=1

(‖b̃
1

n + c̃1
n∆p1

i ‖2 + ‖b̃
2

n + c̃2
n∆p2

i ‖2) + β‖x1
i − x2

i − ei(∆p1
i −∆p2

i )‖2,

(18)

where ei = ∂x1
i

∂p1
i

= ∂x2
i

∂p2
i

= T01, and b∗j and c∗j can be defined similarly as Eqn. 5.

The curve parameter updates ∆p1
i and ∆p2

i can be estimated by solving a
linear equation system as: 

∂εi(∆p1
i ,∆p2

i )

∂∆p1
i

= 0,
∂εi(∆p1

i ,∆p2
i )

∂∆p2
i

= 0.
(19)
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Substituting Eqn. (18) to Eqn. (19), we have:[
A1, B
B, A2

] [
∆p1

i

∆p2
i

]
= −

[
C1

C2

]
, (20)

where

A1 =
1− α
K − 1

K∑
j=1,j 6=i

(c1
j )
T c1

j +
α

K̃

K̃∑
n=1

(c̃1
n)T c̃1

n + βeTi ei, (21)

A2 =
1− α
K − 1

K∑
j=1,j 6=i

(c2
j )
T c2

j +
α

K̃

K̃∑
n=1

(c̃2
n)T c̃2

n + βeTi ei, (22)

B = −βeTi ei, (23)

C1 =
1− α
K − 1

K∑
j=1,j 6=i

(c1
j )
Tb1

j +
α

K̃

K̃∑
n=1

(c̃1
n)T b̃

1

n − βeTi (d1
i − d2

i ), (24)

C2 =
1− α
K − 1

K∑
j=1,j 6=i

(c2
j )
Tb2

j +
α

K̃

K̃∑
n=1

(c̃2
n)T b̃

2

n + βeTi (d1
i − d2

i ). (25)

The above solution is straightforward to implement as long as we know how
to compute b∗j and c∗j , among which ∂f(I,p)

∂p will likely take the most effort to

compute. Hence, from now on we will focus on the computation of ∂f(I,p)
∂p when

the curve descriptor is the HOG feature. For the case of the intensity feature,
∂f(I,p)
∂p is relatively easier and will be omitted from this discussion.

Note that our HOG feature is a L2-normalized version, ĥ = h
‖h‖2 , due to the

proven superior performance over the non-normalized version [6]. Hence,

∂ĥ
∂p

=
∂ĥ
∂h

∂h
∂p

(26)

= (
I32

‖h‖2
− 1

(‖h‖2)3/2
hhT )(

∂h
∂x̆u,v

∂x̆u,v
∂p

+
∂h
∂y̆u,v

∂y̆u,v
∂p

+
∂h
∂θu

∂θu
∂p

), (27)

where I32 is a 32× 32 identity matrix,

∂x̆u,v
∂p

=
∂x̆u,0
∂p

− vrcosθu
∂θu
∂p

, (28)

and

∂θu
∂p

=
1

1 + (tanθu)2

∂
T′

upy

T′
upx

∂p
(29)

=
1

1 + (tanθu)2

[
− T′

upy

(T′
upx)2 T′u 0 1

T′
upx

T′u 0
]
. (30)
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Fig. 4. Performances of the contours on two eyes using our algorithm, the baseline and
initialization, when the number of labeled images K̃ is 10, 20, and 50.

The partial derivatives ∂h
∂x̆u,v

, ∂h
∂y̆u,v

, and ∂h
∂θu

can be computed using the def-
inition of derivative in the discrete case, i.e., ∂h

∂x̆u,v
= h(x̆u,v, y̆u,v, θu)−h(x̆u,v −

1, y̆u,v, θu). Similar ways of computing ∂h
∂x and ∂h

∂y have been used in [22].
For the case of open facial contour, such as nose and chin, we use the first

term of Eqn. 17 as the objective function. Its solution is a simplified case of the
above derivation, and hence will be omitted here.

5 Experimental Results

In this section, we will present the extensive experiments that demonstrate the
capability of our proposed algorithm. For our experiments, we choose a subset of
350 images from the publicly-available PUT face database [24], which exhibits
moderate variation in pose and facial expression (Fig. 1). The entire image set
is partitioned into two sets: one with 300 images is used as the unlabeled image
ensemble I, the other with 50 images will be randomly chosen as the labeled
image set Ĩ. All images have manually labeled ground-truth on the facial contours
of 7 components (Fig. 2). For example, the contour of an eye is labeled with 20
landmarks. There are 166 total landmarks labeled for all 7 contours. This ground-
truth will not only provide the known curve parameter p̃n for labeled image Ĩn
(via Eqn. 12), but also be used in quantitative evaluation of the performance.

Since the very recent work of Tong et al. [1] is the most relevant to ours, it
is chosen as the baseline approach for comparison. We have implemented both
algorithms in Matlab and ensure they are tested under the same condition. Al-
though PUT is a high quality face database, we downsample the face size to be
around 70 pixels eye-to-eye, mostly based on the concern that the efficiency of
the baseline algorithm largely depends on the average face size. For the labeled
set, both algorithms have their p̃ parameters computed from the manually la-
beled 166 landmarks per image. For the unlabeled set, both algorithms use the
PittPatt face detector [25] to compute the initial p, by placing an average set
of landmarks/contours (see the top-right of Fig. 1), which is computed from the
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Fig. 5. Comparison of our algorithm, the baseline and initialization (K̃ = 10) for (a)
two eyebrows, (b) mouth, (c) chin, (d) nose.

small set of labeled images, within the detected face rectangle. This is a valid
initialization since face detection is almost a commodity.

For our algorithm, once the estimation of curve parameters is completed,
we compute the average of the distances between each ground-truth landmark
and the estimated curve, and then divide it by the distance between the two
eye centers. This quantitative evaluation is called Normalized Point to Curve
Error (NPCE), and is expressed as a percentage. We also compute NPCE for
the baseline because a curve function can be fitted to the estimated landmarks
via the baseline algorithm.

5.1 Performance Comparison

We will first present the performance comparison between our algorithm and
the baseline approach. For each unlabeled image in our algorithm, once the av-
erage contour is placed within the face detection rectangle, we have the initial
curve parameters for all seven components. Then the contour congealing is con-
ducted on each component independently. Note that we only use the very basic
face detection functionality and no additional landmark detection, such as eye
and nose, is conducted using the PittPatt SDK. Hence, it is obvious that face
detection can have quite a large variation on localization, especially for smaller
components. However, our algorithm does surprisingly well in handling this real-
world challenging initialization and congealing all components independently. Of
course, one potential future work is to use the better-congealed components, and
global spatial distribution of components learned from labeled data, to produce
a better initialization for other components.

For both algorithms, we perform three sets of experiments, each with a dif-
ferent number of labeled images, K̃=10, 20, and 50. For all components in our
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algorithm, we use 4th-order polynomials (n= 4) in the curve function, and the
2 × 2 cell 8-bin HOG feature for the curve descriptor, where V ∈ [3, 5] and
r ∈ [1, 2] for various components. We fix α = 0.5 and β = 50 throughout the
experiments.

To better understand the system performance, we plot the comparison for two
eye components in Fig. 4. The cumulative distribution function (CDF) of NPCE
is plotted for the results of our algorithm, the baseline, and the initialization via
face detection. It is clear that our algorithm improves the initialization with a
large margin, while the baseline performs slightly worse than the initialization.
We attribute this worse performance of the baseline to the pose variation in the
data, which makes the image warping and progressive affine approximation less
likely to work well. Note that for our algorithm, more than 90% of the unlabeled
images have the final eye localization error less than 2% of eye-to-eye distance.
For the right eye, it takes our algorithm 13− 15 iterations (about 3.5 hours on
the conventional PC) to converge for the entire test set when K̃ is 10 or 20.

In comparing the results with various K̃, we can see that our approach at
K̃=10 is almost as good as when K̃=50. This is a very important property since
it means our approach can be used with a very small set of labeled images. The
similar property is also observed in the comparison of other components. Hence,
due to limited space, we show the results of other components only when K̃=10
in Fig. 5. Again, for all the remaining components, our algorithm performs sub-
stantially better than the baseline, which also improves over the initialization
except the chin contour. We attribute the improvement of our algorithm to three
reasons: 1) the partition scheme and using a set of affine warps to approximate
non-rigid deformation of [1] pose limitation on the accuracy; 2) the feature ex-
tracted along the curve better describes the appearance information than the
feature in the partitioned rectangle of [1]; 3) the HOG feature is more suitable
for localization than the intensity feature in [1]. We also illustrate the congealing
results of our approach on various components in Fig. 6.

5.2 Labeling Confidence

Knowing when an algorithm does not converge is often as important as overall
algorithm performance. This is especially true for semi-supervised algorithms.
Hence, a confidence score is desirable for practical applications in order to eval-
uate the quality of labeling without ground truth. For this we use εi(p1

i ,p
2
i ) in

Eqn. (17). A smaller εi indicates a higher-confidence in labeling. By partitioning
the 300 confidence scores into 5 bins, Fig. 7 shows labeled left eye component
from the lowest 20% to the highest 20% confidence scores, in our 300-image en-
semble (K̃=10). Fig. 8 also illustrates the distribution of the estimated εi versus
the actual labeling error represented by the NPCE for the left eye component.
With the increase of the εi, the landmark labeling error increases significantly.
Hence, it is clear that this confidence score is indicative of labeling performance.
The linear correlation between εi and NPCE can also be shown by the computed
Pearson correlation coefficient, which is 0.715. Similar phenomena have been ob-
served for experiments on other facial components. In practice, after labeling,
one can use this confidence score to select only high-confident samples for a
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(a)

(b)

(c)

(d)

Fig. 6. The initialization and results of our algorithm on various facial components:
(a) left eyebrow (K̃ =20), (b) left eye (K̃ =50), (c) mouth (K̃ =10), and (d) whole face
(K̃ = 10). It can be seen that some of the images, especially those with background
displayed, are of faces with noticeable pose variation. Notice the large amount of shape
variation exhibited in the data that can be handled by our algorithm.
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Fig. 7. The confidence of labeling the eye component increases from the top row to
bottom row. We observe that almost all failed cases can be found in the category with
lowest confidence score.

training set, or to select low-confident samples for other appropriate additional
processing.

10
0

10
1

40

50

60

70

80

90

100

110

NPCE

e
i

Fig. 8. The correlation between the labeling confidence (εi) and actual labeling error
(NPCE). The Pearson correlation coefficient between these two variables is 0.715.

6 Conclusions

Real-world objects can exhibit a large amount of shape deformation on 2D im-
ages due to intra-object variability, object motion, and camera viewpoint. Rather
than the conventional landmark-based representation, we propose to use curve
functions to describe the facial contour. We demonstrate a complete system that
is able to simultaneously align facial contour for a large set of unlabeled images
with face detection results, given a few labeled images. Extensive experiments
demonstrate that our system has achieved much more accurate labeling results
compared to the previous state-of-the-art approach on face images with moder-
ate changes in pose and expression.
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