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Abstract

Joint alignment for an image ensemble can rectify im-
ages in the spatial domain such that the aligned images are
as similar to each other as possible. This important technol-
ogy has been applied to various object classes and medical
applications. However, previous approaches to joint align-
ment work on an ensemble of a single object class. Given
an ensemble with multiple object classes, we propose an ap-
proach to automatically and simultaneously solve two prob-
lems, image alignment and clustering. Both the alignment
parameters and clustering parameters are formulated into
a unified objective function, whose optimization leads to an
unsupervised joint estimation approach. It is further ex-
tended to semi-supervised simultaneous estimation where a
few labeled images are provided. Extensive experiments on
diverse real-world databases demonstrate the capabilities
of our work on this challenging problem.

1. Introduction
The recognition of members of certain object classes,

such as faces or cars, can be substantially improved by first
transforming a detected object into a canonical pose. Such
alignment reduces the variability that a classifier/recognizer
must cope with in the modeling stage. Given a large
set of training images, one popular alignment approach
is called congealing [16, 14], which jointly estimates the
alignment/warping parameters in an unsupervised manner
for each image in an ensemble. It has been shown that con-
gealing can be reliably performed for faces and it improves
the appearance-based face recognition performance [14].

The conventional congealing approach works on an im-
age ensemble of a single object class. However, in practices
we often encounter the situation where there are multiple
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Figure 1. Simultaneous alignment and clustering: Given an im-
age ensemble as input (left), our approach simultaneously clusters
the images into multiple object classes and estimates the alignment
parameter for each image (right). Note the improved alignment
despite the variations in object appearance, scale and shape.

object classes, or object modes exhibited in an ensemble.
For example, all “googleable” web-images constitute a very
large ensemble; and brain MR images of a large population
have different modes corresponding to age groups. With
this data, one of the first tasks is image clustering, i.e., the
process of assigning each image to a unique label of class
or mode. Even though there is substantial prior work on
clustering, it is generally not concerned with the alignment
problem.

When confronted with an ensemble of multiple object
classes, both alignment and clustering can be treated as rec-
tification processes, where the former operates on the spa-
tial domain and the latter in the feature space. Furthermore,
they are two highly coupled problems. That is, improved
alignment for images within the same object class facili-
tates the clustering, and visa versa. Hence, it is desirable to
solve both problems in a simultaneous fashion. To this end,
our paper proposes a joint approach toward these goals.

As shown in Fig. 1, given a multi-class ensemble, our
algorithm can simultaneously estimate the alignment pa-
rameter for each image and the assignment of each image
w.r.t. the clusters in an unsupervised manner. By assum-
ing the number of the clusters is known, each image in an



ensemble has two parameters to be estimated. One is the
affine warping parameter, which describes the transforma-
tion between the image coordinate space to the common
coordinate space that is shared by all images. The other pa-
rameter is the membership vector, whose length equals the
number of clusters and elements represent the probability
of this image belonging to the corresponding cluster. These
two parameters are formulated into a unified objective func-
tion, defined as the summation of the weighted L2 distances
between image pairs warped onto the common coordinate
space. The minimization of such a function leads to the
unsupervised learning approach of our paper, named unsu-
pervised simultaneous alignment and clustering (USAC). In
addition, we extend our approach to semi-supervised learn-
ing where a single exemplar image per cluster is manually
specified. This has shown to substantially improve the si-
multaneous estimation performance compared to the unsu-
pervised algorithm. Furthermore, advanced features such
as Histogram of Oriented Gradients (HOG) are used in our
objective function to achieve superior performance. Various
challenging experimental datasets, for example handwritten
digits [17], multi-view faces [12], and Caltech-256 [13], are
utilized to demonstrate the capability of our approach.

The proposed simultaneous alignment and clustering
framework has three main contributions:
� A core algorithm is proposed for unsupervised simul-

taneous alignment and clustering for an image ensemble of
multiple object classes.
� Two additional techniques are introduced for the simul-

taneous estimation: using semi-supervised learning with
very few manually labeled examples and employing the
HOG feature rather than the intensity.
� An end-to-end system is developed for automatic es-

timation of the alignment and the membership parameters
in an ensemble of multiple object classes. Extensive exper-
iments to evaluate the performance and capabilities of the
system have been conducted and are reported here.

2. Prior Work
Congealing is a process of reducing shape variability

within an image ensemble such that the images appear as
similar as possible. It was originally proposed to deal with
spatial variations in images [22] and later extended to con-
tinuous joint alignment [16], applications in complex real-
world facial images [14], and least-square congealing [6].
Learned-Miller [16] employs an entropy-based cost func-
tion to minimize the parametric warp differences between
an ensemble. Cox et al. [6] propose a least squares con-
gealing (LSC) algorithm, which uses L2 constraints to es-
timate each warping parameter. Tong et al. [24] determine
non-rigid face deformation by propagating landmark label-
ing through semi-supervised LSC. There are also other rele-
vant works in the category of unsupervised joint alignment,

such as [2, 15, 5, 25]. However, the input data for almost
all the aforementioned approaches is the ensemble from a
single object class, rather than the multiple object classes in
our work.

Regarding joint alignment and clustering, Frey and Jo-
jic’s work [10, 11] has the greatest relevance to our problem
of interest. Specifically, using a latent image-transformation
model, [11] jointly normalizes input data for global trans-
formations and clusters the normalized data. One draw-
back of [11] is the need to define a discrete set of allow-
able spatial transformations. In comparison, our approach
allows continuous affine parameterization and hence poten-
tially higher accuracy. A detailed comparison with [11] is
reported in Section 4.2. There is also prior work in the med-
ical imaging domain [3, 23], where the general objective is
to discover the representative modes of an ensemble while
at the same time estimating the alignment parameters w.r.t.
the modes. In contrast, our approach can work with an en-
semble consisting of multiple distinct object classes, rather
than relatively similar object modes.

As a related topic, we note that there is also extensive
work on image categorization [4, 8, 9], most of which fits
into the general domain of multi-class object recognition.
In comparison, our work focuses on group-wise multi-class
image alignment, with clustering results as by-product.

3. Simultaneous Alignment and Clustering
In this section, we first introduce the unsupervised simul-

taneous alignment and clustering algorithm. Then with the
assumption that a few labeled images might be provided in
practical applications, we extend it to the semi-supervised
simultaneous alignment and clustering algorithm. Finally,
we describe how to incorporate advanced feature represen-
tations such as HOG into our algorithm.

3.1. Unsupervised Simultaneous Alignment and
Clustering

Given an ensemble of K unaligned images I =
{Ii}i∈[1,K], we assume that the number of object clus-
ters/classes is known and is denoted by C. For each image
Ii, we first denote the warping parameter as pi, which is an
n-dimensional vector that allows the warping from each im-
age to a predefined common coordinate space Λ from which
the similarity among the images in the set can be evalu-
ated. Secondly, we denote the membership vector of Ii as
πi, which is a C-dimensional vector πi = [πi,1, · · · , πi,C ]T

whose element πi,c represents the probability that Ii be-
longs to the cth cluster. The constraints 0 ≤ πi,c ≤ 1
and

∑C
c=1 πi,c = 1 will hold for all πi. Our definition of

πi allows a soft membership assignment w.r.t. each cluster.
Compared to a parametrization with hard cluster labels, this
provides greater potential to improve the clustering during
the optimization process.



(a) (b)

Figure 2. Defining the objective function: (a) in the algorithm
initialization, samples I(W(x; p)) from 3 clusters (one color for
each cluster) scatter around in the feature space RS ; (b) during
the optimization, sample positions can be moved by two forces:
minimizing the distance of within-cluster samples (εint(π,P)) and
maximizing the distance of between-cluster samples (εext(π,P)).
Solid and dotted lines represent πT

i πj and αi,j respectively, while
the line thickness indicates the magnitude of the scalar.

For the simplification of notation, we denote the col-
lection of warping parameters for the entire ensemble as
P = [p1, · · · ,pK ], and similarly the collection of mem-
bership vectors as π = [π1, · · · , πK ]. To this end, we need
to define an objective function parameterized by P and π so
that they can be estimated through optimization.

Our objective function (OF) is defined based on two mo-
tivations, each of which contributes to one part of the func-
tion. As shown in Fig. 2, by treating the warped images as
samples in an abstract feature space, the first motivation is
that the OF should drive the samples of the same cluster to
be as close as possible. This leads to the first term in the OF
that focuses on the within-cluster image difference:

εint(π,P) =
K∑
i=1

K∑
j=1,j 6=i

πTi πj‖Dij‖2, (1)

where Dij = Ij(W(x; pj)) − Ii(W(x; pi)) is the pairwise
difference of the warped images. x is a collection of S
pixel coordinates within a bounding region defined in the
common coordinate space Λ. W() is a warping function
that maps coordinates in Λ to the coordinate space of the
ith image. W() can be a simple affine warp or a com-
plex non-rigid warp such as the piecewise affine warp [21].
Thus, Ii(W(x; pi)) ∈ RS is a vectorized warped image
obtained by interpolating Ii using the warped coordinates
W(x; pi). Eq. 1 is minimized when the image pairs in the
same ground-truth cluster have both similar warped appear-
ances and similar membership vectors. In other words,
when the minimization converges, πTi πj will be relative
large, as shown by the thick-solid lines in Fig. 2(b), if
‖Dij‖2 is small, and vice versa.

Our second motivation is to encourage the warped im-
ages from different clusters to be as far from each other as
possible in the feature space. This leads to the second term
in the OF that focuses on the between-cluster image differ-

ence:

εext(π,P) =
K∑
i=1

K∑
j=1,j 6=i

αi,j‖Dij‖2, (2)

where αi,j =
∑C
u=1

∑C
v=1
v 6=u

πi,uπj,v = 1−πTi πj . As shown

by the dotted lines in Fig. 2, the maximization of εext(π,P)
will favor the joint estimation because both ‖Dij‖2 and αi,j
tends to be large when Ii and Ij have different cluster as-
signments.

Furthermore, by considering the fact that we are aiming
for the minimization of εint(π,P) and the maximization of
εext(π,P), we define the overall objective function with a
constant factor λ1 balancing these two terms:

ε(π,P) = εint(π,P)− λ1εext(π,P). (3)

Finally, given the initial π′ and P′, we choose to itera-
tively minimize ε(π,P) by updating these two parameters
alternatively. In our work, we initialize the membership
vectors by π′i = [ 1

C , · · · ,
1
C ]T plus some noise. The initial

warp parameter is set such that the majority of the target ob-
ject in each image can be warped to the common coordinate
space Λ. In the following, we will introduce the estimation
of π and P respectively.

3.1.1 Estimation of Membership Vectors
In each iteration, we first estimate the membership vector π
while fixing P, which means Dij is also fixed. By plugging
Eq. 1 and 2 into Eq. 3, we have:

π∗ = argmin
π

K∑
i=1

K∑
j=1,j 6=i

((λ1 +1)πTi πj−λ1)‖Dij‖2. (4)

Since the membership vectors have the constraints that
they are non-negative and sum to one for each image, solv-
ing π becomes a nonlinear optimization problem with linear
constraints:

min
K∑
i=1

K∑
j=1,j 6=i

((λ1 + 1)πTi πj − λ1)‖Dij‖2, (5)

s.t. 0 ≤ πi,c ≤ 1 and
C∑
c=1

πi,c = 1,

where c ∈ [1, C] and i ∈ [1,K].

Eq. 5 can be solved by standard optimization methods.
In this work, we use the fmincon function with the inte-
rior point algorithm of the MatlabTM Optimization Tool-
box, which combines the interior point method and trust re-
gion method for solving nonlinear optimization problems.
For one iteration, it takes about 5.5 seconds to estimate the
membership vector π when C = 10 and K = 200 with a
2GHz CPU.



3.1.2 Estimation of Warping Parameters
Next, we update the warping parameters P while the newly
estimated π is held fixed. Eq. 3 becomes:

ε(P) =
K∑
i=1

K∑
j=1
j 6=i

βi,j‖Ij(W(x; pj))− Ii(W(x; pi))‖2, (6)

where βi,j = (λ1 + 1)πTi πj − λ1.
Since ε(P) is difficult to optimize directly, we employ

an iterative optimization using the inverse compositional
(IC) technique similar to [1, 6]. The basic idea of IC
is that the warping update is computed for the template.
Hence, the image gradient, Jacobian, and Hessian can be
pre-computed, which results in an efficient alignment algo-
rithm. We estimate the warping parameter updates ∆pi by
minimizing εi(∆pi) for each Ii as follows:

εi(∆pi) =
K∑
j=1
j 6=i

‖Ij(W(W(x; ∆pi); pj))− Ii(W(x; pi))‖2,

(7)
and then update the warping function by:

W(x; pi)←W(x; pi) ◦W(x; ∆pi)
−1. (8)

The least squares solution of Eq. 7 is given as:

∆pi = −H−1
K∑

j=1,j 6=i

βi,j
∂Ij(W(x; pj))

∂pj

T

Dij , (9)

with

H =
K∑

j=1,j 6=i

βi,j
∂Ij(W(x; pj))

∂pj

T
∂Ij(W(x; pj))

∂pj
. (10)

For each image Ii, Eq. 9 and 8 will be executed once.
After the warping parameter pi for each image is updated,
the estimation of P is complete and we go back to the es-
timation of π. This procedure will terminate when ε(π,P)
stops decreasing.

3.2. Semi-supervised Simultaneous Alignment and
Clustering

Semi-supervised learning can be very useful in practi-
cal applications, especially when a few images can be con-
veniently labeled by a user. In the particular problem of
simultaneous alignment and clustering, the user can scan
through the image ensemble and select a number of images,
even just one image per cluster, that can be treated as the
labeled data for C clusters. Specifically, let’s assume an
ensemble of K̃ images Ĩ = {Ĩi}i∈[1,K̃] has been manually
labeled in both the cluster assignment and the warping pa-
rameter. That is, π̃ = [π̃1, · · · , π̃K̃ ] and P̃ = [p̃1, · · · , p̃K̃ ]

(a) (c)(b)

Figure 3. Histogram of Oriented Gradients: (a) A 2× 2 cell on
an image; (b) The gradient map; (c) In this example of two “1”
digits, HOG covers a larger overlapping area and hence alleviates
the zero-gradient problem in single-pixel-based intensity feature.

are manually provided and remain constant during the op-
timization. To this end, our semi-supervised simultaneous
alignment and clustering (SSAC) algorithm aims to mini-
mize the following objective function:

ε̃(π,P) =
λ2

K̃

K∑
i=1

K̃∑
n=1

(πTi π̃n−λ1αi,n)‖D̃in‖2+
1− λ2

K − 1
ε(π,P),

(11)
where D̃in = Ĩn(W(x; p̃n))− Ii(W(x; pi)).

Notice that this objective function is very similar to the
one in our USAC algorithm except that there are K × K̃
additional constraints between the labeled images and the
unlabeled ones, and a new weighting factor λ2. Similar to
USAC, ε̃(π,P) is also minimized by alternatively estimat-
ing π and P. Due to the limited space, we omit the detailed
derivation of these two estimates.

3.3. Congealing with HOG Feature
Feature representation is critical for any alignment and

clustering algorithm. While so far we have used pixel in-
tensities directly as features, our approaches can be easily
extended to arbitrary features of an image.

As an example, we adopt the HOG feature [7, 18] in our
simultaneous estimation, for various reasons: (a) the gradi-
ent computation makes HOG illumination invariant and ro-
bust to varying backgrounds in multiple object classes; (b)
HOG captures the dominant edge information which is crit-
ical for alignment; (c) the cell array structure makes HOG
location sensitive, which is necessary for alignment; and
(d) the region-based computation of HOG alleviates the so-
called “zero-gradient” problem in black-and-white images.
Fig. 3 shows the basic idea of HOG.

Although both USAC and SSAC can make use of the
HOG, we illustrate its use in USAC only for the simplicity
of notation. Note that after replacing the pixel intensities
with HOG, the estimation of π remains the same as before,
despite the fact that HOG can result in a more discrimina-
tive distance measure ‖Dij‖2 with the potential to better es-
timate π. In contrast, the derivation of the update of P needs
to be modified to accommodate the HOG as follows:

ε(P) =
K∑
i=1

K∑
j=1,j 6=i

βi,j‖hj(W(x; pj))− hi(W(x; pi))‖2,

(12)
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(a) (b) (c)
Figure 4. The confusion matrices of digits estimated by (a) TIC,
(b) USAC, and (c) SSAC. The index “1 − 10” corresponds to 10
digits classes “1” to “0”.

where hi(W(x; pi)) ∈ R4GJ is a concatenation of J 4G-
dimensional HOG feature vectors. Once an image Ii is
warped to the common coordinate space Λ, we uniformly
place 2 × 2 cells at J locations of Λ, where each HOG
feature is computed as the histogram of magnitude of the
gradient at G orientations in 4 rectangular cells.

Eq. 12 can be solved as the same way as solving Eq. 6
except that the partial derivative ∂hi(W(x;pi))

∂pi
can be derived

following the work in [20, 19].

4. Experiments
4.1. Datasets and Experimental Procedure

To evaluate the performance of our algorithms, we
have conducted extensive experiments on three publicly-
available datasets: handwritten digits from the MNIST
database (denoted as digits) [17], the CAS-PEAL face
database (denoted as faces) [12] and the Caltech-256
database [13]. We choose digits and faces mainly because
they are popular object classes that have been evaluated in
prior work [14, 6, 16, 25], and the Caltech-256 database due
to its diverse variations on real-world objects.

The general experimental procedure is that, for each
dataset we prepare an image ensemble together with the
number of clusters (C) and the initial parameters (π′ and
P′), and feed them to the USAC algorithm. For the SSAC,
we also specify the labeled image set as input, which in our
work is one labeled image per cluster (i.e., K̃ = C), and
provide the parameters (π̃ and P̃) for each labeled image.

For all experiments, we use a rectangular bounding box
within the common coordinate space Λ and employ the
affine transformation as the warping function W(). Hence
pi is a 6-dimensional warping parameter. For each labeled
and unlabeled image, we specify a bounding box on the im-
age, and the correspondences (any 3 vertexes) between the
box and Λ determine 6-dimensional P̃ and P′ respectively.
In contrast, the initial membership vector for the unlabeled
data is set to be π′i = [ 1

C + η1, · · · , 1
C + ηC ]T , where ηc

is uniformly distributed random noise ηc ∈ [−ηmax, ηmax]
and ηmax = 0.01. The membership vector for the labeled
data is set based on the true cluster label of the image (e.g.
π̃n = [1, 0, · · · , 0]T for an image belonging to the first clus-
ter). Throughout the experiments, we use HOG as the fea-
ture representation, where G = 8 and J varies due to the
different size of bounding boxes in the three datasets.

(a)

(b)

(c)

(d)

(e)
Figure 5. Mean warped images of each cluster using initial warp-
ing parameters and ground-truth membership cluster labels (a); fi-
nal warping parameters and estimated membership cluster labels
by TIC [11] (b), USAC (c) and SSAC (d); 10 separate executions
of [6] with images only in the same ground-truth cluster (e).

We evaluate the results both visually and quantitatively.
For group-wise alignment algorithms, the visual results in-
clude the warped images as well as their mean for each
estimated cluster. The quantitative performance of our al-
gorithm is evaluated using two metrics: (1) the average
of squared pair-wise distance between any two warped im-
ages that belong to the same estimated cluster. We call the
mean and standard deviation of such average measures of
all clusters the “alignment metric”, which essentially mea-
sures the alignment accuracy for within-cluster images; (2)
the confusion matrix computed from the estimated mem-
bership vectors. As a standard metric, this C × C array
measures the clustering performance of multiple objects.

4.2. Results on Digits
The digits dataset is challenging due to its huge amount

of shape variation. We randomly select 20 images from
each of 10 digits and form a 200-image testing set. Since
all images are centered, both the common coordinate space
and the bounding box on each image are set to be the same
as the image size, which means the initial warping parame-
ter p′i describes an identity warping, W(x; p′i)→ x.

Since Frey and Jojic’s work appears to be most related
to ours, we choose the Transformation-invariant Clustering
(TIC) [11] as the baseline for comparing with our USAC al-
gorithm. We use the TIC implementation available online 1

to perform the experiments. With the same input data and
initialization, the TIC converges after 25 iterations, while
USAC converges in 6 iterations. We show the resulting con-
fusion matrices in Fig. 4(a,b) and the mean of the warped
images in Fig. 5(b,c). USAC has improved the clustering
success rate (average of the diagonal elements of the confu-
sion matrix) from 35.5% to 56.5%. The alignment metric is
3.8± 0.9× 106 for USAC, and 6.0± 1.1× 106 for TIC. It
is clear that, in both clustering and alignment, USAC sub-
stantially outperforms TIC, which defines a discrete trans-

1
http://www.psi.toronto.edu/˜anitha/fastTCA_software.html



(a)

(b)

(c)
Figure 6. Mean warped images for each cluster using initial warp-
ing parameters and ground-truth membership cluster labels (a),
both estimated warping parameters and membership cluster labels
in the first iteration (b) and the final iteration by SSAC (c).

formation matrix for translation only, hence is not sufficient
to handle the non-rigid deformation in the data.

Now we compare the performance of the USAC and
SSAC algorithms. For our SSAC algorithm, 10 images (one
for each digit) among the 200-image ensemble are selected
as the labeled data, as shown in Fig. 10(b). Comparing the
confusion matrices (Fig. 4(b,c)), we can observe the large
improvement in the clustering by increasing the success rate
from 56.5% to 73.7%. Similarly, SSAC estimates better
alignment, as shown by the improved sharpness of the mean
images in Fig. 5(c,d). Notice that the clustering for digits is
challenging in that the between-class similarity can be very
high for certain class pairs. For example, digits “4” and
“9” can be confused due to their similar shape. Indeed, the
improvement of SSAC over USAC is especially obvious in
these cases (see digits “2” and “4” in Fig. 5(c,d)).

To provide a reference for visual comparison of SSAC,
we also compute the mean images for two cases. First, we
can see the improved sharpness for most digits comparing
to Fig. 5(a), which is the initial alignment with ground-truth
clustering. Second, even though the single-cluster align-
ment by [6] (Fig. 5(e)) has slight enhancement in the sharp-
ness compare to SSAC, such enhancement is mainly due to
the manually provided ground-truth clustering. Also, the in-
capability of affine transformation for this dataset also con-
tributes to the blurring in both Fig. 5(d,e). Alignment results
of individual images are shown in Fig. 10(a,c).

4.3. Results on Faces
Face images with pose variations inherently exhibit the

properties of multiple classes, and the registration of fa-
cial images across multiple views is an important topic.
From the subset of the CAS-PEAL database with pose
variation, we randomly select 200 images from 5 poses
(0◦, 15◦,−15◦, 45◦,−45◦), where each pose has 40 im-
ages. Since only a small subset of the 200 images belongs
to the same subject, there is substantial subject identity vari-
ation in this ensemble, in addition to the pose variation.
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(a) (b) (c)
Figure 7. Confusion matrices for (a) faces at the final iteration,
where the index “1 − 5” corresponds to 5 distinct poses, 0◦, 15◦,
−15◦, 45◦, and −45◦, respectively; (b) Caltech-256 at the first
iteration, where the index “1− 6” corresponds to 6 object classes,
binocular, bowling-ball, bowling-pin, cartman, faces, and guitar-
pick, respectively; (c) Caltech-256 at the final iteration.

(a)

(b)
Figure 8. Mean warped images for each cluster using initial warp-
ing parameters and ground-truth membership cluster labels (a),
and the final warping parameters and estimated membership clus-
ter labels by SSAC (b).

In applying the SSAC algorithm to this data, the 5 la-
beled images are shown in Fig. 10(e). The bounding boxes
for all images are specified by the randomly perturbed eye
locations. From the results in Fig. 10(d,f), we can see that
despite the large appearance variation due to hair style and
clothes, our algorithm still manages to provide consistent
alignment w.r.t. the labeled data.

Comparing the mean images at the first and the
140th/final iteration of SSAC (Fig. 6(b,c)), we see that our
simultaneous estimation substantially increase the sharp-
ness of the mean images as the iteration proceeds, especially
in the key facial features, such as eyes, nose, mouth and
hairline. Not surprisingly, the improvement over the initial
alignment is even greater, as shown by Fig. 6(a,c). Notice
the correspondence of eye locations across all poses, which
is critical for pose-robust face recognition. We view such
correspondence as the additional benefit of joint alignment
across multiple classes, especially when these classes share
similar geometrical structure. Finally, the confusion matrix
for evaluating this 5-class clustering is shown in Fig. 7(a).
Note that most of the clustering errors appear at neighboring
poses. The overall clustering success rate is 74.9%.

4.4. Results on Caltech-256
For the Caltech-256 database, we select 6 object classes

each with 20 images and form a 120-image ensemble. For
running the SSAC on this dataset, the randomly selected 6
labeled images are shown in Fig. 10(h). The bounding box
on each input image is of the same as the image size. The
alignment and clustering results can be seen at Fig. 10(g,i).
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Figure 9. SSAC results on the Caltech-256 binocular database: (a) input images with bounding boxes of final alignment, (b) the labeled
data inputs, and (c) the warped images showing alignment and clustering results.

Fig. 8 illustrates the mean warped images for each clus-
ter under two cases. Even though SSAC does not estimate
perfect membership labels, it still improves the alignment
of the original images, as evidenced by the reduced blur-
ring in the mean images. In addition, the confusion ma-
trices at the first and the final iteration have indicated the
improved clustering performance, as shown in Fig. 7(b,c).
Considering the challenging appearance variations in real-
world data, SSAC performs well for the clustering with the
overall clustering success rate at 82.5%.

So far all the testing data are image ensembles with mul-
tiple object classes. Our approach can also be applied to
ensembles with multiple object modes, among which the
object appearance and shape are relatively similar to each
other. We select a set of 30 images from the binocular class
of Caltech-256, which happens to have two types of binocu-
lars. With the same experimental setup as before, the SSAC
results are shown in Fig. 9. It appears that the estimated
alignment of each image does aim to account for the shape
deformation such that the warped images appear to be more
similar to each other. We envision that by sequentially run-
ning our joint estimation method first on a multi-class en-
semble to determine the classes, and then separately on the
ensemble for each class to determine the modes, we can
cluster/discover object classes as well as their modes.

5. Conclusions
This paper introduces unsupervised and semi-supervised

algorithms for simultaneous object alignment and clustering
for an image ensemble. Joint alignment and clustering is an
interesting and yet challenging problem. Though not per-
fect, our results on various real-world datasets and the su-
perior performance over the conventional approach indicate
that USAC and SSAC, as extensions of the simple and effi-
cient Lucas-Kanade algorithm [1], have made contribution
to this problem. There are a number of future directions for
this work. Firstly, given a large ensemble, we can prune the
data by iteratively running USAC/SSAC algorithms where
the most confident labeled images by USAC can be used
as the labeled data for SSAC. Secondly, our algorithm can
be applied to not only images of objects, but also image
patches. E.g., given an ensemble of natural scene images,
joint alignment and clustering can discover the patch code-
book where each image is then represented as a collection
of key codebook entries and their affine transformations.
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Figure 10. SSAC results on three databases: (a,d,g) input images with bounding boxes of final alignment, (b,e,h) the labeled data with
bounding boxes for computing P̃i, and (c,f,i) the warped images showing alignment and clustering results. Note the diverse variations of
object appearance and shape SSAC can handle in all three datasets.


