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Presentation Attack Detection for Face
in Mobile Phones
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and Xiaoming Liu

Abstract Face is the most accessible biometric modality which can be used for
identity verification in mobile phone applications, and it is vulnerable to many dif-
ferent presentation attacks, such as using a printed face/digital screen face to access
the mobile phone. Presentation attack detection is a very critical step before feeding
the face image to face recognition systems. In this chapter, we introduce a novel
two-stream CNN-based approach for the presentation attack detection, by extracting
the patch-based features and holistic depth maps from the face images.We also intro-
duce a two-stream CNN v2 with model optimization, compression and a strategy of
continuous updating. The CNN v2 shows great performances of both generalization
and efficiency. Extensive experiments are conducted on the challenging databases
(CASIA-FASD, MSU-USSA, replay attack, OULU-NPU, and SiW), with compari-
son to the state of the art.

8.1 Introduction

Biometrics authentication systems aim to utilize physiological characteristics, such
as fingerprint, face, and iris, or behavioral characteristics, such as typing rhythm
and gait, to uniquely identify an individual. As biometric systems are widely used
in real-world applications including unlocking cell phone and granting mobile
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transaction, biometric spoofs, or presentation attacks (PA) are becoming a large
threat, where a spoof biometric sample is presented to the biometric system and
attempts to be authenticated. Face, as the most accessible biometric modality, has
many different types of PAs including print attack, replay attack, 3D masks, etc. As
a result, conventional face recognition systems can be very vulnerable to such PAs
and are exposed to risk and loss beyond measure.

In order to develop a face recognition system that is invulnerable to various types
of PAs, there is an increasing demand in designing a robust presentation attack de-
tection (PAD or face anti-spoofing) system to classify a face sample as live/spoof
before recognizing its identity. Previous approaches to PAD can be categorized into
three groups. The first is the texture-based methods, which discover discriminative
texture characteristics unique to various attack mediums. Due to a lack of an explicit
correlation between pixel intensities and different types of attacks, extracting robust
texture features is challenging. The second is the motion-based methods that aim at
classifying face videos based on detecting movements of facial parts, e.g., eye blink-
ing and lipmovements. Thesemethods are suitable for static attacks, but not dynamic
attacks such as replay or mask attacks. The third is image quality and reflectance-
based methods, which design features to capture the superimposed illumination and
noise information to the spoof images.

Most of the prior face PAD works apply SVM on hand-crafted features. While
convolutional neural network (CNN) exhibits a superior performance in many com-
puter vision tasks [6, 31, 32], there are only a few CNN-based methods for face
PAD. Those methods typically use CNN for learning the representations, which will
be further classified by SVM [33, 42]. In our view, further utilizing CNN in multiple
ways, such as end-to-end training and learningwith additional supervision, is a viable
option for solving face PAD problems. On the one hand, with an increasing variety
of sensing environments and PAs, it is not desirable to have a hand-crafted feature to
cover all attacks. On the other hand, we need CNN to learn a robust feature from the
data.With the growing numbers of face spoofing databases, CNN is known to be able
to leverage the larger amount of training data and learn generalizable information to
discriminate live versus spoof samples.

Following this perspective, in this chapter, we introduce a novel two-streamCNN-
based face PAD method for print and replay attacks, denoted as CNN v1. The pro-
posed method extracts the patch-based features and holistic depth maps from face
images, as shown in Fig. 8.1. Here, the patch-based features are extracted from a
local region of the face images, aiming at learning the spoofing texture that exists all
over the images. The depth map leverages the whole face and describes the live face
as a 3D object but the printed and digital screen face as a flat plain. Combining the
patch-based and holistic features has two benefits: First, utilizing the local patches
help to learn spoof patterns independent of spatial face areas. Second, holistic depth
maps leverage the physical properties of the spoof attacks and learn a pixel-wise
labeling. We use two CNNs to learn patch-based and holistic features, respectively.
The first CNN is trained to predict a score for each extracted patch from a face image,
and we assign the face image with the average of scores. The second CNN estimates
the depth map of the face image and provides the face image with a liveness score
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Patch Score Face Images Depth Map

Fig. 8.1 In order to differentiate between live from spoof images, we propose an approach fusing
patch-based and holistic depth-based cues. Left column shows the output scores of the local patches
for a live image (top) and a spoof image (bottom), where the blue/yellow represents a high/low
probability of spoof. While this visualization utilizes densely sampled patches, 10 random patches
are sufficient for our anti-spoof classification. Right column shows the output of holistic depth
estimation, where the yellow/blue represents closer/further points

based on estimated depth map. The fusion of the scores of both parts leads to the
final estimated class of live versus spoof. The combination of these patch-based and
depth-based CNNs is referred to as CNN v1. Further, to embed such PAD method in
a mobile scenario, we apply an architecture optimization, a model compression, and
a strategy of continuous updating. We call the advanced model as the two-stream
CNN v2. The CNN v2 is trained in an end-to-end fashion and obtains comparable or
higher accuracy in comparison with CNN v1, while achieving a real-time efficiency
on the mobile phone system.

We summarize the contributions of this chapter as follows:

• Our proposed method utilizes both learned local and holistic features for classify-
ing live versus spoof face samples;

• We propose a method for estimating the dense depth map for a live or spoof face
image;

• We achieve the state-of-the-art performance on conventional face anti-spoofing
databases;

• We provide an practical approach to train a robust and efficient system for mobile
PAD scenarios.
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8.2 Prior Work

We review papers in three relevant areas: traditional face PAD methods, CNN-based
PAD methods, and image depth estimation.

Traditional face PAD methods Most prior work utilizes hand-crafted features
and adopts shallow learning techniques (e.g., SVM and LDA) to develop a PAD
system. A great number of works pay attention to the texture differences between
the live faces and the spoof ones. Common local features that have been used in
prior work include LBP [18, 19, 38], HOG [30, 58], DoG [44, 53], SIFT [41], and
SURF [8]. However, the aforementioned features to detect texture difference could
be very sensitive to different illuminations, camera devices, and specific identities.
Researchers also seek solutions on different color spaces such as HSV andYCbCr [7,
10], Fourier spectra [37], and optical flow maps (OFM) [4].

Additionally, some approaches attempt to leverage the spontaneous face motions.
Eye blinking is one cue proposed in [40, 52], to detect spoof attacks such as paper
attack. In [29], Kollreider et al. use lip motion to monitor the face liveness. Methods
proposed in [14, 15] combine audio and visual cues to verify the face liveness.

CNN-based methods CNNs have been proven to successfully outperform other
learning paradigms in many computer vision tasks [6, 31, 32]. In [33, 42], the
CNN serves as a feature extractor. Both methods fine-tune their network from a pre-
trained model (CaffeNet in [42], VGG-face model in [33]) and extract the features
to distinguish live versus spoof. In [59], Yang et al. propose to learn a CNN as
a classifier for face PAD. Registered face images with different spatial scales are
stacked as input, and live/spoof labeling is assigned as the output. In addition, Feng
et al. [20] propose to use multiple cues as the CNN input for live/spoof classification.
They select shearlet-based features to measure the image quality and the OFM of the
face area as well as the whole scene area. And in [57], Xu et al. propose an LSTM-
CNN architecture to conduct a joint prediction for multiple frames of a video.

However, compared to other face-related problems, such as face recognition [32,
36, 55] and face alignment [26], there are still substantially fewer efforts and ex-
ploration on face PAD using deep learning techniques [3, 27, 34]. Therefore, the
proposed method aims to further explore the capability of CNN in face PAD, from
the novel perspective of fusing the local texture-based decision and holistic depth
maps.

Image depth estimation Estimating depth from a single RGB image is a funda-
mental problem in computer vision. In recent years, there has been rapid progress
due to data-driven methods [28], especially deep neural networks trained on large
RGB-D datasets [50], as well as weak annotations [12]. Specifically, for face im-
ages, face reconstruction from one image [24, 26, 54] or multiple images [46, 47]
can also be viewed as one approach for depth estimation. However, to the best of
our knowledge, no prior work has attempted to estimate the depth for a spoof image,
such as a face on a printed paper. In contrast, our approach estimates depth for both
the live face and spoof face, which is particularly challenging since the CNN needs to
discern the subtle difference between two cases in order to correctly infer the depth.
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8.3 Robust CNN System for Mobile PAD

In this section, we present the details of the proposed CNN system for Mobile PAD.
We first introduce a general CNN system denoted as CNN v1, which leverages two
streams of CNNs: patch-based CNN and depth-based CNN. To tailor the system
for a mobile scenario, we redesign the patch-based CNN and combine it with the
depth-based CNN, denoted as CNNv2. In addition, we propose a simple but effective
learning strategy of continuous updating to improve the robustness of the system.

8.3.1 Patch- and Depth-Based CNN v1

The proposed CNN v1 [3] consists of two streams: patch-based CNN and depth-
based CNN. Figure 8.2 shows a high-level illustration of both streams along with a
fusion strategy for combining them. For the patch-based CNN stream,we train a deep
neural network end-to-end to learn rich appearance features, which are capable of
discriminating between live and spoof face images using patches randomly extracted
from face images. For the depth-based CNN stream, we train a fully convolutional
network (FCN) to estimate the depth of a face image, by assuming that a print or
replay presentation attack has a flat depth map, while live faces contain a normal
face depth.

Either the appearance or the depth cue can detect face attacks independently.
However, fusing both cues has proven to provide promising results. In this model,
we refer to the fusion output as the spoof score. A face image or video clip is classified
as spoof if its spoof score is above a pre-defined threshold. In the remainder of this
section, we explain in detail the two CNN steams used for face PAD.

8.3.1.1 Patch-Based CNN

There are multiple motivations to use patches instead of full face in our CNN. First
is to increase the number of training samples for CNN learning. Note that for all
available anti-spoofing datasets, only a limited number of samples are available for

Input Frame 
Detected 
Face 

Extracted 
Patches 

Patched-based CNN 

Depth-based 
CNN

0.91
0.79

0.64
0.96

0.89

Patch Spoof  
Scores 

SVM

Fusion 

Live 

Spoof Feature 
Extraction 

Fig. 8.2 Architecture of the proposed face PAD approach
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training. For example, CASIA-FASD only contains 20 training subjects, with 12
videos per subject. Even though hundreds of faces can be extracted from each video,
overfitting could be a major issue when learning the CNN due to the high similarities
across the frames. Second, when using the full face images as input, traditional CNN
needs to resize faces due to varying face image resolutions,where such scaling change
might lead to the reduction of the discriminative information. In contrast, using the
local patches can maintain the native resolution of the original face images, and thus
preserve the discriminative ability. Third, assuming the spoof-specific discriminative
information is present spatially in the entire face region, and patch-level input can
enforce CNN to discover such information, regardless of the patch location. This is
a more constrained or challenging learning task compared to using the whole face
image.

Input features CNN is claimed to be a powerful feature learner that is able to
map from raw RGB pixel intensities to the discriminative feature representation,
guided by the loss function, which is in sharp difference to the conventional hand-
crafted features. In our work, one observation is that CNNmight also benefit from the
hand-crafted features, which are proven to work well for the anti-spoof application.
In a way, this is one form of bringing domain knowledge to CNN learning. This
might be especially important for face anti-spoof applications, since without domain
knowledge it is more likely for CNN to learn non-generalizable information from
the data, rather than the true discriminative feature.

In reviewing hand-crafted features for face PAD, researchers have been exper-
imenting with several color spaces as input to a feature extraction module to find
discriminative descriptors. Typically, the most common color spaces used are RGB,
HSV , YCbCr , and several combinations among them, such as HSV + YCbCr [10].
TheRGB has limited applications in face PADdue to the high correlation between the
three color components and the imperfect separation of the luminance and chromi-
nance information. On the other hand, HSV and YCbCr are based on the separation
of the luminance and the chrominance information, providing additional features for
learning the discriminative cues.

In this work, we attempt to use both HSV and YCbCr color spaces in the CNN-
based methods. Moreover, we also explore several other input feature maps to the
CNN including a pixel-wise LBP map and high-frequency patches. For the pixel-
wise LBP map, we use the LBP8,1 operator (i.e., P = 8 and R = 1) to extract the
pixel-wise textural features from the face image, and afterward we randomly extract
patches from the texturemap. Note that in previousworks,LBP is only used to extract
histogram descriptors. For the high-frequency patches, the idea is to remove the low-
frequency information from the patches which is motivated by the work in [17]. For
any given face image I, we subtract the low-pass filtered image of I, which results in
a high-frequency image IH = I − flp(I). An illustration of the various input features
explored in our system is in Fig. 8.3. Compared to using RGB alone, providing these
input features can facilitate the CNN training.

Based on our experiments, all of the proposed input features are useful repre-
sentations to learn a CNN capable of distinguishing spoof attacks from live faces.
In the experiments section, quantitative results comparing the input features will be
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Fig. 8.3 Examples on RGB (G channel), HSV (S channel), YCbCr (Cb channel), pixel-wise LBP
(LBP of S channel in HSV ), high-frequency images (using G in RGB) of both live and spoof face
images

presented. For the patch-based CNN, after detecting the face region, we convert the
full face image into one of the feature representations, i.e., HSV , and then extract
fixed size patches for CNN training and testing.

8.3.1.2 Depth-Based CNN

In this section, we explain the details of the depth-based CNN. Other than 3D-mask
PA, all known PAs, such as printed paper and display, have an obviously different
depth compared to the live faces. Therefore, developing a robust depth estimator can
benefit the face PAD.

Basedon [17],webelieve that high-frequency informationof face images is crucial
for face PAD, and resizing images may lead to a loss of high-frequency information.
Therefore, to be able to handle face images with different sizes, we propose to
maintain the original image size in training the CNN for depth estimation. That is,
we train a fully convolutional network (FCN) whose parameters are independent
to the size of input face images. The input is face images, and the output is the
corresponding depth maps. For the live faces, the depth information is from the
3D face shapes estimated using a state-of-the-art 3D face model fitting algorithm
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[24–26, 35]. For the spoof faces, the depth information is the flat plain, as assumed
by the attack medium’s geometry, e.g., screen, paper.

Generating the depth labels We represent the live face with the dense 3D shape

A as

⎛
⎝
x1 x2 · · · xQ
y1 y2 · · · yQ
z1 z2 · · · zQ

⎞
⎠ where z denotes the depth information of the face, and Q is

the number of 3D vertices.
Given the face image, the 3D face model fitting algorithm [24] can estimate the

shape parameters p ∈ R
1×228 and projection matrix m ∈ R

3×4. We then use 3DMM
model [5] to compute the dense 3D face shape A by

A = m ·
[

S̄ + ∑228
i=1 p

iSi

1ᵀ

]
, (8.1)

where S̄ is the mean shape of the face, and Si are the PCA shape bases representing
identification variations, e.g., tall/short, light/heavy, and expression variations, e.g.,
mouth opening, smile.

After we compute the 3D dense shape of the face, the depth map composes of the
z-value for Q vertices from the shapeA. In order to obtain a smoothing and consistent
depth map from discrete z-values from Q vertices, the z-buffering algorithm [39] is
applied, and the “texture” of the objects is imported as the depth information (i.e.,
z-values). To note that, input faces with different sizes would lead to a different range
for z-values, mostly proportional to the face size. Hence, the depth map M needs to
be normalized before being used as the label for CNN training. In our case, we use
the max-min method for normalization.

Examples of depth maps are shown in Fig. 8.4. For spoof faces as well as the
background area in the live faces, the z-value is equal to 0. Note that for some print
attacks, it is possible that the papers are bent. Since it is hard to estimate the actual
amount of bending, we also treat the ground truth depth of bending papers as the flat
plain.

Depth map for classification The proposed FCN can estimate a depth map for a
face image. Since the depth maps used to supervise the training can distinguish be-
tween live and spoof images, the estimated depthmaps should also have the capability
to classify live versus spoof. To leverage this capability, we train SVM classifiers
using the estimated depth maps of the training data.

Specifically, to ensure that the input dimension of SVM is of the same size, the
depth map M is overlaid with a fixed N × N grid of cells. We compute a mean depth
of each local cell and generate a N 2-dim vector, which is fed to the SVM with RBF
kernel. Given that resizing the depth map might lose information, we propose to
train multiple SVMs with different sizes of N . To properly determine the number
of SVMs, we adopt a Gaussian mixture model to fit the distribution of input image
sizes. During the testing stage, we feed the testing sample to the SVM, whose input
size N is closest to the sample.
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Live

Spoof

Fig. 8.4 Depth labels for depth-based CNN learning. A live face image, a fitted face model, and
the depth label (top row). A spoof face image and the flat plain depth (bottom row)

Moreover, we can leverage the temporal information given a face video input.
For live videos, the depth changes little over time, while the depth of spoof ones can
change substantially due to noisy estimation and involuntary hand movement while
holding spoof mediums. Hence for a video, we first compute a N 2-dim vector for
each frame, and then compute standard deviation of the estimated depth maps of the
video. The final feature of a frame feeding to SVM is a 2N 2-dim vector. Given the
SVM output of all frames, we use their average as the final score of the video.

8.3.1.3 CNN Architecture

A detailed network structure of the patch- and depth-based CNN v1 is illustrated in
Table 8.1.

Patch-based CNN A total of five convolutional layers are used followed by
three fully connected layers. Following every convolutional layer, we use a batch
normalization, ReLU, and pooling layers. Softmax loss is utilized in CNN training.
Given a training image, we initially detect the face and then crop the face region
based on eye positions. After that, several patches are extracted randomly from the
face image, such that all patches have the same fixed size. We avoid any rescaling
to the original face images for the purpose of maintaining the spoof patterns within
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Table 8.1 a Network structure of patch-based CNN and depth-based CNN. Red texts represent the
output of the CNNs. Every convolution layer is cascaded with a ReLU layer. Note that the input
size for patch-based CNN is fixed to be 96 × 96. The input size for depth-based CNN is varied
from sample to sample. For simplicity, we show the case when the input size is 128 × 128. b The
network structure of patch- and depth-based CNN v2. Red texts represent the output of the CNN.
Every convolution layer is cascaded with a batch normalization and ReLU layer. Note that the input
face image for the CNN v2 is normalized to 256 × 256

the extracted patches. If the face image is a live face, we assign all of its patches a
binary label of 1. If the face is a spoof face, the labels of patches are 0.

During testing, we extract patches in the same manner as training. The patch-
based CNN will produce spoof scores for every patch in the range of 0–1. The final
result of the image is the average spoof score of all patches. If the presentation attack
is in the video format, we compute the average spoof score across all frames.

Depth-based CNN We employ a FCN to learn the nonlinear mapping function
f (I;�) from an input image I to the corresponding depth map M, where � is
the network parameter. Following the setting in Sect. 8.3.1.1, we useHSV + YCbCr

features as the CNN input. The depth labelM is obtained in the approach described in
the previous subsection. Our FCN network has a bottleneck structure, which contains
two parts, downsampling part and upsampling part, as shown in Table 8.1. The
downsampling part contains si x convolution layers and twomax-pooling layers; the
upsampling part consists of f ive convolution layerswhich sandwich f our transpose
convolution layers for the upsampling purpose. This architecture composes of only
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convolution layers without fully connected layer, and each layer is followed by the
ReLU layer. We define the loss function as the pixel-level Euclidean loss,

argmin
�

J = ‖ f (I;�) − M‖2F . (8.2)

8.3.2 Patch- and Depth-Based CNN v2

As we evaluate the patch- and depth-based CNN v1, we notice several drawbacks of
this model. First, it is not very time-efficient. With N random patches and one whole
image to go through the CNNs for each sample, the system requires approximately
1 + N

2 seconds to process each frame, which is not suitable for mobile applications
such as phone unlocking. To reduce the time cost, we revisit the patch-based approach
and propose a fully convolution network that learns the same patch-based features.
Secondly, CNN v1 is trained with limited amount of data, where most of them are
captured in a constrained environment. It could make wrong estimations for input
sampleswith extreme illuminations, poses, and other unknown factors. To handle this
real-world issue, we deploy a simple but effective strategy of continuous updating
that can improve the generalization of the system by a large margin. The overall
architecture of the CNN v2 is shown in Fig. 8.5.

8.3.2.1 Revisit the Patch-Based CNN

We mention several motivations to use patches instead of the full face in CNN in
Sect. 8.3.1.1, and one of the major reasons is to prevent overfitting of the CNN
training. However, during the testing time, we need to sample sufficient amount of
random patches in order to maintain a consistent performance, which can be very
time-consuming. We revisit the design of the patch-based CNN. For the framework
of CNN, the effective receptive field for a certain level of convolution layer is con-
strained. For example, the conv-13 in Tabe 8.1 has a receptive field of 5 × 5 patch in

Fig. 8.5 Architecture of the advanced face PAD approach
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the original input. With a specified depth, the output of a fully convolutional network
(FCN) is locally receptive and hence essentially patch-based.

Therefore, we redesign the patch-based CNN as a fully convolutional network,
where the input of the network is the cropped face, and the output of the network
is a binary mask. Each element of the mask indicates the spoofness of a local patch
whose size is the same as that of the receptive field. For a spoof face, by assuming
the whole region of the face as well as its close surrounding are all from the spoof
medium, such as printed paper and digital screen, the binary mask is an one map.
And for a live face, the binary mask is a zero map.

Despite the patch-based CNN shares similar architecture as the depth-based CNN,
they still learn distinct features for detecting PA. The patch-based CNN focuses on
generic spoofing features that exist on all local regions of the image, while the depth-
based CNN focuses on face-dependent features that only exist within face regions,
such as eye corners, cheek, and jaw lines.

8.3.2.2 Maps for Classification

Patch-based CNN provides a binary maskmap to indicate the spoofness of each local
patch, and depth-based CNN provides an estimated depth map for the whole face
region. Since the given labeling (i.e., binary mask or depth map) itself is discrimina-
tive with respect to live versus spoof, it might not be necessary to use an additional
classifier (e.g., SVM) for classification. To convert these two maps into a score for
decision making, we simply compute the L2 norm of each map and sum them up
with an assigned weight, as shown in Eq. 8.3.

score = α ‖M‖22 + ‖D‖22 . (8.3)

8.3.2.3 Model Compression

To utilize the trained face PAD CNNmodel for authentication in mobile and embed-
ded devices, we should make the CNN model compatible with the computational
power on those devices. There are many research papers for compressing the CNN
models and reducing their computational cost. The model compressing methods [13]
can be categorized into four main groups: (1) parameter pruning and sharing [51], (2)
knowledge distillation [21], (3) transferred convolutional filters [48], (4) low-rank
factorization [22].

In this work, our objective is to find the model with the minimum computational
requirement; hence, we design the model compression as a search algorithm. We
utilize a new greedy method similar to the binary search for finding the minimum
number of filters needed in each layer. We make a development set for evaluating
the performance of the compressed models with our greedy method. To find the
minimum size of the network with acceptable performance on the development set,
we iteratively reduce the number of filters by half while keeping the number of layers
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fixed and retraining the network. We stop this process when the CNN model cannot
achieve acceptable performance on the development set, as an indication of low
capacity of the CNNmodel for the face anti-spoofing task. By applying this method,
we reduce the size of the CNN model by 160 times from ∼ 80 Mb to 0.5 Mb while
achieving similar performance.

8.3.2.4 CNN v2 Architecture

A detailed network structure of the patch- and depth-based CNN v2 is illustrated
in Table 8.1. With the same input to the network, the new patch-based CNN and
depth-based CNN can share the weights with each other, since they are trained for
the same purpose. We combine these two networks into one to further reduce the
computation time by half. Aftermodel compression, a total of nine convolution layers
with three max-pooling layers are used to extract spoofing features at different levels
of scales. Then, we adopt a shortcut connection to concatenate the feature maps of
each pooling layer with the size normalized as 32. The concatenated features are
sent to three additional convolution layers. The final output of the network is two
32 × 32 maps, where the first map is supervised by the zero/one map for learning the
patch-based features, and the secondmap is supervised by the depth map for learning
the depth-based face-dependent features. The maximum receptive field of the CNN
v2 is 72. The L1 loss is utilized in CNN training. Following every convolution layer,
we use a batch normalization layer and ReLU layer.

Given a testing image, we initially detect the face and then crop the face region
based on eye positions. The cropped face is utilized in the CNN v2 to produce the
binarymaskmapM as well as the depth mapD. The final score for the testing sample
is a weighted average of the map norms, as shown in Eq. 8.3.

8.3.2.5 CNN System Updating

To improve performance and increase the robustness of the network, we utilize it-
erative update training by incorporating failure cases from the previous model. This
process is shown in Fig. 8.6. We begin with a trained model and its corresponding set
of training data. The performance of the trained model is qualitatively analyzed by
collecting failure cases using our PC and Android demo applications. These failure
cases are then analyzed, specifically considering if there are patterns that are com-
mon to the experienced failures such as low illumination, reflective glare on spoofs,
washing out due to excessive illumination, and extreme pose, among others. The
collected failure case images are then added into the training data, and the model is
updated using a random shuffle of the previous and newly collected data. In this way,
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Fig. 8.6 Iterative updating of the trained model using the most recent failure cases collected by
the PC and Android apps allows for targeted improvements for situations in which the model fails.
The updating process begins with a model trained on our training dataset. Newly collected data is
added to the current training data. This significantly and quickly improves the trainedmodel without
unnecessary effort to collect unimportant data

we enforce that the model performs similarly on previous success cases and previous
failure cases, while improving performance on the most recent failure cases. As we
repeat the updating processmultiple times, it becomesmore difficult to collect failure
cases, indicating that the model has become more robust to its previous weaknesses.

8.4 Experiments

8.4.1 Database

We evaluate our proposed method on two PAs: print and replay attacks, using five
benchmark databases: CASIA-MFSD [60], MSU-USSA [41], replay attack [16],
OULU-NPU [11], and SiW [34].

CASIA-MFSD: This database contains 50 subjects and 12 videos for each subject
under three different image resolutions and varied lightings. Each subject includes
three different spoof attacks: replay, warp print, and cut print attacks. Due to the
diversity of the spoof types, many previous works [40, 52] that leverage the motion
cues such as eye blinking or shape deformation would fail on this dataset. This
dataset partitions the subject space and uses 20 subjects for training and 30 subjects
for testing.

MSU-USSA: As one of the largest public face spoofing databases, MSU-USSA
contains 1000 in the wild live subject images from the weakly labeled face Database
and creates eight types of spoof attacks from different devices such as smart phones,
personal computers, tablets, and printed papers. This dataset covers images under
different illuminations, image qualities, and subject diversity.
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Replay attack: This database contains 1, 300 live and spoof videos from 50 subject.
These videos are divided into training, development, and testing sets with 15, 15, and
20 subjects, respectively. The videos contain two illumination conditions: controlled
and adverse. Given the print and replay attacks in this set, the database also divides
the attacks into twomore types based on whether they use a support to hold the spoof
medium, or if the attack is held by a person.

OULU-NPU: This more recent database is comprised of 4920 live and spoof videos
captured of 55 subjects using si x mobile phone cameras in three sessions with
varying illumination conditions and scene backgrounds. Unlike earlier databases,
this uses 1080p videos to accommodate higher quality images’ increasing prevalence
in society. Four testing protocols are defined to evaluate a network’s performance
under differing situations such as generalization in leave-one-out testing.

8.4.2 Experimental Parameters and Setup

In CNN v1, we use Caffe toolbox [23] to implement the patch-based CNN. The
learning rate is set as 0.001, decay rate as 0.0001, momentum as 0.99, and batch size
as 100.Before being fed into theCNN, the face samples are normalized by subtracting
the mean face of training data. Since CASIA and replay attack are video datasets,
we only extract two random patches per frame for training. For the images in MSU-
USSA, we extract 64 patches from each live face region and eight patches from
each spoof face region. For CASIA andMSU-USSA, a fixed patch size of 96 × 96 is
used. For replay attack, given its low image resolution, the patch size is 24 × 24. To
accommodate the difference in patch sizes, we remove the first two pooling layers
for the patch-based CNN. For the depth-based CNN, we use TensorFlow [1], with
the learning rate of 0.01 and batch size of 32. The patches are also normalized
by subtracting the mean face of training data. When generating the depth labels,
we normalize the depth in the range of 0–1. We use the weighted average of two
streams’ scores as the final score of our proposed method, where the weights are
experimentally determined.

In CNN v2, we use TensorFlow to implement all parts, with the learning rate of
0.01 and batch size of 32. The input face samples are normalized to be 256 × 256 × 3.
The depthmaps are also normalized to the range of 0–1with the size of 32.We use the
weighted average of two feature maps as the final score as mentioned in Sect. 8.3.2.2.
Based on the experiments, the final α and β are set to be 0.5 and −1.2, respectively,
for all of the following experiments.

Our experiments follow the protocol associated with each of the five databases.
For each database, we use the training set to learn the CNN models and the testing
set for evaluation in terms of equal error rate (EER) and half total error rate (HTER).
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8.4.3 Ablation Study

8.4.3.1 Patch-Based CNN Analysis

In Sect. 8.3.1.1, we explore several input feature maps to train the patch-based CNN
v1, which include different combinations of color spaces, a pixel-wise LBPmap, and
high-frequency patches. For all of the experiments, we first detect and then crop the
face for a given frame. After that we convert the face image into a new feature map
as seen in Fig. 8.3, which will then be used to extract patches. Table 8.2 presents the
results on CASIA-FASD when using different combinations of input feature maps.
Based on our experiments, we only show the best four combinations of features in this
table. From these results, we can clearly see that the HSV + YCbCr features have
a significant improvement in performance compared to the other features with an
EER of 4.44% and an HTER of 3.78%. Moreover, adding an LBPmap to theHSV +
YCbCr has a negative impact to the CNN learning, which reduces the performance
of using HSV + YCbCr only by 2.31% HTER. Similarly, when training the patch-
based CNN with high-frequency data in the HSV + YCbCr images, it also reduces
the performance by 1.79% HTER. This shows that the low frequencies may also
provide discriminative information to anti-spoofing.

8.4.3.2 Depth-Based CNN Analysis

The depth map results of CNN v1 on the CASIA-FASD testing set are shown in
Fig. 8.7. TheCNN is attempting to predict the face-like depth of a live face, i.e., higher
values in the depth map, while the predicted depth of the spoof images to be flat, i.e.,
lower values in the depth map. Due to the difficulty of the problem, the estimated
depth is not perfect, compared to the depth label shown in Fig. 8.4. However, we can
still find a clear distinction between the depth maps of the live images and those of
the spoof images. In the spoof image, there might be certain areas that suffer more
degradation and noise from the spoof attack. As we can see from Fig. 8.7, our CNN is
still trying to predict some areas with high values in the depth map. However, overall
depth patterns of spoof samples are far from those of live samples so that the SVM
can learn their difference. Hence, training a CNN for depth estimation is beneficial to

Table 8.2 EER (%) and HTER (%) of CASIA-FASD, when feeding different features to patch-
based CNN

Feature EER (%) HTER (%)

YCbCr 4.82 3.95

YCbCr + HSV 4.44 3.78

YCbCr + HSV + LBP 7.72 6.09

(YCbCr + HSV)H 9.58 5.57
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Fig. 8.7 Depth estimation on CASIA-FASD testing subjects. The first two columns are the live
images and their corresponding depth maps, and the rest six columns are three different types of
spoof attacks (print, cut print, and video attacks) and their corresponding depth maps

face anti-spoofing. Fig. 8.8 shows the mean and standard deviation of the estimated
depth maps for all live faces and spoof faces in replay attack. The differences of live
vs. spoof in both mean and standard deviation demonstrate the discriminative ability
of depth maps, as well as support the motivation of feature extraction for SVM in
Sect. 8.3.2.2.

8.4.3.3 Fusion Analysis

We extensively analyze the performance of our patch-based and depth-based CNN
v1 on CASIA-FASD and report frame-based performance curves as seen in Fig. 8.9.
As mentioned earlier, CASIA-FASD has three different video qualities and three dif-
ferent presentation attacks, which we use to highlight the differences of our proposed
CNN streams. For the low-quality images, the patch-based method achieves an EER
of 2.78%. For the same quality, we notice that depth-based CNN performs better,
which is understandable since the relative depth variation of frontal-view face image
is very small compared to the far distance when a low-quality face image is captured.
For the normal quality, the fusion of both methods has a large positive impact on
the final result, which can be seen from the ROC curves. The result of both methods
on high-quality videos is reasonably good, and therefore, fusion will maintain the
same performance. It is clear that the depth-based method struggles when the face
images are lower in resolution, and vice-versa for the patch-based method. On the
other hand, the patch-based method suffers with high resolution, and vice-versa for
the depth-based method. Therefore, the fusion of both methods will strengthen the
weak part of either one.
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Fig. 8.8 Mean and standard deviation of the estimated depth maps of live and spoof faces, for all
testing samples in replay attack. Note the clear differences in both the mean and standard deviation
between the two classes
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Fig. 8.9 Frame-based ROC curves on CASIA-FASD comparing the fusion method with the patch-
based and depth-based CNNs



8 Presentation Attack Detection for Face in Mobile Phones 189

When analyzing the three different presentation attacks in CASIA-FASDwith our
proposed methods, the most successfully detected attack is the video replay attack. It
is worthy to note that, since the ROC curve of every attack is an average of the three
different video qualities, the difference among the three attacks is not large. For the
fusion results, the best gain can be seen in the print attacks compared to the results
of the two methods independently.

8.4.3.4 Patch- and Depth-Based CNN v2 Analysis

Similarly, we evaluate the performance of the patch- and depth-based CNN v2. In
CNN v2, we utilize the CNN to estimate two maps, a binary mask of spoofness, and
a depth map. We train a CNN with binary mask supervision only and a CNN with
depth map supervision only to validate the effectiveness of fusing the two feature
maps. The test is conveyed on CASIA-FASD database. Without the supervision of
depth map, the CNN obtains 6.7% as the EER and 6.3% as the HTER; without the
supervision of binary mask, the CNN obtains 25.6% as the EER and 20.4% as the
HTER. By combining the two streams, the CNN v2 can achieve the best performance
of 4.4% as the EER and 4.6% as the HTER.

To further show the effectiveness of the continuous updating strategy, we collect
a private testing set. To continuously update the model, we use the face PAD demo
system with CNN v2 to capture failure cases from f ive subjects, none of which are
included in the private testing set. The model without updating obtains 31.2% as the
EER and 31.1% as the HTER, while the model with updating achieves 6.2% as the
EER and 5.4% as the HTER, which demonstrates a large margin of improvement.

8.4.4 Experimental Comparison

We compare the proposed method with the state-of-the-art CNN-based methods on
CASIA-FASD. Table 8.3 shows the EER and HTER of six face anti-spoof meth-
ods. Among different methods in Table 8.3, the temporal features are utilized in
a long short-term memory (LSTM) CNN [57], the holistic features are extracted
for classification in [59], CNN is used for the feature extraction in [33], and after
applying PCA to the response of the last layer, SVM is utilized for classification.
According to Table 8.3, our method outperforms others in both EER and HTER.
This shows the combination of local and holistic features contain more discrimina-
tive information. Note that even though depth-based CNN alone has larger errors,
its fusion with patch-based CNN still improves the overall performance. For CNN
v2, it shows a perfect performance on replay database and the high-resolution part
of CASIA dataset with EER and HTER to be 0. However, it performs worse on the
low-resolution part of the CASIA dataset, and thus the overall EER and HTER are
slightly worse than CNN v1. Because of the superior performance on the first two
part and its time efficiency, we still regard CNN v2 as a better model and use CNN
v2 to conduct further experiments.
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Table 8.3 EER (%) and HTER (%) on CASIA-FASD

Method EER (%) HTER (%)

Fine-tuned VGG-face [33] 5.20 –

DPCNN [33] 4.50 –

[59] 4.92 –

CNN [57] 6.20 7.34

[10] 6.2 –

[49] 3.14 –

[8] 2.8 –

[57] 5.17 5.93

Haralick features [2] – 1.1

Moire pattern [43] – 0

Patch-based CNN 4.44 3.78

depth-based CNN 2.85 2.52

Patch- and depth-based CNN v1 2.67 2.27

Patch- and depth-based CNN v2 4.4 4.6

Table 8.4 EER (%) and HTER (%) on MSU-USSA

Method EER (%) HTER (%)

[41] 3.84 –

Patch-based CNN 0.55 ± 0.26 0.41 ± 0.32

depth-based CNN 2.62 ± 0.73 2.22 ± 0.66

Patch and depth-based CNN v1 0.35 ± 0.19 0.21 ± 0.21

Patch and depth-based CNN v2 0 ± 0 0 ± 0

We also test our method on the MSU-USSA database. Not many papers report
results in this database because it is relatively new. Table 8.4 compares our results
with [41] which analyzes the distortions in spoof images and provides a concatenated
representation of LBP and color moment. In comparison with [41], our patch-based
CNN already achieves 89% reduction of EER. The complementariness of depth-
based CNN further reduce both the EER and HTER.

On the replay attack database [16], we compare the proposed method with three
prior methods in Table 8.5. For the CNN v1, although our EER is similar to the prior
methods, the HTER of ourmethod is much smaller, whichmeans we have fewer false
acceptance and rejection. Moreover, though the fusion does not significantly reduce
the EER andHTER over the depth-based CNN,we do observe an improvement in the
AUC from 0.989 in patch-based CNN to 0.997 in the fusion. Additionally, our CNN
v2 is able to achieve perfect performance on the replay attack dataset, demonstrating
the enhanced capability of the CNN v2.
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Table 8.5 EER (%) and HTER (%) on replay attack

Method EER (%) HTER (%)

Fine-tuned VGG-face [33] 8.40 4.30

DPCNN [33] 2.90 6.10

[59] 2.14 –

[10] 0.4 2.9

[8] 0.1 2.2

Moire pattern [43] – 3.3

Patch-based CNN 2.50 1.25

Depth-based CNN 0.86 0.75

Patch- and Depth-based CNN v1 0.79 0.72

Patch- and Depth-based CNN v2 0 0

Table 8.6 Performance of the proposed method and SOTA face anti-spoofing methods during
cross-dataset evaluation on current face anti-spoofing datasets. The HTER is reported. Results for
other works are reported for cross-dataset testing between CASIA-FASD and replay attack. Results
for OULU and the private test set are the HTER over the entire test set. The results for our models
are only reported if the model evaluated was not trained on the corresponding training data for a
given test set

Algorithm CASIA-
FASD

replay attack OULU Private test

Motion [19] 47.9 50.2 – –

Spectral cubes [45] 50.0 34.4 – –

Color LBP [10] 35.4 37.9 – –

Color texture [7] 37.7 30.3 – –

Color SURF [9] 23.2 26.9 – –

Boulkenafet [9] 39.2 9.6 – –

Liu [34] 27.6 28.4 – –

CNN v2 (CASIA baseline) – 42.0 25.3 26.7

CNN v2 (Replay baseline) 43.2 – 36.2 27.8

CNN v2 (Without updating) 36.1 34.7 33.1 31.1

CNN v2 (With updating) 23.2 15.4 0.0 5.4

Table 8.6 shows the performance of the CNN v2 compared to SOTA performance
for cross-dataset evaluation. In this cross-dataset evaluation scenario, the HTER
for all methods is significantly poorer than in the intra-dataset evaluation scenario,
as is evident in our best performance in HTER of 23.2% compared to 2.3% for
CASIA-FASD and 15.4% compared to 0.0% for replay attack. Our CASIA baseline
and replay baseline performance are for the CNN v2 trained on CASIA-FASD and
replay attack, respectively. When trained only on this low-resolution data, the cross-
dataset performance is poor. The CNN v2 without updating, which was trained on a
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larger dataset of mostly 1080p images, lags slightly behind the SOTA performance.
However, when we incorporate the iterative updating of the network, we are able
to achieve SOTA performance for cross-dataset evaluation, except in the case of the
replay attack dataset. However, the SOTA work that performs best on replay attack
performs much worse than our CNN v2 with updates on CASIA-FASD, indicating
that our CNN v2 with updating is much more stable and able to generalize well. This
further demonstrates the value of iterative updates using failure cases to improve the
robustness of the network, even in the case of cross-dataset evaluation.

8.4.5 Model Size and Running Time

Figure 8.10 shows the Android demo app under three different situations. The An-
droid demo has two major functions, testing the performance of the trained model
and collecting failure cases for the current model. This is accomplished via three
modes in the demo: (i) normal mode, (ii) live failure mode, and (iii) spoof failure
mode. A prediction of live will draw a green bounding box around the face. In normal
mode, the score is displayed to the screen. In live failure mode, it is assumed that
any detected faces are live. A prediction of spoof will save the image to the phone’s

(a) (b) (c)

Fig. 8.10 Screenshot of the Android mobile phone demo. A score of 0 indicates live, and a score
of 1 indicates spoof. Shown are a correct detection of a live face, b correct detection of a spoof
attack, c failed detection of a spoof attack and subsequent capture of the failure case
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storage as a live failure case. In spoof failure mode, it is assumed that any detected
faces are spoof. A prediction of live will save the image to the phone’s storage as a
spoof failure case.

The demo mode and failure case threshold can be changed via the in-app settings
(shown in Fig. 8.10). Modifying the failure case threshold, let us tune the difficulty
for a failure case to occur by requiring higher confidence as the updating process
matures. These settings also allow for hiding the raw score value, switching between
the front and rear cameras of the device and refocusing the camera. Similar settings
are available on the PC demo for collecting failure cases.

In an iterative method, the failure cases collected by both the PC and Android
demos are added to the training set, and the model is updated with these additional
images. This allows for rapid improvement of common failure cases across any of
our demo-enabled devices. Often a failure case from a previous iteration will be
correctly classified by the updated model, thereby reducing the number of failure
cases collected each iteration. The reduced number of failure cases indicates that
the updated model is becoming increasingly robust against attacks it was previously
weak to. As shown in Table 8.6, the model with updating performs significantly
better than the non-updated model.

Due to the limited computation ability of smartphone devices compared to PCs,
wemust reduce thememory and processing time of the trainedmodel for theAndroid
demo. To do this, we reduce the number of kernels in the convolutional layers until an
appropriately small and fast, but still accurate model is produced. This improves the
responsiveness of the Android app by doubling its FPS, but requires a small degrada-
tion in performance. Finally, we are able to achieve nine FPS on the PC application
without using the GPU, which increases to 30 FPS when we enable the GPU. We
are unable to utilize the GPU on Android smartphones, and hence are limited to four
FPS for the reduced CNN v2 model or 1–2 FPS for the full CNN v2 model.

8.5 Conclusions

In this chapter, we introduce a novel solution for mobile face PAD system via fusing
patch-based CNN and depth-based CNN. Unlike the prior PAD methods that use
the full face and single labels to train and detect presentation attacks, we leverage
both supervisions for local patches from the same face and estimation of the face
depth to distinguish the spoof from live faces. The first CNN stream is based on
patch appearance extracted from face regions. This stream demonstrates its robust-
ness across all presentation attacks, especially on lower-resolution face images. The
second CNN stream is based on face depth estimation using the full face image. We
prove it can improve the performance via fusing two CNNs. We further improve
its mobile performance via combining two CNNs into one, optimizing the network
structures and applying the strategy of continuous learning. The experiments show
that the proposed CNN is robust, generalized, and computationally efficient in sev-
eral testing scenarios, either intra-testing on the commonly used database, or testing
sample from real-world hard cases.
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