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Abstract—The objective of this paper is to learn dense 3D shape correspondence for topology-varying generic objects in an
unsupervised manner. Conventional implicit functions estimate the occupancy of a 3D point given a shape latent code. Instead, our
novel implicit function produces a probabilistic embedding to represent each 3D point in a part embedding space. Assuming the
corresponding points are similar in the embedding space, we implement dense correspondence through an inverse function mapping
from the part embedding vector to a corresponded 3D point. Both functions are jointly learned with several effective and
uncertainty-aware loss functions to realize our assumption, together with the encoder generating the shape latent code. During
inference, if a user selects an arbitrary point on the source shape, our algorithm can automatically generate a confidence score
indicating whether there is a correspondence on the target shape, as well as the corresponding semantic point if there is one. Such a
mechanism inherently benefits man-made objects with different part constitutions. The effectiveness of our approach is demonstrated
through unsupervised 3D semantic correspondence and shape segmentation.

Index Terms—Dense 3D shape correspondence, uncertainty-aware, unsupervised learning, implicit functions, inverse implicit

functions, topology-varying, and generic objects.

1 INTRODUCTION

INDING dense correspondence between 3D shapes is a

key algorithmic component in problems such as sta-
tistical modeling [1]-[3], cross-shape texture mapping [4],
and space-time 4D reconstruction [5]. Dense 3D shape cor-
respondence can be defined as: given two 3D shapes belonging
to the same object category, one can match an arbitrary point
on one shape to its semantically equivalent point on another
shape if such a correspondence exists. For instance, given two
chairs, the dense correspondence of the middle point on
one chair’s arm should be the similar middle point on
another chair’s arm, despite different shapes of arms; or
alternatively, declare the non-existence of correspondence
if another chair has no arm.

The dense 3D correspondence problem is difficult be-
cause it involves understanding the shapes at both the local
and global levels. Prior dense correspondence methods [6]-
[13] have proven to be effective on organic shapes, e.g.,
human bodies and mammals. However, those methods
become less suitable for generic topology-varying or man-
made objects, e.g., chairs or vehicles [14].

It remains a challenge to build dense 3D correspon-
dence for a generic object category with large variations
in geometry, structure, and even topology. First of all, the
lack of annotations on dense correspondence often leaves
unsupervised learning the only option. Second, most prior
works make an inadequate assumption [15] that there is
a similar topological variability between matched shapes.
Man-made objects such as chairs shown in Fig. 1 are partic-
ularly challenging to tackle, since they often differ not only
by geometric deformations but also by part constitutions. In
these cases, existing correspondence methods for man-made
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objects either perform fuzzy [16], [17] or part-level [18], [19]
correspondences or predict a constant number of semantic
points [20], [21]. As a result, they cannot determine whether
the established correspondence is a “missing match” or
not. As shown in Fig. 1(c), for instance, we may find non-
convincing correspondences in legs between an office chair
and a 4-legged chair, or even no correspondences in arms
for some pairs. Ideally, given a query point on the source
shape, a dense correspondence method should be able to
determine whether there exists a correspondence on the
target shape, and identify the corresponding point if there
is. This objective lies at the core of this work.

Shape representation is highly relevant to, and can
impact, the approach of dense correspondence. Recently,
compared to point cloud [22]-[24] or mesh [25]-[27], deep
implicit functions have shown to be highly effective as 3D
shape representations [28]-[34], since it can handle generic
shapes of arbitrary topology, which is favorable as a repre-
sentation for dense correspondence. Often learned as a mul-
tilayer perceptron (MLP), conventional implicit functions
input the 3D shape represented by a latent code z and a
query location x in the 3D space, and estimate its occupancy
0 = f(x,2).

In this work, we propose to plant the dense corre-
spondence capability into the implicit function by learning
a semantic part embedding. Specifically, we first adopt a
branched implicit function [32] to learn a part embedding
vector (PEV), o = f(x,z), where the max-pooling of PEV o
gives the occupancy O. In this way, each branch is tasked to
learn a representation for one universal part of the input
shape, and PEV represents the occupancy of the point
w.r.t. all the branches/semantic parts. By assuming that
PEVs between a pair of corresponding points are similar, we
then establish dense correspondence via an inverse function
% = g(o,z) mapping the PEV back to the 3D space. To
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Fig. 1: Given a set of 3D shapes, our category-specific unsupervised method learns pair-wise dense correspondence (a)
between any source and target shape (red box), and shape segmentation (b). Give an arbitrary point on the source shape
(red box), our method predicts its corresponding point on any target shape, and a score measures the correspondence

confidence (c). For each target, we show the confidence scores of red/

points and score maps around corresponded

points. A score less than a threshold (e.g., 0.2) deems the correspondence as “non-existing”— a desirable property for

topology-varying shapes with missing parts, e.g., chair’s arm.

further satisfy the assumption, we devise an unsupervised
learning framework with a joint loss measuring both the
occupancy error and shape reconstruction error between
x and X. In addition, a cross-reconstruction loss is pro-
posed to enforce part embedding consistency by mapping
between a pair of shapes in the collection. Besides, we adopt
a probabilistic solution to the semantic part embedding
learning, where each 3D point is represented as a Gaussian
distribution in the semantic latent space. The mean of the
distribution encodes the most likely PEVs while the vari-
ance shows the uncertainty along each feature dimension
of PEVs. During inference, the “likelihood” between two
Gaussian distributions can then be naturally derived to pro-
duce a confidence score for measuring the accuracy of the
established point-to-point correspondence. And the learned
uncertainty can be interpreted as the model’s confidence
along each feature dimension of PEVs, which can visualize
the distribution of the “hard” points of a shape for dense
correspondence.

A preliminary version of this work was published in the
34th Annual Conference on Neural Information Processing
Systems (NeurIPS) 2020 [35]. We further extend the work
from three aspects: (i) we design a novel deep branched
implicit function, which gives a more powerful shape repre-
sentation and improves shape correspondences. (ii) Instead
of representing each point as a deterministic point in the
semantic embedding space, we propose to use probabilistic
embeddings for semantic part feature learning, which en-
ables our framework to inherently capture the uncertainty
of each point correspondence by its probabilistic PEV. and
(iif) we further carry out dense correspondence evaluation
and comparison on real scans (3D body shapes from Faust
dataset [3]);

In summary, this paper makes these contributions.

e We propose a novel paradigm leveraging the im-
plicit function representation for category-specific

unsupervised and uncertainty-aware dense 3D shape
correspondence, applicable to generic objects with
diverse variations.

o We devise several effective loss functions to learn a
semantic part embedding, which enables both shape
segmentation and dense correspondence. Based
on the learned probabilistic part embedding, our
method further produces a confidence score indicat-
ing whether the predicted correspondence is valid.

e Through extensive experiments, we demonstrate the
superiority of our method in 3D shape segmentation,
3D semantic correspondence, and dense 3D shape
correspondence.

The rest of this paper is organized as follows. Section
2 briefly reviews related work in the literature. Section 3
introduces in detail the proposed unsupervised dense 3D
shape correspondence algorithm based on implicit shape
representation and its implementations. Section 4 reports
the experimental results. Section 5 concludes the paper.

2 RELATED WORK
2.1 Dense Shape Correspondence

While there are many dense correspondence works for
organic shapes [6]-[12], [42], [43], here we focus on methods
designed for man-made objects, including optimization and
learning-based methods. For the former, most prior works
build correspondences only at a part level [18], [19], [44]-
[46]. Kim et al. [16] propose a diffusion map to compute
point-based “fuzzy correspondence” for every shape pair.
This is only effective for a small collection of shapes with
limited shape variations. [38] and [47] present a template-
based deformation method, which can find point-level cor-
respondences after rigid alignment between the template
and target shapes. However, these methods only predict
coarse and discrete correspondence, leaving the structural
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TABLE 1: A comparison of shape correspondence methods designed for generic objects is presented. "Template” refers
to methods that are template-based or require templates. Note that the methods requiring templates and template-based
methods might not be suitable for man-made objects, since they have significant differences in the number and arrangement

of their parts.

Method Type Supervision | Template Corr. Shape . Non—Ex1s.tence Content, Uncertainty-aware
Level | Representation Detection
Slavcheva et al. [36] | Optimization || unsupervised X dense | implicit function X bodies, X
3D-CODED [8] Learning self-supervised dense mesh X bodies, X
LoopReg [37] Learning self-supervised X dense | implicit function X bodies, X
Kim12 [16] Optimization || unsupervised X dense point X man-made objects, X
Kim13 [38] Optimization | unsupervised dense point X man-made objects, X
LMVCNN [20] Learning supervised X dense point X man-made objects, X
ShapeUnicode [39] Learning supervised X sparse point X man-made objects, X
Chen et al. [21] Learning unsupervised X sparse point X man-made objects, X
DIF [40] Learning unsupervised dense | implicit function X man-made objects, X
Zheng et al. [41] Learning unsupervised dense | implicit function X man-made objects, bodies, X
Proposed Learning unsupervised X dense | implicit function man-made objects, bodies,

or topological discrepancies between matched parts or part
ensembles unresolved.

A series of learning-based methods [20], [39], [48]-[50]
are proposed to learn local descriptors, and treat corre-
spondence as 3D semantic landmark estimation. For ex-
ample, ShapeUnicode [39] learns a unified embedding for
3D shapes and demonstrates its ability in correspondence
among 3D shapes. However, these methods require ground-
truth pairwise correspondences for training. Recently, Chen
et al. [21] present an unsupervised method to estimate
3D structure points. Unfortunately, it estimates a constant
number of sparse structured points. As shapes may have
diverse part constitutions, it may not be meaningful to
establish the correspondence between all of their points.
Groueix et al. [51] also learn a parametric transforma-
tion between two surfaces by leveraging cycle consistency,
and apply it to the segmentation problem. However, the
deformation-based method always deforms all points on
one shape to another, even for the points from a non-
matching part. In contrast, our unsupervised and uncertainty-
aware learning model can perform pairwise dense corre-
spondence for any two shapes of a man-made object. We
summarize the comparison in Tab. 1.

2.2

Due to the advantages of being a continuous representa-
tion and handling complicated topologies, implicit func-
tions have been adopted for learning representations for
3D shape generation [28]-[30], [33], encoding texture [31],
[52], [53], 3D reconstruction [54]-[56], and 4D reconstruc-
tion [5]. Meanwhile, some extensions have been proposed to
learn deep structured [57], [58] or segmented implicit func-
tions [32], or separate implicit functions for shape parts [59].
Further, some works [36], [37], [40], [41], [60]-[62] leverage
the implicit representation together with a deformation
model for shape registration. However, these methods rely
on the deformation model, which might prevent their usage
for topology-varying objects. Slavcheva et al. [36] implicitly
obtain correspondence for organic shapes by predicting the
evolution of the signed distance field. However, as they
require a Laplacian operator to be invariant, it is limited
to small shape variations. Recently, Zheng et al. [41] present

Implicit Shape Representation

a deep implicit template, a new 3D shape representation
that factors out the implicit template from deep implicit
functions. Additionally, a spatial warping module deforms
the template’s implicit function to form specific object
instances, which reasons dense correspondences between
different shapes. Similarly, DIF [40] introduces a deep im-
plicit template field together with a deformation module
to represent 3D models with correspondences. However,
these methods assume that the object instances within a
category are mostly composed of a few common semantic
structures, which inevitably limits their effectiveness for
topology-varying objects.

On the other hand, in order to preserve fine-grained
shape details in implicit function learning, Wang et al. [63]
propose to combine 3D query point features with local
image features to predict the SDF values of the 3D points,
which is able to generate shape details. Meanwhile, in-
stead of encoding the shape in a single latent code z,
Chibane et al. [64] and Peng et al. [65] propose to extract a
learnable multi-scale tensor of deep features. Then, instead
of classifying point coordinates x directly, they classify deep
features extracted at continuous query points, preserving
local details. In this paper, we propose a deep branched
implicit function, which can also improve the fidelity of
shape representations.

2.3 Uncertainty in Deep Learning

Recent years have witnessed a trend to estimate uncertainty
in deep neural networks (DNNs) [66]-[69]. Specific to deep
learning models for the computer vision field, the uncer-
tainties can be classified into two main types: model (or
epistemic) uncertainty and data (or aleatoric) uncertainty.
Model uncertainty accounts for uncertainty in the model
parameters and can be remedied with sufficient training
data [70]-[72]. Data uncertainty captures the noise inher-
ent in the training data, which cannot be reduced even
with enough data [67]. Recently, uncertainty learning has
been widely applied to various tasks, such as semantic
segmentation [72], [73], depth estimation [74], [75], depth
completion [76], [77], multi-view stereo [78], visual corre-
spondence [79], face alignment [80], 3D reconstruction [56],
and face recognition [81]-[83]. In this work, we introduce
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an uncertainty solution in our dense correspondence model
by representing 3D points as distributions instead of de-
terministic points in our semantic part embedding space.
Consequently, the learned variance of PEVs can be used as
the measurement of the point-wise correspondence, which
is suitable for generic objects with rich geometric and topo-
logical variations.

2.4 Unsupervised Shape Co-Segmentation

Co-segmentation is one of the fundamental tasks in geom-
etry processing. Prior works [84]-[86] develop clustering
strategies for meshes, given a handcrafted similarity metric
induced by an embedding or graph [18], [45], [87]. The
segmentation for each cluster is computed independently
without accounting for statistics of shape variations, and
the overall complexity of these methods is quadratic in the
number of shapes in the collection. Recently, BAE-NET [32]
presents an unsupervised branched autoencoder with 3
fully-connected layers that discovers coarse segmentation of
shapes by predicting implicit fields for each part. According
to the evaluation in the BAE-NET [32], the 3-layer network
is the best choice for independent shape extraction, making
it a suitable candidate for shape segmentation. However,
the shallow network structure results in a limited shape
representation power. In contrast, we extend the branched
implicit function with a deep architecture, making it suitable
for shape reconstruction as well.

3 PROPOSED METHOD
3.1 Preliminaries

Let us first formulate the dense 3D correspondence problem.
Given a collection of 3D shapes of the same object category,
one may encode each shape S € R"*3 in a latent space z €
R?. As show in Fig. 2(a), for any point p € S4 in the source
shape S 4, dense 3D correspondence will find its semantic
corresponding point ¢ € Sp in the target shape Sp. if a
semantic embedding function (SEF) f : R3 x R? — R* is
able to satisfy

(amin 170,20 = f@zm)lla) <. WpeSa )

Here the SEF is responsible for mapping a point from its 3D
Euclidean space to the semantic embedding space. When
p and ¢ have sufficiently similar locations in the semantic
embedding space, they have similar semantic meaning, or
functionality, in their respective shapes. Hence ¢ is the
corresponding point of p. On the other hand, if their distance
in the embedding space is too large (> ), there is no
corresponding point in Sp for p. If SEF could be learned
for a small 7, the corresponded point ¢ of p can be solved
via ¢ = f7Y(f(p,za),zp), where f~1(:,:) is the inverse
function of f that maps a point from the semantic embed-
ding space back to the 3D space. Therefore, the dense 3D
correspondence problem amounts to learning the SEF and
its inverse function.

Probabilistic Semantic Embedding Learning. Our prelim-
inary work [35] adopts a deterministic point representation
for each 3D point in the semantic embedding space. How-
ever, it is difficult to estimate an accurate point embedding
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Fig. 2: (a) We seek to learn a semantic embedding function,
which maps a point from its 3D Euclidean space to the
semantic embedding space. Consequently, when p and ¢
locate in similar locations in the semantic embedding space,
they have similar semantic meanings in their respective
shapes. (b) In our preliminary work [35], the learned seman-
tic embedding is a deterministic model, which represents
each 3D point as a deterministic point in the latent space
without considering its feature ambiguity (i.e., the leg point
of S4). (c) In this work, we propose to use probabilistic
embeddings to give a distributional estimation of PEVs in
the semantic space, which is able to capture a point-wise
uncertainty in the dense correspondence model.

for shape parts with semantic ambiguity, which usually
has larger uncertainty in the embedding space (Fig. 2(b)).
Also, these ambiguous features will negatively affect the
mapping of the inverse function, leading a poor corre-
spondence accuracy. To address this issue, we propose to
utilize probabilistic embeddings to predict a distributional
estimation P(o|x,z) instead of a point estimation f(x,z),
for each 3D point of the shapes in the semantic embedding
space (Fig. 2(c)). Specifically, we define the PEV in the latent
space as a Gaussian distribution:

P(ol|x, z) :/\/(o;ou,oiI), )

where the mean and variance of the Gaussian distribution
are predicted by the function f: (0,,0,) = f(x,2z). Here,
The mean o, can be regarded as the semantic feature of
the point. The variance o, encodes the model’s uncertainty
along each feature dimension.

Implementation Solution. As shown in Fig. 3, we propose
to leverage the topology-free implicit function, a conven-
tional shape representation, to jointly serve as the SEF. By
assuming that corresponding points are similar in the em-
bedding space, we explicitly implement an inverse function
mapping from the embedding space to the 3D space, so that
the learning objectives can be more conveniently defined
in the 3D space rather than the embedding space. Both
functions are jointly learned with an occupancy loss for
accurate shape representation, and an uncertainty-aware
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Fig. 3: Model Overview. (a) Given a shape S, PointNet E is used to extract the shape feature code z. The parameters (o,
0,) of the Gaussian distribution are predicted via a deep implicit function f. Then a stochastic part embedding vector o is
sampled from N (0;0,,,02I) in the semantic embedding space. We implement dense correspondence through an inverse
function mapping from o to recover the 3D shape S. (b) To further make the learned part embedding consistent across all
the shapes, we randomly select two shapes S 4 and Sp. By swapping the part embedding vectors, a cross-reconstruction
loss is used to enforce the inverse function to recover to each other. MP denotes the max-pooling operator.

self-reconstruction loss for the inverse function to recover
itself. In addition, we propose an uncertainty-aware cross-
reconstruction loss enforcing two objectives. One is that
the two functions can deform source shape points to be
sufficiently close to the target shape. The other is that the
offset vectors between corresponding points, g, are locally
smooth within the neighborhood of p.

3.2 PointNet Encoder

To perform dense correspondence for a 3D shape, we need
to first obtain a latent representation describing its overall
shape. In this work, given a shape S € R"*3, we utilize a
PointNet-based network to encode the shape into a latent
code space. We adopt the original PointNet [23] without the
STN module to extract a global shape code z € R%:

E:R™3 o R4, (3)

3.3 Uncertainty-aware Implicit Function

Based on the shape code z of an object, as in [29], [33],
the 3D shape of the object can be reconstructed by an
implicit function. That is, given the 3D coordinate of a query
point x € R3, the implicit function assigns an occupancy
probability O between 0 and 1: R? x R — [0, 1], where 1
indicates x is inside the shape, and 0 outside.

This conventional function can not serve as our SEF,
given its simple 1D output. Motivated by the unsupervised
part segmentation [32], we adopt its branched layer as
the final layer of our implicit function, whose outputs are
denoted by o, € R* and o, € R¥:

f: R x RY = (RF,RF). 4)

A max-pooling operator (MP) leads to the final occupancy
O = MP(o,) by selecting one branch from o,, whose
index indicates the unsupervisedly estimated part where
x belongs to. Conceptually, each element of o, shall in-
dicate the occupancy value of x w.r.t. the respective part.
Since o appears to represent the occupancy of x w.rt. all

semantic parts of the object, the latent space of (0,0, ) can
be the desirable probabilistic semantic embedding. In our
implementation, f is a 3-layer multilayer perceptron (MLP).
The final layer consists of two separate fully connected (FC)
layers designed to produce the mean o,, and variance o, of
the Gaussian distribution.

Deep Branched Implicit Function. As detailed in the
work [32], the network structure of 3-layer implicit function
can be sensitive to the initial parameters and it cannot infer
semantic information when the number of layers is greater
than 3. As a result, the limited depth of the network makes
it difficult to represent shape details, as well as obtain fine-
grained semantic correspondence. To address these issues,
we introduce a deep branched implicit function network.
Specifically, as shown in Fig. 4, we first generate deep point-
specific features via four parallel MLPs. We then concatenate
those features to produce a point-specific latent code z. The
final 3 FC layers produce the occupancy value of the query
point. Querying deep features extracted at continuous 3D
locations used in implicit function learning allows us to
reconstruct the local geometric structure of generic objects,
enhancing the point-wise semantic representation in the
semantic embedding.

3.4

Given the objective function in Eqn. 1, one may con-
sider that learning SEF, f, would be sufficient for dense
correspondence. However, there are two problems with
this. First of all, to find correspondence of p, we need
to compute f~(f(p,za),zp), i.e., assuming the output of
f(q,zB) equals f(p,z4) and solve for ¢ via iterative back-
propagation. This could be computationally inefficient dur-
ing inference. Secondly, it is easier to define shape-related
constraints or loss functions between f~!(f(p,z4),zp) and
¢ in the 3D space, rather than those between f(q,zp) and
f(p,z4) in the embedding space.

To this end, we define the inverse implicit function to
take the probabilistic part embedding vector (PEV) o and

Inverse Implicit Function
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Fig. 4: Uncertainty-aware deep branched implicit function
network. Four branched MLPs are first utilized to produce
point features in different scales. Then the features are
aggregated into a single point-wise latent vector z. The
final 4 fully connected layers predict the mean o,€R”
and variance o,€R* of the Gaussian distribution. The part
embedding vector o of each point x is not a deterministic
point embedding any point, but a stochastic embedding
sampled from N (0; 0, 02I). A max-pooling operator leads
to the final occupancy O=M7P(0,,).

the shape code z as inputs, and recover the corresponding
3D location:
g:RF xRY — R3. 5)

The probabilistic PEV can be reformulated as o =
0, + €o,, where ¢ ~ N(0,I). We also use an MLP net-
work to implement g. With g, we can efficiently compute
9(f(p,z4),zp) via forward passing, without iterative back-
propagation.

3.5 Training Loss Functions

We jointly train our implicit function and inverse func-
tion by minimizing three losses: the occupancy loss £,
the uncertainty-aware self-reconstruction loss £°%, and the
uncertainty-aware cross-reconstruction loss ECR, ie.,

ﬁall — [occ +£SR + L:CR, (6)

where £°°“ measures how accurately f predicts the occu-
pancy of the shapes, L5 enforces that g is an inverse func-
tion of f, and LYF strives for part embedding consistency
across all shapes in the collection. We first explain how we
prepare the training data, and then provide the details of
the loss functions.

3.5.1

Given a collection of N raw 3D surfaces {S7*“}¥ | with
a consistent upright orientation, we first normalize the
raw surfaces by uniformly scaling the object such that the
diagonal of its tight bounding box has a constant length
and make the surfaces watertight by converting them to
voxels. In order to train the implicit function model, fol-
lowing the sample scheme of [ ], we randomly sample and
obtain K spatial points {x; }£ j=1 and their occupancy labels
{0; }<1 € {0,1} near the surface, which are 1 for the inside
pomts and 0 otherwise. In addition, to learn discriminative
shape codes, we further uniformly sample n surface points to
represent 3D shapes, resulting in {S;}7;.

Training Samples

3.5.2 Occupancy Loss

This is a Lo error between the label and estimated occu-
pancy of all shapes:

N K
=D Y IMP(fo, (x5.2i) —

i=1j=1

Lo O5113- @)

3.5.3 Uncertainty-aware Self-Reconstruction Loss

the inverse function aims to map from the embedding space
to the 3D space. The variance could actually be regarded
as the uncertainty measuring the confidence of the inverse
mapping. Following the minimisation objective suggested
by [67], we supervise the inverse function by recovering
input surface S;:

B

+ 5 loa(o))?,

o) 2|l g(£(SY),2:),2;) — SV|I3

l\')\»—l

||
i Mz

()

where Sl(-] ) is the Jj-th point of shape S; and 0% denotes the
mean value across all dimensions of its variance. The first
term %(0,(,] ))’2 serves as a weighted distance which assigns
larger welghts to less uncertainty vectors. The second term

1 log(o W )? penalizes points with high uncertainties. In
practlce we train the function f to predict the log variance
log 02 for stable optimization.

3.5.4 Uncertainty-aware Cross-Reconstruction Loss

The cross-reconstruction loss is designed to encourage the
resultant PEVs to be similar for densely corresponded points
from any two shapes. As shown in Fig. 3, from a shape
collection we first randomly select two shapes S4 and Sp.
The implicit function f generates PEV sets {04} ({og}),
given S, (Sp) and their respective shape codes z4 (zg)

as inputs. Then we swap their PEVs and feed the con-

catenated vectors to the inverse function g: S 4 ) g(og),

z4),Sp [ 9(09),z). If the part embedding is point-
to—pomt consistent across all shapes, the inverse function
should recover each other, i.e., S’y & S4, S’z & Sp. Towards
this goal, we exploit several loss functions to minimize the

pairwise difference for each of these two shape pairs:
,CCR — )\1£CD + )\QEEMD =+ )\3£nor + /\4£smo’ (9)

where £ is the Chamfer Distance (CD) loss, LEMD the
Earth Mover distance (EMD) loss, £™°" the surface normal
loss, £5™° the smooth correspondence loss, and A; are the
weights. The first three terms focus on shape similarity,
while the last one encourages the correspondence offsets
to be locally smooth. We empirically apply uncertainty
learning in L¢P only since L¢P essentially reflects the main
results of the cross-reconstruction process.

Uncertainty-aware Chamfer Distance Loss. is defined as:

L = dop(Sa,Sh) +dop(Ss, Sh), (10)
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Algorithm 1 Dense correspondence inference.

Input: Two surface point sets: S 4 (Source) and Sp (Target).
Output: The corresponding point sets and their confidence
scores Sy, = {q,C} on Sp.

Initialisation :

za < E(Sa),zg < E(Sp);

{OMB} AR f(ZBv SB)I {O#A} — f(ZA, SA);

Sy < 9(za,{ouB});

SA*)B — (Z)

LOOP Search Function:

for each point pin S4 do

AL

Find a preliminary correspondence ¢’ in S/, via ¢’ =
argmingesy, [[p — q'|l2;

7. Knowing the index of ¢’ in S, the same index in Sp
refers to the final correspondence ¢ € Sp;

Compute the confidence score via Eqn. 17.

if C > 7’ then

10: Sasp < Sasrll(¢,0);
11:  else

12: Sasp < Sasn H (@7 C);
13:  end if

14: end for

15: return S4_.p

where CD is calculated as [23]:

dep(S,8') ==(0P)~ meHp—QIlg log( )2
pES
1
+5(0) 7 > minlp —all3 + flog( )2,
qes' P
(11)
where o(p ) is the mean of all values in variance of

point p. Similarly, the variance in the semantic embedding
learns the correspondence uncertainty through such cross-
reconstruction.

Earth Mover Distance Loss. is defined as:
LEMD = dpyip(Sa,Sy) + demp(Ss,Sh),

where EMD is the minimum of the sum of distances be-
tween a point in one set and a point in another set over all
possible permutations of correspondences [23]:

N : _
dpup(S,8') = @Qgs,g llp — @ (p)|l2,

(12)

(13)

where @ is a bijective mapping.

Surface Normal Loss. An appealing property of implicit
representation is that the surface normal can be analytically
computed using the spatial derivative 9MPU2) yia back-
propagation through the network. Hence, we are able to

define the surface normal distance on the point sets.
LT = dnor(nAa n/A) + dnor(nBa nlB)v (14)

where n, is the surface normal of S.. We measure d,,,, by

the Cosine similarity distance:

= 3 ngen)),

%

dnor(n,n’) (15)

where - denotes the dot-product.

Smooth Correspondence Loss. encourages that the cor-
respondence offset vectors ASap = S5 — Su, ASpy =
S’y — Sp of neighboring points are as similar as possible to
ensure a smooth deformation:

cme= 30 [AS - AS )+
a€S a,a’€N(a) . " (16)
S as®, —asy)s,

beSp,b'EN(D)

where N(a) and N(b) are neighborhoods for a and b respec-
tively. Here, for the local neighborhood selection, we utilize
the radius-based ball query strategy [24] with the radius
being 0.1.

3.6

During inference, our method can offer both shape segmen-
tation and dense correspondence for 3D shapes. As each
element of PEV learns a compact representation for one
common part of the shape collection, the shape segmen-
tation of p is the index of the element being max-pooled
from its PEV. As both the implicit function f and its inverse
g are point-based, the number of input points to f can
be arbitrary during inference. As depicted in Algorithm 1,
given two point sets S, Sp with shape codes z4 and
zp, f generates the mean of PEVs o,4 and o,p, and g
outputs cross-reconstructed shape S';. For any query point
D € S4, a preliminary correspondence may be found by the
nearest neighbor search in 8'y: ¢’ = argmingcs, [|p — ¢'[|2.
Knowing the index of ¢’ in S/;, the same index in S refers
to the final correspondence ¢ € Sp.

_Finally, given the probabilistic semantic embedding
(0'7,03%) of the corresponding points (p,g), the correspon-
dence confidence can be computed by measuring the “like-
lihood” of them:P(0o} = o}), where 0} ~ P(o|p,z4)
and o ~ P(olq,zp). In practice, we adopt the mutual
likelihood score as the confidence score [81]:

i, (1) o (1)
k
e

(OZPA)2(Z) +( iq )2(l)

Inference

o (@70 + <oqu>2<”>>

(17)
where i, is the index of p in S4. ou(l) refers to the [*" di-
mension of o, and similarly for og(l). Here, C is normalized
to the range of [0,1] with min-max normalization for all
the testing samples. Since the learned part embedding is
discriminative among different parts of a shape, the distance
of PEVs is suitable to define confidence. When C is larger
than a pre-defined threshold 7/, this p — ¢ correspondence
is valid; otherwise p has no correspondence in Sp.

3.7
3.7.1 Sampling Point-Value Pairs

The training of implicit function network needs point-value
pairs. Following the sampling strategy of [33], we obtain the

Implementation Detail
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Fig. 5: Correspondence accuracy for 4 categories in the BHCP benchmark. The solid and dashed lines are for the aligned
(top) and unaligned (bottom) setting respectively. All baseline results are quoted from [21], [38].

TABLE 2: Three stages of the training process.

Stage | Updated networks ‘ Loss functions

1 E, f [oce
2 E, f,qg £°°¢ and L£F
3 E, f/ g Eall

paired data {x;, 0; HE | offline. x;, O; are the spatial point
and its corresponding occupancy label. For each 3D shape,
we utilize the technique of Hierarchical Surface Prediction
(HSP) [88] to generate the voxel models at different reso-
lutions (163, 323, 64%). We then respectively sample points
(K =4,096, K = 8,192, K = 32,768) on three resolutions
in order to train the implicit function progressively.

3.7.2 Training Process

We summarize the training process in Tab. 2. In order to
speed up the training process, our method is trained in three
stages: 1) To encode the shape codes of the input shapes,
PointNet E and implicit function f are first trained on
sampled point-value pairs via Eqn. 7; 2) To enforce inverse
implicit function g to recover 3D points from PEVs, E, f,
and inverse function g are jointly trained via Eqn. 7 and 8;
3) To further facilitate the learned PEVs to be consistent
for densely corresponded points from any two shapes,
we jointly train E, f, and g with £%. In Stage 1, we
adopt a progressive training technique [33] to train our im-
plicit function on data with gradually increasing resolutions
(163—323—643), which stabilizes and significantly speeds
up the training process.

In experiments, we set n = 8,192, d = 256, k = 12, 7/ =
0.2, \y =10, A2 = 1, A3 = 0.01, Ay = 0.1. We implement

our model in Pytorch and use Adam optimizer at a learning
rate of 0.0001 in all three stages.

4 EXPERIMENTS
4.1 3D Semantic Correspondence

Data. We evaluate our proposed algorithm on the task of 3D
semantic point correspondence, a special case of dense cor-
respondence, with two motivations: 1) no database of man-
made objects has ground-truth dense correspondence; and
2) there is far less prior work in dense correspondence for
man-made objects than the semantic correspondence task,
which has strong baselines for comparison. Thus, to eval-
uate semantic correspondence, we train on ShapeNet [89]
and test on BHCP [38] following the experimental protocol
of [20], [21]. For training, we use a subset of ShapeNet
including plane (500), bike (202), and chair (500) categories
to train 3 individual models. For testing, BHCP provides
ground-truth semantic points (7-13 per shape) of 404 shapes
including plane (104), bike (100), chair (100), and helicopter
(100). We generate all pairs of shapes for testing, i.e., 9,900
pairs for bikes. The helicopter category is tested with the
plane model as [20], [21] did. As BHCP shapes are with
rotations, prior works test on either one or both settings:
aligned and unaligned, i.e., 0° vs. arbitrary relative pose of
two shapes. We evaluate both settings.

Baseline. We compare our work with multiple state-
of-the-art (SoTA) baselines. Kim12 [16] and Kim13 [38]
are traditional optimization methods that require part la-
bels for templates and employ collection-wise co-analysis.
LMVCNN [20], ShapeUnicode [39], AtlasNet2 [90], Chen et
al. [21] and Liu et al. [35] are all learning based, where [20]
require ground-truth correspondence labels for training.
Despite [21] only estimates a fixed number of sparse points,
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Fig. 6: (a) Dense correspondences in 4 categories. Each row shows one target shape Sp (red box) and its pair-wise
corresponded 6 source shapes S 4. Given a spatially colored Sg, the p — ¢ correspondence enables to assign p € Su
with the color of ¢ € Sp, or with red if ¢ is non-existing. (b) For one pair of shapes, the non-existence correspondences
are impacted by the confidence threshold 7’. The colored regions progressively show the non-existence correspondences
between the two shapes where the confidence score C is in the range of [0, 0.3] (red), (0.3, 0.5] (green), and (0.5, 0.7] (blue).

[21] and ours are trained without labels. As optimization-
based methods and [20] are designed for the unaligned
setting, we also train a rotation-invariant version of ours
by supervising E' to predict additional rotation parameters,
which is applied to rotate the input query point before
feeding the point to f. In addition, we report results from
two models: without uncertainty learning (Ours) and with
uncertainty learning (Ours-uncertainty).

Results. The correspondence accuracy is measured by the
fraction of correspondences whose error is below a given
threshold of Euclidean distances. As in Fig. 5, the solid
lines show the results on the aligned data and dotted lines
on the unaligned data. We can clearly observe that our
method outperforms baselines in the plane, bike, and chair
categories on aligned data. Note that Kim13 [38] has slightly
higher accuracy than ours on the helicopter category, likely
due to the fact that [38] tests with the helicopter-specific
model, while we test on the unseen helicopter category with
a plane-specific model. At the distance threshold of 0.05,
compared to our preliminary work [35], the Ours setting
improves on average 5.3% accuracy relatively in 3 (Plane,
Bike, and Chair) categories. While the Ours-uncertainty
setting improves on average 9.2% accuracy, and achieves
9.6% improvement in the unseen Helicopter category. More-
over, compared to the best-performing SoTA baseline [21],
our average relative improvement is 29.3% in 4 categories.
We can clearly observe that both proposed deep branched
implicit function and uncertainty learning can significantly
improve the performance of semantic correspondence. In the
rest of experiments, we will use the model trained with Ours-
uncertainty setting (unless specified otherwise).

For unaligned data, both two settings achieve compet-
itive performance as baselines. While it has the best AUC
overall, it is worse at the threshold between [0,0.05]. The

main reason is the implicit network itself is sensitive to
rotation. Note that this comparison shall be viewed in the
context that most baselines use extra cues during training
or inference, as well as the high inference speed of our
learning-based approach. For example, Kim13 requires a
part-based template during inference.

Some visual results of dense correspondences are shown
in Fig. 6(a). Note the amount of non-existent correspondence
is impacted by the threshold 7’ as in Fig. 6(b). A larger 7/
discovers more subtle non-existence correspondences. This
is expected as the division of semantically corresponded or
not can be blurred for some shape parts.

In the aligned setting, one naive approach to semantic
correspondence is to find the closest point ¢ on another 3D
shape given a point p in one shape. We report the accuracy
of this approach as the black curve in Fig. 7(a). Clearly, our
accuracy is much higher than this “lower bound”, indicating
our method doesn’t rely much on the canonical orientation.
To further validate noisy real data, we evaluate the Chair
category with additive noise N'(0,0.02%) and compare with
Chen et al. [21]. As shown in Fig. 7(a), the accuracy is slightly
worse than testing on clean data. However, our method still
outperforms the baseline on noisy data.

Visualization of Correspondence Confidence Score. To
further visualize the correspondence confidence score, we
provide confidence score maps for some examples. As
shown in Fig. 8, the confidence score can show the probabil-
ity around corresponded points between the target shape
(red box) and its pair-wise source shapes. For example,
for the source shapes with arms, we can clearly see the
confidence scores of the arm part is significantly lower than
other parts.

Detecting Non-Existence of Correspondences. Our
method can build dense correspondences for 3D shapes
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Fig. 7: (a) Additional semantic correspondence results for
the chair category in BHCP. (b) ROC curve of the non-
existence of correspondence detection.
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Fig. 8: Visualization of the confidence score. The confidence
score maps show the probability around corresponded
points between the target shape (red box) and its pair-wise
source shapes.

with different topologies, and automatically declare the
non-existence of correspondence. The experiment in Fig. 5
cannot fully depict this capability of our algorithm because
no semantic point was annotated on a non-matching part.
Also, there is no benchmark providing the non-existence
label between a shape pair. We thus build a dataset with
1,000 paired shapes from the chair category of ShapeNet
part dataset [91]. Within a pair, one has the arm part
while the other does not. For the former, we respectively
annotate 5 arm points and 5 non-arm points based on
provided part labels. We utilize this data to measure our
detection of the non-existence of correspondence. Based on
our confidence scores, we report the ROCs of both Ours and
Ours-uncertainty (AUC: 96.58% vs 97.24%) in Fig. 7(b). The
results show our strong capability in detecting unreliable
correspondence.

4.2 Understand Uncertainty Learning

To better understand the impact of uncertainty on dense
3D shape correspondence, we provide the distribution of
estimated uncertainty on BHCP 4 categories in Fig. 9. As
can be seen, the uncertainty increases in the following order:
planes < bikes < chairs < helicopters. The estimated uncer-
tainty is proportional to the complexity of the object’s shape
topology, which is intuitive and consistent with semantic
correspondence results in Fig. 5. In addition, we visualize
the point-wise uncertainty in shapes (Fig. 9). The estimated
uncertainty clearly discovers the “hard” shape regions in
the dense correspondence task, such as the chairs’ legs
and arms, and bikes’ handlebars, which often suffer from
large variations in geometric topology. Therefore, dense
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Fig. 9: Distribution of point-wise uncertainty in the semantic
embedding on the BHCP 4 categories. Here, “uncertainty”
refers to the mean value of 02 across all feature dimen-
sions. On the right-hand side, we show the uncertainty
distribution by shapes. It can be observed that the learned
uncertainty increases along with the shape regions with
semantic ambiguity, .., the arms and legs of chairs, which
often differ among instances.

correspondence models with uncertainty learning have two
benefits. First, the learned uncertainty can be utilized as a
measurement of the complexity of objects” geometric topol-
ogy in a shape collection. Second, the learned uncertainty
can also be regarded as a “confidence indicator” to identify
reliable established point-to-point correspondences.

4.3 Dense Correspondence on Human Body

Although our method is designed to handle challenging
man-made or topology-varying objects, we choose to con-
duct additional experiments for organic shapes for two
reasons. One is that datasets of organic shapes such as
human bodies do provide annotations on dense correspon-
dence. Thus evaluation of dense correspondence will com-
plement well with our sparse semantic correspondence test
in Sec. 4.1. The other is to evaluate the generalization capa-
bility of our method to diverse generic object types.

To this end, we evaluate the FAUST humans dataset [3],
and compare with two representative SOTA baselines: su-
pervised (FMNet [7]) and unsupervised (Halimi et al. [9])
methods. We follow the same dataset split as in [9] and [7]
where the first 80 shapes of 8 subjects are used for train-
ing, and a validation set of 20 shapes of 2 other subjects
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Fig. 10: (a) Geodesic error comparison of intra-subject pairs and inter-subject pairs on the FAUST dataset [3], for three
methods: ours (unsup.), FMNet [7] (sup.) and Halimi et al. [9] (unsup.) (b) One target shape and 6 pairwise corresponded
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Fig. 11: Unsupervised segmentation results of the proposed
method on 3D human shapes.
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Fig. 12: Shape representation power comparison. Our recon-
structions closely match the ground-truth (GT.) shapes than
BAE-Net [32] and Liu et al. [35].
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is utilized for testing. The ground-truth densely aligned
shapes are used for evaluation. As shown in Fig. 10(a),
our method, as an unsupervised method, outperforms the
unsupervised method [9]. Fig. 10(b) visualizes the estimated
correspondences. We also show the unsupervised segmenta-
tion results of some testing shapes in Fig. 11. As can be seen,
meaningful and consistent segmentation appears across 3D
human shapes.

4.4 Unsupervised Shape Segmentation

In order to produce 3D shape segmentation, prior template-
based [38] or feature point estimation [21] correspondence

methods usually need an additional part template to trans-
fer pre-defined segmentation labels to the estimated corre-
sponded points. However, in contrast to these methods, our
framework is able to generate co-segmentation results in an
unsupervised manner. For a fair comparison of shape seg-
mentation, we only compare with the SoTA unsupervised
method, BAE-Net [32], which is a solely optimized method
for shape segmentation.

Following the same protocol [32], we train category-
specific models and test on the same 8 categories of
ShapeNet part dataset [91]: plane (2, 690), bag (76), cap (76),
chair (3,758), mug (184), skateboard (152), table (5,271),
and chair* (a joint chair+table set with 9, 029 shapes). Inter-
section over Union (IoU) between prediction and the ground
truth is a common metric for segmentation. Since unsuper-
vised segmentation is not guaranteed to produce the same
part counts exactly as the ground truth, e.g., combining the
seat and back of a chair as one part, we report a modified
IoU [32] measuring against both parts and part combina-
tions in the ground-truth. As shown in Tab. 3, our model
achieves a higher average segmentation accuracy than BAE-
Net and on-par results with our preliminary work [35]. As
BAE-Net is similar to the model of [35] trained in Stage 1,
these results show that our dense correspondence task helps
the PEV to better segment the shapes into parts, thus pro-
ducing a more semantically meaningful embedding. Some
visual results of segmentation are shown in Fig. 13.

4.5 Shape Representation Power of Implicit Function

We hope our novel implicit function f still serves as an
effective shape representation while achieving dense cor-
respondence. Hence its shape representation power shall
be evaluated. Following the setting of unsupervised shape
segmentation in Sec. 4.4, we first pass a ground-truth point
set from the test set to F/ and extract the shape code z. By
feeding z and a grid of points to f, we can reconstruct the
3D shape by Marching Cubes [92]. We evaluate how well
the reconstruction matches with the ground-truth point set.
As shown in Tab. 3, the average Chamfer distance (CD-
L) among branched implicit function (BAE-Net) [32], our
preliminary work [35], and the proposed method on the 7
categories is 0.032, 0.024, and 0.017, respectively. Note that
our relative improvement over our preliminary work [35]
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Fig. 13: Qualitative results of our unsupervised segmentation in Tab. 3: 8 shapes in each of the 8 categories.
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Fig. 14: (a) 10 semantic points overlaid with the shape. (b) The t-SNE comparison of the estimated PEVs over 3 training
stages of models trained with the Ours and Ours-uncertainty settings. Points of the same color are the PEVs of ground-
truth corresponding points in 100 chairs. 10 colors refer to the 10 points in (a).

TABLE 3: Unsupervised segmentation, shape representation comparisons (IoU/CD-L;) on ShapeNet part. We use #parts

in the evaluation and k=12 for all models.

Category (#parts) plane (3) bag (2) cap (2) chair (3) chair* (4) mug (2) skateboard (2) table (2)
Segmented body;tail, body, panel, back+seat, | back, seat, body, deck, top, Average
parts wing+engine handle peak leg, arm leg, arm handle wheel+bar leg+support
BAE-Net [32] 80.4/0.020 | 82.5/0.059 | 87.3/0.047 | 86.6/0.031 83.7/— 93.4/0.028 88.1/0.017 87.0/0.025 | 86.1/0.032
Liu et al. [35] 81.0/0.015 | 85.4/0.044 | 87.9/0.033 | 88.2/0.016 86.2/— 94.7/0.023 91.6/0.015 88.3/0.021 | 88.0/0.024
Ours 82.7/0.009 | 85.7/0.035 | 87.2/0.021 | 88.6/0.013 | 86.9/— | 91.9/0.014 | 88.2/0.011 88.7/0.016 | 87.5/0.017
is 29%. This substantially lower CD shows that our novel resemble Sp well, but with erroneous correspondences lo-

design of semantic embedding and deep branched implicit
function actually improves the shape representation power.
It is understandable that the higher shape representation
power is a prerequisite to more precise 3D correspondence,
as shown in Fig. 5. Additionally, Fig. 12 shows the visual
quality comparisons of the three categories’ reconstructions.

4.6 Ablations and Analysis
4.6.1 Ablations Study

Loss Terms on Correspondence. Since the point occupancy
loss and self-reconstruction loss are essential, we only ablate
each term in the cross-reconstruction loss for the Chair
category. Correspondence results in Fig. 15(a) demonstrate
that, while all loss terms contribute to the final performance,
LEP and L£5™° are the most crucial ones. L& forces S’g

to resemble Sp. Without £, it is possible that S’ B may

cally.

Part Embedding over Training Stages. The assumption of
learned PEVs being similar for corresponding points mo-
tivates our algorithm design. To validate this assumption,
we visualize the PEVs of 10 semantic points, defined in
Fig. 14(a), with their ground-truth corresponding points
across 100 chairs. The t-SNE visualizes the 100 x 10 k-
dim PEVs in a 2D plot with one color per semantic point,
after each training stage. The model after Stage 1 training
resembles BAE-Net. As shown in Fig. 14(b), the 100 points
corresponding to the same semantic point, i.e., 2D points
of the same color, scatter and overlap with other seman-
tic (colored) points. With the inverse function and self-
reconstruction loss in Stage 2, the part embedding shows
a more promising grouping of colored points. Finally, the
part embedding after Stage 3 has well-clustered and more
discriminative grouping, which means points correspond-
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Fig. 15: (a) 3D semantic correspondence reflecting the contri-

bution of our loss terms and (b) Active branch distribution

of PEVs on three categories (plane, chair, and table). Each

branch either represents a shape part or outputs nothing,
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Fig. 16: (a) Shape segmentation and (b) 3D semantic corre-
spondence performances on the Chair category over differ-
ent dimensionalities of PEV (k).
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ing to the same semantic location do have similar PEVs.
The improvement trend of part embedding across 3 stages
shows the effectiveness of our loss design and training
scheme, as well as validates the key assumption that mo-
tivated our algorithm. In addition, we compare the t-SNE
plot between the Ours and Ours-uncertainty in Fig. 14(b).
Here, for the Ours-uncertainty, we apply t-SNE with the
mean PEVs (0,), As can be seen, the part embedding of
the Ours-uncertainty has highly well-clustered than the
Ours (Stage 3). It demonstrates that uncertainty learning can
further improve the intra-class compactness and inter-class
separability in semantic embedding.

Dimensionality of PEV. As mentioned in Sec. 3.3, in the
final output layer, we utilize a max-pooling operator (MP)
to select one branch output and form the final occupancy
value. Here, we denote the selected branch as an “active”
branch and Fig. 15(b) shows its distribution of PEVs with
k = 12. As can be observed, the active branch distribution
across different categories is random and only a small part
of branches is active, which implies that shape segmentation
might not require a high-dimensional PEV. To verify this,
we conduct experiments on the dimensionality of PEV.
Fig. 16(a) and 16(b) show the shape segmentation and
semantic correspondence results over the dimensionality of
PEV. Our algorithm performs the best in both when £ = 12.

One-hot vs. Continuous Embedding. Ideally, our implicit
function, adopted from BAE-Net [32], should output a one-
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Fig. 17: Comparison of cross 3D reconstruction (S4 — S',
S — S/)) between Liu et al. [35] and our method. Cor-
responding points are assigned the same color in (S4, S’)
and (S, S'4). For our method, we also show the estimated
uncertainty, which visualizes the learned variances of cross-
reconstructed shapes. Best viewed in zoom-in.

hot vector before MP, which would benefit unsupervised
segmentation the most. In contrast, our PEVs prefer contin-
uous embedding rather than one-hot. To better understand
PEV, we compute the statistics of Cosine Similarity (CS)
between the PEVs and their corresponding one-hot vectors:
0.972 £+ 0.020 (BAE-Net) vs. 0.966 £ 0.040 (ours). This
shows our learned PEVs are approximately one-hot vectors.
Compared to BAE-Net, our smaller CS and larger variance
are likely due to the limited network capability, as well
as our desire to learn a continuous embedding benefiting
correspondence.

4.6.2 Expressiveness of Inverse Implicit Function

Given our inverse implicit function, we are able to cross-
reconstruct each other between two paired shapes by swap-
ping their part embedding vectors. Further, we can interpo-
late shapes both in learned semantic embedding space and
maintain the point-level correspondence consistently.

Cross-Reconstruction Performance. We first show the
cross-reconstruction performances in Fig. 17. From a shape
collection, we can randomly select two shapes S, and
Sp. Their shape codes z4 and zp can be predicted by
the PointNet encoder. With their respectively generated the
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Fig. 18: Comparison of interpolation in the semantic em-
bedding space between Liu et al. [35] and our method. Our
interpolations are more smooth and point-to-point consis-
tent than Liu et al. [35]. Best viewed in zoom-in.
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mean of PEVs o,4 and o,p, we swap their PEVs, send
the concatenated vectors to the inverse function, and obtain

v = g(ous, 24),Ss = g(0,a,2p). As compared to our
preliminary work [35] in Fig. 17, our cross reconstructions
are more closely resemble each other in detail. Additionally,
this work can produce uncertainty, which can reveal the
reliability of the cross reconstructions. Here, we provide
the cross-reconstruction performance of the car category,
where the car-specific model is trained on 659 shapes of
the ShapeNet Part database.

Interpolation in the Semantic Embedding Space. An
alternative way to explore the correspondence ability is to
evaluate the interpolation capability of the inverse implicit
function. In this experiment, we interpolate shapes in the
latent space. Given two shapes S4 and Sp, we first obtain
their z4, zp, 0,4, and o, by the trained encoder, implicit
and inverse implicit functions. The intermediate shape code
can be calculated as z = aza + (1 — @)z (@ € [0,1]),
and then we send the concatenated vectors (z and o0,4)
to the inverse function to generate an intermediate cross-
reconstructed shape S. Since S4 and S are point-to-point
corresponded, we can easily show the correspondences in
the same color. As observed in Fig. 18, our inverse implicit
function generalizes well the different shape deformations.
Moreover, our interpolations are more smooth and point-
to-point consistent than our preliminary work [35]. It also
demonstrates that the proposed deep branched implicit

Fig. 19: Texture transfer from the source shapes (1% column)
to the target shapes (15 row) based on the dense correspon-
dences estimated by the proposed method.

function and uncertainty learning enhance the discrimina-
tive ability of the learned semantic part embedding among
different parts of the shape.

Texture Transfer. As shown in Fig. 19, based on the
correspondences generated by our method, we are able
to transfer textures from one shape to another. As can be
observed, the texture can be semantically transferred to the
correct places in new shapes.

4.6.3 Computation Time

Our training on one category (500 samples) takes ~ 8 hours
to converge with a GTX1080Ti GPU, where 1.5, 2, and 8
hours are spent at Stage 1, 2, 3 respectively. In inference,
the average runtime to pair two shapes (n=8,192) is 0.21
second including the runtimes of E, f, g networks (on
GPU, ~ 2.1ms), and neighbor search, confidence calculation
(on CPU, ~ 208ms). The inference time is similar to our
preliminary work [35] since the deep branched implicit
function network only brings an additional 0.6ms time cost.

5 CONCLUSION

In this work, we propose a novel framework including
an implicit function and its inverse for dense 3D shape
correspondences of topology-varying generic objects. Based
on the learned probabilistic semantic part embedding via
our implicit function, dense correspondence is established
via the inverse function mapping from the part embedding
to the corresponding 3D point. In addition, our algorithm
can automatically calculate a confidence score measuring
the probability of correspondence, which is desirable for
generic objects with large topological variations. The com-
prehensive experimental results show the superiority of the
proposed method in unsupervised shape correspondence
and segmentation.
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