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Abstract

Person Re-Identification (ReID) holds critical importance
in computer vision with pivotal applications in public safety
and crime prevention. Traditional ReID methods, reliant
on appearance attributes such as clothing and color, en-
counter limitations in long-term scenarios and dynamic
environments. To address these challenges, we propose
CLIP3DReID, an innovative approach that enhances person
ReID by integrating linguistic descriptions with visual per-
ception, leveraging pretrained CLIP model for knowledge
distillation. Our method first employs CLIP to automatically
label body shapes with linguistic descriptors. We then ap-
ply optimal transport theory to align the student model’s
local visual features with shape-aware tokens derived from
CLIP’s linguistic output. Additionally, we align the student
model’s global visual features with those from the CLIP
image encoder and the 3D SMPL identity space, fostering
enhanced domain robustness. CLIP3DReID notably excels
in discerning discriminative body shape features, achieving
state-of-the-art results in person ReID. Our approach rep-
resents a significant advancement in ReID, offering robust
solutions to existing challenges and setting new directions
for future research. Code is available.

1. Introduction

Person Re-Identification (ReID) [1, 42, 46, 51, 76] is a funda-
mental task in computer vision, focusing on recognizing and
matching individuals across diverse locations and temporal
instances. This technology is crucial for applications rang-
ing from public safety, crime prevention [19, 71], forensic
identification, to security monitoring [4, 77], helping track
targets across non-overlapping camera views.

Existing works in person ReID have predominantly fo-
cused on appearance feature learning [17, 18, 22, 33, 34, 80],
adept at decoding superficial characteristics such as cloth-
ing and colors. However, these approaches not only show

Figure 1. Key intuitions behind CLIP3DReID: distilling CLIP
with dual guidance to learn discriminative human body shape rep-
resentations for person ReID.

inherent limitations in practical, long-term scenarios where
the goal is to recognize individuals over prolonged peri-
ods, amidst variations in clothing and human activities, but
they also struggle with limited generalization ability in di-
verse and dynamic environments. In contrast, the human
visual system has a remarkable capacity to identify indi-
viduals despite appearance changes, such as different cloth-
ing, hairstyles, or accessories (e.g., bags, hats, and scarves).
This capability is attributed to a holistic understanding of
appearance-irrelevant feature. In this work, we aim to emu-
late this aspect of human perception, focusing on learning
the crucial appearance-irrelevant feature to overcome the
current limitations in generalization and adaptability.

Early attempts have led to a variety of approaches aimed
at tackling the challenge of appearance changes [20, 25, 26,
29, 39, 44, 60, 68, 73]. These methods primarily focus on
extracting features that are not dependent on clothing appear-
ance, utilizing custom architectures [26, 27] tailored training
processes [39], novel loss functions [20] and advanced data
augmentation [78]. Complementing these developments, an
innovative series of research introduces 3D priors into per-
son ReID. It involves either converting 2D images into a
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3D space [79] or complementing by an auxiliary 3D body
reconstruction branch [7], specifically aiming to extract 3D
shape-related features to enhance identification accuracy in
cloth-changing scenarios. Very recently, 3DInvarReID [45]
introduces an innovative method to disentangle identity from
pose and clothing in 3D models, while concurrently recon-
structing accurate 3D naked body shapes, thereby enhancing
person ReID accuracy in scenarios involving diverse activ-
ities and clothing changes. However, the lack of training
datasets with real images that have 3D ground-truth body
shapes presents a limitation. As a result, these approaches
might not faithfully capture the intricacies of discriminative
body shapes, potentially leading to limited 3D model fitting
and overall identification accuracy.

To overcome these challenges, we develop methods to
learn inherent discriminative body shape features for person
ReID, aiming to relax the reliance on ground-truth 3D body
data. Our proposed method is rooted in an intuition:

Linguistic descriptions of body shapes (e.g., ‘a mus-
cular, broad-shouldered person’), provide distinct
and identifying characteristics in a highly concise
and complementary manner.

Thus, we posit that an effective method should involve a
regularization strategy where the learned visual representa-
tions are closely aligned with these linguistic descriptions,
especially focusing on discriminative body features. This ap-
proach would bridge the gap between visual perception and
linguistic description, harnessing the best of both to enhance
the accuracy and efficiency of person ReID systems.

Building upon this argument, we introduce a novel
person ReID approach, CLIP3DReID, which leverages
the advancements in vision-language models (VLM) like
CLIP [56] to train our models. This approach aims to employ
knowledge distillation from a large, pre-trained and frozen
vision-language teacher model to optimize a more compact,
yet effective visual encoder (student model). The essence of
CLIP3DReID lies in aligning visual features extracted by
our student encoder with linguistic descriptions, while also
accurately reflecting discriminative 3D body shape features.
Such a distillation process ensures that the model not only
captures essential discriminative cues for person matching
but also exhibits robust generalization capabilities.

As shown in Fig. 1, to effectively represent the nuanced
aspects of body shape, we utilize human-annotated linguistic
descriptors, e.g. ‘muscular’, ‘petite’, ‘long torso’, forming
a set of paired phrases with opposite meanings. These de-
scriptors are transformed into a continuous space using the
CLIP text encoder. Concurrently, images are processed by
the CLIP image encoder, enabling automatic labeling with
body shape descriptors via text-vs-image feature similari-
ties. Once the labels and a corresponding set of text features

are obtained, we employ optimal transport (OT) theory to
ensure that the local visual features of our student model
are aligned with these shape-aware tokens, which represent
domain-invariant features, via distribution alignment. Fur-
ther, we utilize MSE loss to effectively distill rich semantic
information from the CLIP image encoder into our student
model, enriching its global visual feature representation.

Furthermore, we incorporate the 3D SMPL model as
an additional regularization for the global feature of our
student model. This is purposely implemented to enforce the
reconstruction of naked body shapes, deliberately excluding
any texture information. Importantly, our method requires no
ground-truth shape labels in training. Using synthetic mesh
images rendered from 3D body shapes without clothing or
texture (see Fig. 1), our method ensures the learned visual
features are domain-invariant and physically meaningful,
aligning with the core goal of 3D body shape representation.

In summary, the contributions of this work include:
⋄ We propose a novel person ReID method,

CLIP3DReID, to learn discriminative body shape
representation by distilling CLIP with dual guidance.

⋄ We devise an innovative application of optimal transport
(OT) theory, aligning the local visual features of our student
model with domain-invariant, shape-aware tokens of CLIP.

⋄ We present a novel approach that utilizes 3D body
reconstruction for regularization, thereby enhancing domain
invariance and model adaptability by using synthetic data.

⋄ Extensive experiments demonstrate the superior perfor-
mance of CLIP3DReID in person ReID.

2. Related Work

Person Re-Identification. Person ReID matches individ-
uals across images captured by distributed cameras. Tra-
ditional approaches mainly focus on short-term scenarios,
where a person’s clothing remains unchanged [17, 18, 33, 34,
40, 64, 72, 74], a presumption frequently violated in real life.
Recognizing this limitation, there is a growing shift towards
cloth-changing ReID [20, 25, 26, 29, 39, 60, 60, 62, 67, 68,
68, 73], addressing more realistic scenarios where cloth-
ing changes are prevalent. To learn robust features, some
works [20, 39, 78] explore disentangled representation learn-
ing to separate appearance and structural cues from RGB
images, treating structural information as clothing-irrelevant
features. Another line of research explores multi-modality
information (e.g., skeletons [53], silhouettes [24, 29], radio
signals [15], contour sketches [15], or text [9, 16, 37]) to
model body shape and extract appearance-irrelevant features.
However, multi-modality methods often require additional
information during inference. A new direction in this field
involves 3D shape-based methods [7, 45, 79], such as 3DIn-
varReID [45], which learns clothing and pose invariant 3D
shape feature, enhancing accuracy in diverse scenarios. How-
ever, the scarcity of real images with 3D ground-truth body



Figure 2. Overview of the proposed CLIP3DReID. The key contribution of our work is three effective designs: CLIP-based linguistic body
shape labeling, dual distillation from CLIP, and regularization with 3D reconstruction. Incorporating these three designs into the person
ReID framework enables us to learn discriminative body shape features.

shapes is a significant challenge, limiting the performance of
3D-based approaches. In contrast, our approach circumvents
these limitations by harnessing linguistic cues to enhance
the learning of discriminative body shape features, thereby
advancing the accuracy and applicability of person ReID.

Text-based Person Retrieval. Text-based Person Re-
trieval [35] retrieves images of individuals from a large-
scale gallery using textual descriptions. With the ad-
vancement of VLMs, this task has gained increasing atten-
tion [2, 3, 5, 31, 32, 36, 41, 43, 54, 59, 63, 69] and is closely
related to both person ReID and text-image retrieval. How-
ever, text-based retrieval typically does not require learning
discriminative features, as the textual descriptions include
specific details about appearance, such as clothing and acces-
sories. In contrast, our CLIP3DReID focuses on linguistic
descriptions that highlight body shape cues, with the goal of
extracting discriminative shape features for identification.

CLIP-based Knowledge Distillation. Knowledge distilla-
tion [13], where a more sophisticated ‘teacher’ model guides
a simpler ‘student’ model, has seen innovative applications
with the pre-trained CLIP model [56], and ChatGPT [57].
CLIP’s versatility is demonstrated across a spectrum of tasks,
including classification [6, 30, 81, 82], semantic segmenta-
tion [65, 83] and detection [14]. The successful distillation
of the CLIP model for domain-specific tasks, such as CLIP-
PING [52] in video-language retrieval and RISE [28] for
domain generalization, showcases its ability to transfer do-
main knowledge into compact networks. ZeroSeg [8] utilizes
CLIP for zero-shot semantic segmentation, showcasing its
capacity for semantic and visual knowledge transfer. These
varied implementations highlight CLIP’s capacity to endow

student models with a deep understanding of both semantic
content and visual nuances. In this paper, we leverage the
CLIP model for the specific challenge of person ReID. We
delve into the nuances of distilling CLIP’s comprehensive do-
main knowledge into a compact visual encoder network, e.g.,
ResNet-50, enhancing person ReID by leveraging CLIP’s
deep semantic insights and linguistic representation.
Linguistic Body Shape Representation. Our concept of
employing linguistic descriptors for person ReID draws in-
spiration from several works [10, 23, 50, 55, 61], and early
work on attribute-based reID [58]. Notably, BodyTalk [61]
and SHAPY [10] demonstrate the creation of perceptually
and metrically accurate 3D body models by correlating lin-
guistic attributes with body shape parameters. These inves-
tigations emphasize the potential of linguistic attributes as
discriminative features for 3D body reconstruction. Building
on the concept that language can evoke vivid visual repre-
sentations of body shapes, our research takes a novel step.
We integrate linguistic descriptors with the CLIP model to
learn linguistic body shape representations. To the best of
our knowledge, this represents the first initiative to utilize
the CLIP model in this unique capacity, innovatively bridg-
ing the gap between linguistic attributes and body shape
representation within the context of person ReID.

3. Methodology
3.1. Overview

Fig. 2 provides an overview of CLIP3DReID. For each mini-
batch of B training samples, denoted as {(Ii, yi,Li)}Bi=1,
the input consists of human images Ii, the identity label
of the image yi, and a set of linguistic descriptors of body



shape Li, which is detailed in Sec.3.2. We denote the pre-
trained and frozen CLIP teacher text and image encoders
as EL and EI , respectively. The focus of our optimization is
the student visual encoder, represented as E. This encoder
is ResNet-50 [21], a standard architecture in person ReID.
Such a choice underlines our commitment to balancing be-
tween model compactness and the established benchmarks
of performance in the field.

The CLIP teacher image encoder EI processes the in-
put image I and generates a feature vector g ∈ Rd. In
the language component, the CLIP teacher text encoder
EL, working with a set of M linguistic body shape de-
scriptors L = {lm}Mm=1, produces text feature sets H =
{hm}Mm=1 ∈ RM×d. The student image encoder E also
takes I as input and outputs local image feature maps
F = {fn}Nn=1 ∈ RN×d′

, where N is the number of patches.
The operations are formally outlined as:

g = EI(I), H = EL(L), F = E(I). (1)

To aggregate the local patch image embeddings F into a
single global feature f id ∈ Rd′

, we employ a multilayer
perceptron (MLP) with a single hidden layer. During per-
son ReID inference, the similarity between two images is
determined using the cosine similarity of their respective
features f id. It is worth noting that, the inference process of
our ReID system solely relies on the student image encoder
E, without the need for any additional modules.

3.2. Design 1: Labeling Linguistic Body Description

In this section, we elaborate on the process of obtaining
L, the linguistic descriptors, for each training image. We
draw inspiration from studies highlighting the effectiveness
of describing human body shapes linguistically [10, 23, 50,
55, 61], particularly the BodyTalk system [61]. BodyTalk
employs 30 linguistic attributes to represent 3D body meshes
derived from the SMPL model’s shape space, used to train a
linear “attribute to shape” regressor.

However, manually annotating these labels for images
is a significant challenge. To address this, we leverage the
pre-trained CLIP model to automatically label images with
appropriate body shape descriptors. For compatibility with
CLIP, we re-design our set of linguistic body shape descrip-
tors, which consists of M = 16 pairs of phrases with op-
posite meanings, as detailed in Tab. 1. Each descriptor is
carefully selected for its effectiveness in creating discrimina-
tive body shape representations. The strength of these text
descriptors lies in their unwavering consistency, regardless
of varying distances, camera views, or variations in clothing
and accessories. Such properties are key to unlocking the
potential for generalizable representation of body features.
Multiple Prompts Determination. For each human im-
age I, we utilize a series of prompts L = {lm}Mm=1 to
generate linguistic descriptor labels. These prompts are

Phrase 1 Phrase 2
1 Muscular ↔ Slender
2 Broad-Shouldered ↔ Narrow-Shouldered
3 Heavyset ↔ Petite
4 Tall ↔ Short
5 Long Legs ↔ Short Legs
6 Long Torso ↔ Short Torso
7 Curvy ↔ Angular
8 Full-Figured ↔ Skinny
9 Stocky ↔ Willowy
10 Pear-Shaped ↔ Apple-Shaped
11 Athletic ↔ Non-Athletic
12 Fit ↔ Unfit
13 Large-Breasted ↔ Small-Breasted
14 Long-Armed ↔ Short-Armed
15 Long-Necked ↔ Short-Necked
16 High-Waisted ↔ Low-Waisted

Table 1. Paired phrases describing opposite body shape features.

transformed into a set of text features H = {hm}Mm=1.
To provide a structured approach, we employ a standard-
ized context prompt, l =“A photo of a person; the person
is/has ·.”, for each pair of contrasting phrases, P 1

m and P 2
m.

This results in two distinct prompts, lp
1
m and lp

2
m , which are

then processed by the CLIP text encoder to yield outputs
hp1

m and hp2
m , respectively. Given the image feature g of

I, we compute the Cosine Similarities for each phrase pair:
score1m = CS(g,hp1

m) and score2m = CS(g,hp2
m). The

final text feature hm is determined based on these scores:

hm =

{
hp1

m , if score1m > score2m,

hp2
m , otherwise.

(2)

This method effectively leverages the linguistic descriptors
in conjunction with the CLIP model, ensuring that the most
relevant features are captured for each image.

3.3. Design 2: Dual Distillation from CLIP

We aim to incorporate rich prior knowledge from both CLIP
teacher text and image encoders through distillation.
Aligning Local Features to CLIP’s Body Shape Descrip-
tions. Upon acquiring the image-specific body shape de-
scriptors L, along with their corresponding text features
H, we aim to capitalize on the domain-invariant properties
inherent in these body shape descriptions and the features
produced by CLIP teacher text encoder. To this end, we
employ optimal transport (OT) [48], a method for measuring
distances between two distributions [6, 30]. This approach
is designed to steer the learning process of our student en-
coder by aligning the distributions of normalized local patch
visual features with text features. Specifically, we align
H = {hm}Mm=1 ∈ RM×d and F = {fn}Nn=1 ∈ RN×d′

.
The underlying idea is to bring the student’s learned repre-
sentation closer to the teacher’s domain-invariant representa-
tion, which is derived from the image-specific body shape



descriptors. To compare the distances between H and F, we
introduce a mapping network, Ψ(·), an MLP with a single
hidden layer, to project the d-dim text features into the d′-
dim space: H′ = Ψ(H), where H′ = {h′

m}Mm=1 ∈ RM×d′
.

Formally, we define two discrete distributions as follows:

u =

N∑
n=1

unδfn , and v =

M∑
m=1

vmδh′
m
. (3)

Here, weights u = {un}Nn=1 ∈ ∆N and v = {vm}Mm=1 ∈
∆M , with ∆ representing the N - and M -dim probability sim-
plices. This implies that

∑N
n=1 un = 1 and

∑M
m=1 vm = 1.

The terms δfn and δh′
m

denote Dirac delta functions located
at the support points f and h′ within their respective em-
bedding spaces. The discrete OT distance for one training
sample is defined as follows:

⟨T,C⟩ =
N∑

n=1

M∑
m=1

Tn,mCn,m. (4)

OT aims to transport u to v at the minimum cost, i.e.

dOT (u,v|C) := min
T∈

∏
(u,v)

⟨T,C⟩

s.t T1M = u, T1N = v, T ∈ RN×M
+ , (5)

where ⟨·, ·⟩ is the Frobenius inner product and T is the
transport plan to be optimized. The cost matrix C ∈
Rn×m denotes the transportation cost between fn and h′

m,
e.g. Cn,m = 1−CS(fn,h

′
m). The set

∏
(u,v) contains all

joint probabilities of u and v. Due to the high computational
cost in solving the optimization problem of Eqn. 5, we adopt
the Sinkhorn distance [11], following [6, 30], which apply
an entropic constraint for more efficient optimization:

dOT,λ(u,v|C) := min
T∈

∏
(u,v)

⟨T,C⟩ − λh(T), (6)

where λ > 0 is the regularization weight and h(T) =∑
n,m Tn,mlogTn,m is the entropy of the transport plan

T. The optimized T∗ can be obtained in a few iterations:

T∗ = diag(u(t))exp(−C/λ)diag(v(t)), (7)

where t is the iteration step. u(t) and v(t) are updated ac-
cording to the following rules: u(t) = u/exp(−C/λv(t−1))
and v(t) = v/exp(−C/λu(t−1)).

As illustrated in Fig. 3, we present visualization examples
of transport plans. We can observe that the optimal transport
plan aligns specific body regions with their corresponding
linguistic descriptions, which demonstrates the aligment of
local visual features in our student model with the linguistic
descriptions.
Aligning Global Features to CLIP Teacher Visual Com-
ponent. In our pursuit to distill semantic visual information

short
legs

narrow-
shouldered

short
torso short

Figure 3. Visualization of transport plans: This figure overlays
heatmaps, derived from transport plans T related to body descrip-
tions, onto raw images. We use a blue-to-red colormap to represent
the plans, indicating low to high values.

from the CLIP teacher image encoder, we focus on preserv-
ing the global manifold structure within the latent space.
This involves assessing the relationships, specifically the
distances or similarities, between the global features of the
student encoder f id and the features g generated by the CLIP
teacher image encoder, as outlined in Eqn. 1. To facilitate
this alignment, we introduce a mapping network, Φ(·), com-
prising a multilayer perceptron (MLP) with a single hidden
layer. This network projects the teacher’s features into a
lower-dimensional space that aligns with our student en-
coder’s feature dimensions. Subsequently, we apply an MSE
loss function to guide the training of the student encoder.
This approach ensures that the student’s global features are
coherently aligned with those of the teacher. The alignment
process is mathematically represented as follows:

||Φ(g)− f id||22. (8)

This strategic alignment provides a robust framework for the
student encoder, leveraging the rich, pre-trained knowledge
embedded in the CLIP teacher’s visual component.

3.4. Design 3: 3D Reconstruction Regularization

In our approach, we introduce a unique regularization tech-
nique using the 3D Skinned Multi-Person Linear (SMPL)
model [47] for our student model’s global feature learning.
This method is distinguished by two novel traits: First, it fo-
cuses on domain-invariant feature learning by reconstructing
naked body shapes, deliberately omitting textural informa-
tion to ensure the learned features are universally applicable
across various domains. Second, it operates independently
of ground-truth shape labels, utilizing synthetic mesh im-
ages rendered from the 3D body model without clothing or



Figure 4. Illustration of regularization using 3D reconstruction with
synthetic mesh images, each annotated with their corresponding
linguistic body shape descriptors.

texture. This approach allows the student model to focus on
the fundamental aspects of body shape, thereby enhancing
its generalization across different datasets.

Specifically, our process begins with the generation of
synthetic bodies using the identity component of the SMPL.
We synthesize 500 females and 500 males in a neutral pose
by randomly sampling the first 10 principal shape directions.
Subsequently, we utilize an off-the-shelf method [49] to
predict body pose parameters for 100 random human images
from the training subset of the Celeb-reID dataset [25], thus
creating a pool of 3D body poses. For each of the 1, 000
synthetic subjects, we randomly select 10 poses from this
pool to render body mesh images Is with varied body poses,
resulting in a total of 10, 000 synthetic body mesh images.
Leveraging the shape-to-attribute framework in [49], we
generate true linguistic body shape descriptions for each
synthetic image, eliminating the need for employing the
CLIP to determine the descriptions Ls. Consequently, each
mini-batch of B synthetic training samples is represented
as a tuple of training sets {(Isi ,Ls

i ,Pi)}Bi=1, where P is the
ground-truth canonical identity shape.

For the final 3D regularization loss, it is formulated as:

L3D−Regu = Lsyn
OT + L3D, (9)

where Lsyn
OT = 1

B

∑B
i=1 dOT (Eqn. 5). The L3D is defined

as the squared Euclidean distance between the predicted
body shape, derived from the identity features f id, and the
ground truth, L3D =

∑B
i=1 ||SMPL(ϕ(f idi ))−Pi||22, with

ϕ(·) denoting a single-hidden-layer MLP that maps identity
features to the SMPL body shape latent space (Fig. 4).

3.5. Overall Training Objective

The overall training loss function is as follows:

L = LCE + αLOT + βLglobal + γL3D−Regu, (10)

where LCE is the cross-entropy loss on f id, LOT =
1
B

∑B
i=1 dOT , Lglobal =

1
B

∑B
i=1 ||Φ(gi)− f idi ||22. The pa-

rameters α, β, and γ are weights assigned to balance the

Method Celeb-reID Celeb-reID-light
mAP Rank1 mAP Rank1

ReIDCaps (TCSVT20) [26] 15.8 63.0 19.0 33.5
RCSAnet (ICCV21) [27] 11.9 55.6 16.7 29.5

CASE-Net (WACV21) [39] 18.2 66.4 20.4 35.1
CAL (CVPR22) [20] 13.7 59.2 18.5 33.6

3DInvarReID (ICCV23) [45] 15.2 61.2 21.8 37.0
CLIP3DReID 19.2 63.1 26.3 39.4

Table 2. Comparison on Celeb-reID and Celeb-reID-light datasets.

Method Celeb-reID (blur) Celeb-reID-light (blur)
mAP Rank1 mAP Rank1

CAL [20] 7.7 48.2 13.4 22.5
3DInvarReID [45] 9.6 51.2 17.2 29.6

CLIP3DReID 11.6 52.8 21.3 32.1

Table 3. Comparison on face-blurred versions of Celeb-reID and
Celeb-reID-light datasets.

loss terms. For practical implementation, in our training, we
integrate both synthetic and real images within each training
batch.
Implementation Details. We employ the ViT-L/14 trained
by CLIP [56] as our teacher model and ResNet-50 [21] as
our student model. We implement in Pytorch, use Adam
optimizer, and set t=1, λ=1, α=0.3, β=0.5, γ=0.3.

4. Experiment
4.1. Person ReID

In the evaluation, we utilize the standard retrieval metrics:
the Cumulative Matching Characteristics (CMC) and mean
Average Precision (mAP).

4.1.1 Results on Cloth-changing Person ReID datasets

Dataset and Baseline. We evaluate on six popular cloth-
changing ReID datasets: Celeb-reID/Celeb-reID-light [25,
26], PRCC [68], LTCC [60] and the recent CCVID [20, 75],
DeepChange [67] and CCDA [45] dataset. We compare with
eight state-of-the-art (SoTA) cloth-changing ReID works:
ReIDCaps [26], 3DSL [7], RCSAnet [27], FSAM [24],
CAL [20], AIM [70] and 3DInvarReID [45].
Results on Celeb-reID and Celeb-reID-light. Tab. 2
shows results on the Celeb-reID and Celeb-reID-light
datasets. Our CLIP3DReID significantly surpasses all SoTA
baselines. For instance, on Celeb-reID-light, our model ele-
vates the mAP from 21.8, achieved by the best baseline, to
26.3. These results clearly indicate that the linguistic body
shape features in our method are highly discriminative. This
enhancement in performance underlines the effectiveness of
our proposed approach in person ReID.

To investigate the impact of facial anonymization on
model performance, we employed a face detection [12] cou-



Method LTCC PRCC
mAP Rank1 mAP Rank1

3DSL (CVPR21) [7] 14.8 31.2 − 51.3
FSAM (CVPR21) [24] 16.2 38.5 − 54.5

CAL (CVPR22) [20] 18.0 40.1 55.8 55.2
AIM (CVPR23) [70] 19.1 40.6 58.3 57.9

3DInvarReID (ICCV23) [45] 18.9 40.9 57.2 56.5
CLIP3DReID 21.7 42.1 59.3 60.6

Table 4. Comparison on the LTCC and PRCC datasets, with focus
on the cloth-changing protocol.

Method
CCVID CCDAGeneral Cloth-changing

mAP Rank1 mAP Rank1 mAP Rank1
CAL [20] 81.3 82.6 79.6 81.7 19.3 10.0

3DInvarReID [45] 82.6 83.9 81.3 81.7 21.7 11.1
CLIP3DReID 83.9 84.5 83.2 82.4 25.7 15.5

Table 5. Comparison on CCVID and CCDA datasets.

Method mAP Rank1
ReIDCaps (TCSVT20) [26] 11.3 39.5

CAL (CVPR22) [20] 19.0 54.0
3DInvarReID (ICCV23) [45] 19.6 55.1

CLIP3DReID 20.8 56.7

Table 6. Comparison on the DeepChange datasets.

pled with a Gaussian blurring on facial regions to create
anonymized blur versions of the Celeb-reID and Celeb-reID-
light datasets. This process involves retraining the baselines
CAL [20] and 3DInvarReID [45], alongside our own models,
on these altered datasets. According to Tab. 3, our method
consistently surpasses these two baselines. This finding un-
derscores the resilience and efficacy of our approach, even
in scenarios where facial details are obscured for anonymity.
Results on LTCC and PRCC. The comparative results
on the LTCC and PRCC datasets are presented in Tab. 4.
Consistently, our method sets a new SoTA performance. For
example, on the LTCC dataset, it surpasses the 3DInvar-
ReID [70] by 1.5% in mAP and 2.6% in Rank-1 accuracy.
Similarly, on PRCC, our method shows improvements of
1.0% and 2.7% in mAP and Rank-1 accuracy, respectively.
We observed limited improvement in the LTCC and PRCC
datasets. This difference in performance is largely due to the
lower image resolution in these datasets compared to others.
The reduced resolution diminishes the semantic correlation
effectiveness in the pretrained CLIP model, which could
impact the efficiency and accuracy of our linguistic body
shape labeling process.
Results on CCVID, DeepChange and CCDA. We further
evaluate our method on recent cloth-changing datasets, in-
cluding CCVID, DeepChange, and CCDA. Following the
same protocol as [45], the model evaluated on CCDA is
trained on the Celeb-reID dataset. As illustrated in Tabs. 5
and 6, our CLIP3DReID model demonstrates superior per-

Method Market-1501 MSMT17
mAP Rank1 mAP Rank1

3DSL (CVPR21) [7] 87.3 95.0 − −
FSAM (CVPR21) [24] 85.6 94.6 − −

CAL (CVPR22) [20] 87.5 94.7 57.3 79.3
3DInvarReID (ICCV23) [45] 87.9 95.1 59.1 80.8

CLIP3DReID 88.4 95.6 61.2 81.5

Table 7. Comparison on the short-term ReID datasets: Market-1501
and MSMT17 datasets.

Method LTCC → PRCC PRCC → LTCC
mAP Rank1 mAP Rank1

CAL [20] 35.9 38.0 3.3 8.4
3DInvarReID [45] 36.1 40.1 3.3 9.1

CLIP3DReID 37.5 41.7 4.5 9.9

Table 8. Cross-dataset comparison on the cloth-changing ReID
datasets: LTCC and PRCC datasets.

formance over baselines. Notably, on the most recent CCDA
dataset, characterized by its diversity in human activities,
our model shows significant improvements, with a 4.0% in-
crease in mAP and a 4.4% enhancement in Rank1 accuracy,
surpassing the 3DInvarReID model, which also employs 3D
shape feature extraction.

4.1.2 Results on Short-term Person ReID datasets

While our method is primarily tailored for long-term scenar-
ios, we also conduct comparisons on two conventional short-
term ReID datasets: Market-1501 [76] and MSMT17 [66], as
detailed in Tab. 7. Our evaluations on the MSMT17 dataset
indicate an enhancement of 0.7% in Rank-1 accuracy and
2.1% in mAP. These results highlight the beneficial impact of
our linguistic shape feature, demonstrating its applicability
and value even in short-term ReID scenarios.

4.1.3 Results on the Cross-Dataset Setting

Additionally, we evaluate in a cross-dataset setting, by train-
ing on one dataset and testing on another. Specifically,
we test on two cloth-changing datasets: LTCC [60] and
PRCC [68]. The results in Tab. 8 reveal that CLIP3DReID
consistently surpasses the baselines, further affirming its
effectiveness in diverse dataset scenarios. We refrain from
comparing ours with domain-invariant person ReID methods,
as they typically utilize information from both datasets in
training. For instance, the study in [38] employs a technique
to transfer style from the target to the source dataset.

4.2. 3D Body Shape Reconstruction

Consistent with the methodologies described in [10] and
[45], we assess our 3D body shape reconstruction perfor-
mance using the Human Body in the Wild (HBW) dataset.
This dataset comprises 237 in-the-wild images of 10 subjects,



Figure 5. Examples of our 3D body reconstruction. For enhanced
shape visualization, we have applied body poses estimated by an
established off-the-shelf method [49] for each reconstructed shape.

each paired with ground-truth 3D body scans, providing a ro-
bust framework for evaluating identity-specific body shapes.
Following [45], we use the Chamfer Distance (CD-L2) as the
metric. This involves uniformly sampling 10, 000 points on
both the ground-truth and predicted meshes in the canonical
space. As shown in Tab. 9, our model achieves comparable
performance to two established baselines, despite not utiliz-
ing any real 3D body shapes in our training. This achieve-
ment underlines two important points: first, it validates the
effective integration of our linguistic body shape features
with actual 3D body shapes; and second, it confirms the effi-
cacy of our framework, which is designed to utilize solely
synthetic data for training, in accurately reconstructing 3D
identity body shapes from real images. Fig. 5 presents quali-
tative results of our reconstruction, demonstrating promising
performance, which indicates that the feature f id we learned
is meaningful and effective in the 3D body shape space.

4.3. Ablation Study

All models in ablation are trained on the Celeb-reID dataset.
Contribution of Synthetic Mesh Images. We train a
model without using synthetic mesh images and find a signif-
icant performance drop w.r.t. our standard model (Tab. 10).
This highlights the pivotal role of synthetic mesh images in
improving linguistic body descriptions.
Contribution of Loss Terms. Tab. 10 systematically
evaluates the performance impact of various loss terms in
CLIP3DReID, including visual-text feature alignment LOT ,
global feature alignment Lglobal, and 3D reconstruction regu-
larization (L3D−Regu), on Celeb-reID and Celeb-reID-light
datasets. 1) When the LOT is omitted, we observe a notable
decrease in performance, with the mAP dropping to 17.0%
and 24.8% on Celeb-reID. This underscores the importance
of LOT in capturing fine-grained local features that are criti-
cal for accurate person ReID. 2) The absence of the global
feature alignment (Lglobal ) also leads to performance drop,
albeit to a lesser extent. This indicates that while Lglobal

contributes to the model’s overall performance, the local fea-
tures captured by LOT have a more pronounced impact on
the accuracy of ReID. 3) Using 3D reconstruction regulariza-
tion (L3D−Regu) improves model performance, highlighting
its effectiveness in discriminative body feature learning.

SHAPY [10] 3DInvarReID [45] CLIP3DReID
CD-L2 0.632 0.610 0.642

Table 9. Comparison of 3D identity shape reconstruction on HBW.

Method Celeb-reID Celeb-reID-light
mAP Rank1 mAP Rank1

w/o Synthetic mesh images 17.9 61.8 25.3 38.7
w/o LOT 17.0 61.2 24.8 38.1
w/o Lglobal 16.5 60.1 23.9 37.6
w/o L3D−Regu 18.5 62.5 26.0 38.9
w/o LOT , Lglobal, L3D−Regu 14.2 57.5 17.4 29.1
CLIP3DReID (Ours) 19.2 63.1 26.3 39.4

Table 10. Ablation studies on varied loss function configurations.

Method CLIP
Teacher

Celeb-reID
mAP Rank1

Model-1 ViT-B/32 15.2 58.7
Model-2 ViT-B/16 17.7 61.2
CLIP3DReID (Ours) ViT-L/14 19.2 63.1

Table 11. Ablation studies on the architectural variations of the
CLIP-Based teacher and our student models.

Effect of Different Teacher Models. We also ablate on
the architectural variations of the CLIP-based teacher model,
as summarized in Tab. 11. Model-1 employs the smaller
ViT-B/32 and sees a slight dip in performance. Model-2,
with the mid-sized ViT-B/16, improves upon this outcome.
CLIP3DReID utilizes the ViT-L/14 teacher model for its
broad feature extraction capacity, which surpasses other con-
figurations in performance.

5. Conclusion
In this paper, we introduce CLIP3DReID, a new approach
to person ReID, harnessing the power of knowledge distil-
lation from the CLIP model. Our innovative integration of
vision-language models and 3D body shape understanding
significantly enhances both accuracy and robustness in ReID
systems. The successful alignment of visual features with
linguistic descriptions and the novel use of the 3D SMPL
model as a non-reliant tool on ground-truth shape labels are
key highlights of our approach. The superior performance of
CLIP3DReID on multiple datasets underscores its potential
for diverse real-world applications.
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