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Abstract

In-the-wild face photographs often suffer from undesirable foreign shadows cast by
external objects (e.g. hands, phones, and trees). Removing facial foreign shadows not
only improves image aesthetics but also mitigates the negative impacts on face-related
tasks. This paper tackles the blind removal of facial foreign shadows for both single
images and videos by making three contributions. First, we propose a novel two-stage
shadow modeling algorithm that consists of gray-scale shadow removal and colorization.
This decomposition provides an effective way to handle both color distortion and sub-
surface scattering effects. Second, we propose a novel Temporal Sharing Module (TSM)
to extract hierarchical features across multiple aligned video frames, which represent the
shadow-free faces. Third, we collect a real face database with 280 videos captured under
highly dynamic environments and annotate pixel-level shadow segmentation maps. Ex-
tensive experiments demonstrate that our approach outperforms state-of-the-art methods
quantitatively and qualitatively. Code, our database, and pre-trained models are publicly
available at https://github.com/andrewhou1/BlindShadowRemoval.

1 Introduction
In our daily activities, many external objects around us can cast shadows on faces, known
as facial foreign shadows. For instance, when we take selfies outdoors, our hand or camera
might block part of the sunlight and create a shadow on the face. Dynamic and scattered
shadows may be produced by leaves when walking under trees. While driving, the driver
may confront the high-contrast lighting caused by the direct sunlight and car pillars. One
may want to remove these cast shadows for aesthetic purposes, such as in photoshop and
face editing. In other cases, the cast shadows should be removed since they could negatively
impact face-related tasks, such as face recognition, age estimation, and driver monitoring.
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Figure 1: Results of our shadow removal model on images in our Shadow Face in the Wild (SFW)
dataset (top) and UCB dataset [55] (bottom). From left to right are the input, output, and shadow matte.

Many works aim to handle self shadows and relight the face via quotient images [19, 48,
56], inverse rendering [30, 31, 32], or style transfer [16, 26]. Those methods focus more on
the global lighting distribution and are limited in handling arbitrary high-frequency structures
caused by harsh foreign shadows. There are also face completion works under structured
occlusions, such as squares, circles, and lattices [27, 52, 54]. Compared with foreign shadow
removal, face completion is easier as the shape is less complicated and the occlusion is often
filled with a single color such as white. Some works study shadows on generic objects [25,
37]. While they excel at shadow detection, when applied to faces, observable artifacts can
be detected on deshadowed results due to the lack of face priors.

The major problem with prior methods is they cannot handle the high-frequency structure
caused by harsh shadows, as demonstrated in [41, 55]. Instead of predicting illumination,
Zhang et al. [55] propose a single image approach using only perceptual and pixel intensity
losses and train the network on a synthetic shadow dataset. These losses are effective in
removing harsh shadows and recovering fine details. However, their model based only on
perceptual and pixel intensity losses does not generalize well in practice, as it is hard to build
a training dataset that covers the complex and diverse lighting conditions in the real world.

This work aims to detect and remove foreign shadows from in-the-wild faces, where we
face three major challenges. First, the shadows of in-the-wild faces are arbitrary, varying in
sizes, shapes, locations, colors, blurriness, and intensities. Prior works [25, 37, 55] model
shadows directly in RGB. Given the high diversity, they have a hard time addressing all
the discrepancies, leaving observable artifacts in deshadowed faces. Second, there are very
few public databases for training and evaluation for this problem. To capture paired shadow
and non-shadow faces, both the subject and photographer need to be perfectly still, which
is rarely feasible. Third, sometimes the shadow removal is extended from single images to
videos, which requires additional temporal consistency.

To address the aforementioned challenges, we propose a novel blind facial foreign shadow
removal model. To handle the shadow diversity, we propose a simple yet effective approach
to decompose the direct RGB shadow removal into grayscale shadow removal and coloriza-
tion. We show that, without color, the shadow modeling becomes a much simpler task and the
grayscale removal model more easily generalizes to unseen data. After detecting the shadow
regions using grayscale shadow removal, the colorization step is an image inpainting pro-
cess. Without seeing the biased color information from the shadow region, the colorization
process also becomes more generalizable. To ensure temporal consistency, we also propose
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a temporal sharing module (TSM) to aggregate information among multiple frames. TSM
includes an efficient warping layer to handle frames with pose and expression variations.

For training the model, we follow [55] and build a synthetic database that contains paired
shadow and shadow-free faces. Foreign shadows are generated with randomized proper-
ties. We also collect a face database with 280 videos under highly dynamic environments
for evaluation. The external objects casting shadows include hands, books, leaves, trees,
window blinds, car pillars, and buildings. To quantitatively evaluate shadow segmentation
performance, we provide detailed pixel-wise segmentation annotations for this database.

In summary, the main contributions of this work include:
⋄ A novel approach to decompose RGB shadow removal into grayscale shadow removal

and colorization.
⋄ A temporal sharing module to ensure video consistency and face symmetry.
⋄ A face shadow database captured under dynamic environments, along with pixel-wise

segmentation annotations.
⋄ State-of-the-art shadow removal and shadow segmentation results and photo-realistic

deshadow quality.

2 Related Work
Face relighting Face relighting methods can be roughly divided into three categories: quo-
tient image-based, style transfer, and inverse rendering. The color ratio (i.e. quotient images)
is first proposed in [35] to transfer a frontal face from one lighting to another. This basic idea
has been extended to handle different poses, use ratios of images or radiance environment
maps, and to generate synthetic relighting datasets [19, 40, 48, 56]. Facial lighting also can
be changed by style transfer [16, 26, 28, 36, 38]. Similar to most quotient image methods,
style transfer methods need at least a reference image as the target style. Moreover, the face
poses of input and reference images need to be very close. In the category of inverse ren-
dering, a face image is decomposed into multiple components such as geometry, reflectance,
and lighting [1, 13, 20, 30, 31, 32, 34, 39, 42, 43, 46]. In general, inverse rendering methods
only model facial shadows in the illumination and do not model foreign shadows.
Face completion Face completion aims to fill in the missing or occluded face regions with
semantically meaningful information. In [54], Zhang et al. propose a DemeshNet with two
sub-networks to remove mesh-like lines or watermarks on faces. Li et al. propose a dis-
entangling and fusing network containing discriminators in three domains: occluded faces,
clean faces, and structured occlusions [27]. The face inpainting network in [52] consists of a
landmark predicting subnet and an inpainting subnet. More recently, Dey et al. [9] propose
an analysis-by-synthesis approach for face completion that focuses on inpainting the albedo
to resynthesize a complete face. Different from shadow removal, the structured occlusions
are either opaque or contain repeated patterns. The networks are mainly used to hallucinate
the invisible face regions.
Generic shadow detection and removal Without much training data, early works in general-
purpose shadow detection and removal mainly study shadow properties, especially around
shadow edges [5, 6, 14, 23, 49, 51]. Wu et al. [49] apply graph-cut inference to detect shadow
regions, and then use the shadow matting to generate soft shadow boundaries. Deep learning
based methods have been proposed to detect and remove shadows [10, 15, 25, 29, 33, 44, 53,
57, 59]. Hu et al. [22] design the direction-aware spatial context module and apply a spatial
RNN to detect shadows. Cun et al. [8] learn to hierarchically aggregate the dilated multi-
contexts and attentions. The authors in [55] demonstrate that the general-purpose methods
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Figure 2: Illustration of data synthesis components.

such as [8, 22] cannot preserve the authenticity of the input faces. One reason is that these
general-purpose networks are unable to capture specific face characteristics. For instance,
human face skin is a highly scattering material that also has a complex absorption spec-
trum [11]. In this work, we propose a novel two-stage shadow modeling algorithm that can
better handle both subsurface scattering effects and color distortion.

3 Proposed Method
3.1 Shadow synthesis and modeling

Shadows are produced by foreign objects that block light rays from arriving to the face. Let
a matte M represent the shadow shape. The shadow formation can be modeled as a blending
between the well-illuminated face Ib and the under-illuminated face Id:

I = Ib⊙ (1−M)+ Id⊙M, (1)

where⊙ denotes element-wise multiplication. As real-world shadows vary in both shape and
intensity, it’s vital to have paired data {I,Ib}with a large variety of M to train a generalizable
shadow removal model. However, it’s hardly feasible to collect a large-scale dataset with
this type of paired data, as the subject needs to be perfectly static while capturing the pair.
Therefore, creating a synthetic dataset becomes our go-to approach to tackle this problem.

Shadow synthesis As indicated in [55], using Eqn. 1 to synthesize natural face shadows
introduces multiple variations in shape, intensity, subsurface scattering and color. Let shape
B be a binary mask that defines the whole region affected by foreign shadow. The shadow
is often unevenly distributed, such as in mottled patterns or gradually changing patterns, de-
pending on the relative distance between the object and the face as well as the environmental
lighting. We use a gray-scale matte MI to represent the uneven intensity. In addition, the
light outside the shadow region would penetrate beneath the skin, reach the vessels and re-
flect back, creating a red band around the shadow boundary. We represent this subsurface
scattering effect by Mss, which is computed by blurring B with a different kernel per RGB
channel. Therefore, Eqn. 1 can be updated to:

I = Ib⊙ (1−B⊙Mss)+ Id⊙B⊙Mss⊙MI. (2)

B, MI, and Mss are illustrated in Fig. 2. Moreover, the shadow region may be under certain
color distortion, because parts of the light are blocked. We formulate such color distortion
by a 3×3 color transfer matrix C:

Id = IbC. (3)

During the synthesis, given a well-illuminated face Ib, we generate random parameters for
each component to synthesize different shadow faces I, which is detailed in Sec. 4.
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Figure 3: Our model begins with a grayscale shadow removal module that predicts the deshadowed
face in grayscale. The shadow region is detected via thresholding of the grayscale difference between
the deshadowed and input faces. We erase the face features within the shadow, and our colorization
module is essentially an image inpainting step. The final RGB deshadowed image is estimated using
the deshadowed grayscale and the learned color space. Our Temporal Sharing Module (TSM) ensures
face symmetry using mirrored images, and can also be applied to video to ensure temporal consistency.

Shadow modeling With synthetic pairwise data, we can train a model G(·) to detect and
remove foreign shadows (I→ Ib). Despite the complexity of the shadow synthesis process,
prior works [25, 37, 55] opt to simplify the relation between I and Ib in G(·) as:

W,N← G(I | ω), (4)

Îb = I⊙W+N, (5)

where ω are the parameters of the shadow removal model, and both the scaling W and offset
N are of the same size as I. The motivation for this simplification is two-fold: 1) precisely
estimating all shadow components (i.e. B, MI, Mss, C) can be very challenging, and 2) even
with full supervision of all the components, reversing the shadow formation may raise a
convergence issue. This is due to the ambiguity in the shadow parameterization, where the
same shadow could be generated from different combinations of shadow components.

However, prior works based on Eqn. 5 have a hard time addressing the discrepancies
between shadow and non-shadow regions, leaving some observable artifacts in deshadowed
faces. We observe that it is not straightforward to derive Eqn. 5 from Eqn. 1. Due to the
existence of color transfer matrix C, W and N themselves become a function of Ib, instead
of being independent of Ib. Thus, the model learning becomes a chicken-and-egg prob-
lem, which may easily turn into a memorization mode, e.g. a type of learning that gener-
alizes poorly [7]. To tackle this issue, we propose to decompose the color shadow removal
into grayscale shadow removal and colorization. While dealing with shadow removal in
grayscale, C in Eqn. 3 simply becomes a scalar, and hence both C and Mss can be integrated
into MI as M′I. We can then transfer the relation of Eqn. 1 into:

Îb,gs = Igs⊙ (1−B)+ Igs⊙B⊘M′I
= Igs⊙ (1−B+B⊘M′I)
= Igs⊙W,

(6)

where Îb,gs and Igs are grayscale versions of Ib and I, ⊘ is element-wise division, and W =
1−B+B⊘M′I. It’s clear that Eqn. 6 is in a closed form and well aligned with Eqn. 5. As
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W and N are detached from Ib, they are easier to learn. Next, we simply need to colorize the
grayscale face to get the final RGB face recovery. With the knowledge provided by grayscale
shadow removal, we turn the blind color recovery into a mask-guided image inpainting.

The overall pipeline is shown in Fig. 3. Our approach consists of three major steps: 1)
grayscale shadow removal (Sec. 3.2), 2) colorization (Sec. 3.3), and 3) temporal information
sharing (Sec. 3.4). Steps 1 and 2 are the key ingredients for single frame shadow removal,
and step 3 is the key ingredient for smooth video shadow removal and maintaining symmetry
in the deshadowed face.

3.2 Grayscale shadow removal

The grayscale shadow removal module takes a RGB face I∈RN2×3 as input, and outputs
the scaling map W ∈ RN2×1 and offset map N∈RN2×1 that can recover a well-illuminated
grayscale face Îb,gs ∈ RN2×1 based on Eqn. 5. The module consists of an encoder, a stack
of residual non-local blocks, and a decoder. The encoder extracts features F from input im-
ages for shadow removal. It contains 4 convolution layers and 3 downsampling layers. To
encourage spatial consistency for facial lighting and albedo, we leverage the latest design of
non-local blocks and visual transformers [4, 12, 45]. We stack 3 residual non-local blocks to
process the encoder features with positional encoding. The decoder then upsamples the fea-
tures from non-local blocks via 3 transposed convolution layers, and estimates W and N. We
adopt a short-cut connection at each feature scale to pass along high-frequency information.

For positional encoding, we adopt the projected normalized coordinate code (PNCC) [58]
and concatenate it to the encoder feature. PNCC is the normalized mean shape of 3DMM [2],
and is projected to fit a given face. It encodes the face semantics as each vertex (e.g., eye
corner) has its unique 3D coordinate between [0,0,0] and [1,1,1], regardless of the pose,
expression, and identity. Compared with conventional positional encoding in [4, 12], PNCC
provides better face semantics that helps to detect and remove shadows.

3.3 Colorization

Using the grayscale shadow removal module, we can locate the shadow region as

B̂ = |Îb,gs− Igs|> β , (7)

where B̂ is the shadow segmentation mask binarized with the threshold of β . With this
knowledge, we can turn the blind color recovery process into an image inpainting process
with a given inpainting region. In comparison, if no knowledge is provided to the colorization
process, this two-step approach is nearly identical to direct RGB shadow removal applied in
previous work [25, 37, 55], which may still suffer from the poor generalization issue.

Our colorization module breaks down into 3 steps: 1) erasing, 2) inpainting, and 3) color
space transformation. Structurally, the colorization module is similar to the grayscale shadow
removal. It consists of 3 residual non-local blocks and a decoder. First, based on the shadow
mask B̂, we set the shadow region of F to be 0 to circumvent any potential disturbance, and
denote it as the inpainting feature. Second, the inpainting feature F⊙(1− B̂) is concatenated
with B̂ and the PNCC encoding, and fed to the module. The non-local blocks aim to fill in
the missing region in F, and the decoder is designed to produce a M-channel color space
C ∈ RN2×M . In the end, we use three 1×1 convolution layers to transfer the grayscale face
Îb,gs with the color space C back to the RGB face Îb. During training, no gradients from the
colorization module will be sent back to the grayscale shadow removal module via B̂.
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Figure 4: Illustration of the Temporal
Sharing Module (TSM). It can be applied
to temporal frames to improve the tem-
poral consistency of video shadow re-
moval as well as mirrored input to im-
prove face symmetry.

3.4 Temporal information sharing
We can extend our network for single-frame processing to leverage temporal information via
a Temporal Sharing Module (TSM). Similar to other video-based image restoration prob-
lems, such as video deblurring, shadows can be arbitrary in shape and movement across
different frames. Thus, the order of the frames might not carry useful cues for deshadowing.
As a result, we propose to adopt a temporal-wise max pooling to aggregate the illumination
information among different frames, shown in Fig. 4.

Let F1,F2, ...,Fk be the features to be shared among k frames. Before computing the
temporal-wise max pooling, we first apply a warping layer to register features based on the
face shape. After the temporal-wise max pooling, we apply an inverse warping to re-align
the shared feature back to each frame feature, and concatenate with the original feature Fi for
the next stage’s computation. The TSM is a plug-in design for features at all scales. TSM can
be used not only to share the temporal information, but also to enforce the prior knowledge
of face symmetry, which has been used in other tasks [50]. To achieve this, we treat the
mirrored face as a different frame, and send it to TSM for information sharing. In case there
is only a single frame available, TSM simply concatenates with the original feature.

The warping layer leverages the pre-computed 68 facial landmarks via [3]. Given the
landmarks for the neutral face s0 and face si at frame i, a sparse offset can be computed as
∆si→0 = s0− si ∈ R68×2 to indicate where each pixel in the landmark position should be
moved to. To obtain a dense offset map ∆Si→0 ∈ RN2×2 indicating where each pixel in the
entire feature map should be moved to, we apply a triangulation interpolation,

∆Si→0← Tri(si,∆si→0,N), (8)

where Tri(·) is Delaunay triangulation-based interpolation. The registration operation of
feature F is denoted as:

Fi→0 = Fi(S0 +∆Si→0), (9)

where S0 = {(0,0),(0,1), ...,(N,N)} ∈ RN2×2 enumerates pixel locations in Fi. Similarly,
when we get the shared feature Fmax, we can use ∆S0→i to warp it back.

3.5 Training
We use synthetic shadow faces for training (Sec. 3.1). We apply multiple losses to supervise
all three steps in the model, which are explained in detail in the Supplemental Materials.

4 Training and Evaluation Data
Training data To synthesize our training data based on Eqn. 1-3, we manually select
15,000 images from FFHQ [24] with no foreign and strong self shadows. The raw binary
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Figure 5: Illustration of the SFW database. The first row shows shadow faces collected under highly
dynamic settings (e.g. varying shadows and head poses from walking and driving). The second row
shows pixel-level annotations for shadow segmentation. Zoom in to view the quality of our annotations.

Figure 6: Samples from the SFW evaluation dataset. Here, we show the samples from one SFW video
included in our 440 frame evaluation dataset. We selected frames with shadow patterns that are as
diverse as possible and avoided redundant frames.

shadow shape B comes from 100 pre-defined silhouette shapes and the Perlin noise func-
tion. The raw shapes are randomly augmented with different scales, rotations, and boundary
blurriness. Intensity map MI is generated by a random Perlin noise function at two octaves.
Evaluation data To our knowledge, there is no large video database of real-world human
faces with foreign shadows. One existing database, UCB [55], includes a very limited num-
ber of 100 face images. More importantly, this database contains only single images so that
consistent image reconstruction on videos cannot be evaluated. In response to the need for a
large video database, with the IRB approval, we collect a database that we call Shadow Faces
in the Wild (SFW) for the evaluation of real-world facial shadow removal. In total, SFW in-
cludes 280 videos from 20 subjects. Some examples are shown in Fig. 5. Most videos are
captured at 1,080p resolution with various smartphone cameras. More details on the SFW
database are provided in the Supplemental Materials.

For evaluation purposes, we annotated the pixel-wise shadow segmentation maps of key
frames selected from the video set. We labeled 440 frames, where each frame was annotated
by 2 people and a third person performed quality assurance. When selecting frames from
each video to include in the SFW evaluation dataset, we ensured that the shadow patterns
were as diverse as possible and avoided selecting redundant frames. Examples of frames we
selected from one SFW video are shown in Fig. 6.

5 Experiments
5.1 Shadow removal and segmentation
To evaluate shadow removal, we use the UCB dataset and compute the PSNR and SSIM [47]
between our deshadowed images and the groundtruth. We also evaluate shadow segmenta-
tion using SFW, which has groundtruth segmentations. We compute the area under curve
(AUC) of ROC curve and accuracy based on the predicted (Eqn. 7) and groundtruth shadow
masks. The accuracy is computed as T P+T N

Np+Nn
where T P, T N, Np, and Nn are true positives,

true negatives, number of shadow pixels, and number of non-shadow pixels respectively. We
binarize the shadow matte M into a shadow mask with a threshold of 0.1.
We first compare results on UCB. The primary baseline is [55], which also includes the per-
formance of several previous works [8, 17, 22]. Our novel grayscale shadow removal and
colorization model (GS+C) achieves state-of-the-art PSNR and SSIM, and outperforms the
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Figure 7: Shadow removal quality on UCB database. From top to bottom, we show the input images,
the groundtruth deshadowed images, the shadow removal results provided by [55], our network with
naive RGB shadow modeling, and our single-frame network with grayscale shadow removal and col-
orization (GS+C). Blue arrows point to artifacts in [55] (i.e. unnatural gray patches and yellow traces).

Removal Model PSNR SSIM
Input Image 19.671 0.766
Guo et al.[17] 15.939 0.593
Hu et al.[22] 18.956 0.699
Cun et al.[8] 19.386 0.722
Zhang et al.[55] 23.816 0.782
RGB (Ours) 23.005 0.854
GS+C (Ours) 23.829 0.866

Table 1: Comparison of shadow
removal performance on the UCB
dataset. Our model outperforms all
baselines in both PSNR and SSIM.
Our GS+C model also outperforms
naive RGB shadow modeling (RGB).

reported performance of [55] significantly on SSIM (See Tab. 1). For this experiment, we
do not utilize TSM since the UCB test set consists of only single images and our model thus
operates on single frames. A qualitative comparison on UCB is shown in Fig. 7. Our GS+C
model is able to qualitatively improve over [55] by avoiding gray artifacts in the image (i.e.
columns 1 and 2) as well as erroneous yellow patches (i.e. around the eye in column 3).

Second, we evaluate the models on the SFW database, which is more challenging due to
its highly dynamic environments. We conduct a quantitative comparison on the performance
of shadow segmentation (See Tab. 2). As no pre-trained models, training data, and training
scripts for [8, 17, 22, 55] are available, it is not possible to reproduce the exact models
reported in those papers. Therefore, we compare with them on the UCB dataset using the
reported performance from [55] but not on the SFW dataset. Our method outperforms all
others in AUC and accuracy. Fig. 8 visually demonstrates that our method is better at removal
and segmentation of facial foreign shadows compared to the baselines. As our datasets are
highly diverse, we find that [25] and [18] cannot generalize well.

5.2 Ablation studies
To ablate GS+C, our baseline is our method with direct RGB shadow modeling. For a fair
comparison, we merge the computation resources of the GS+C model (i.e. doubling the bot-
tleneck depth and the decoder channels). GS+C outperforms the RGB model and achieves
the best PSNR and SSIM (see Tab. 1) thanks to the effectiveness of our novel shadow mod-
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Figure 8: Qualitative shadow removal results on the SFW database. We show the input, shadow
removal results from [25] and [18], our single-frame model, our temporal model, groundtruth shadow
segmentations (in bright purple), and our predicted shadow masks (before thresholding).

Table 2: Comparison of shadow segmentation
performance on the SFW database. Our model
outperforms all baselines in AUC and Accuracy.
Our Temporal GS+C model (with TSM) leads to
improved shadow segmentation over GS+C.

Segmentation Model AUC Accuracy
Le and Samaras [25] 0.603 0.683
Hu et al.[21] 0.540 0.604
He et al.[18] 0.725 0.858
GS+C (Ours) 0.824 0.888
Temporal GS+C (Ours) 0.836 0.890

eling and decomposition, as well as better visual quality especially in the deshadowed region
(see Fig. 7). GS+C leaves behind less noticeable artifacts compared to the RGB model (e.g.
columns 3, 4, 7, 8, and 9). GS+C is also more comprehensive in removing the entire foreign
shadow (e.g. column 7). We also ablate TSM on the SFW database, which is a video dataset.
For the shadow segmentation experiment, we apply TSM to each input image by treating the
horizontally flipped image as a second frame. TSM achieves the best performance in AUC
and accuracy (see Tab. 2). As seen in Fig. 8, adding TSM also suppresses artifacts in the
deshadowed region (e.g. columns 1, 5, and 6) due to enforcing face symmetry.

6 Conclusion
We introduce a new problem: blind removal of facial foreign shadows, and propose an ef-
fective shadow modeling algorithm to improve generalizability. We decompose conventional
RGB shadow modeling into grayscale shadow modeling and colorization and propose a tem-
poral sharing module (TSM) that can be integrated into other methods to impose temporal
consistency and face symmetry. Our method produces photo-realistic deshadowed faces with
SoTA PSNR and SSIM. Our SFW video database collected under highly dynamic environ-
ments is another major contribution that can benefit face-related research and applications.
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