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Abstract— Face alignment aims to fit a deformable landmark-
based mesh to a facial image so that all facial features can be
located accurately. In discriminative face alignment, an align-
ment score function, which is treated as the appearance model,
is learned such that moving along its gradient direction can
improve the alignment. This paper proposes a new face model
named “Optimal Gradient Pursuit Model”, where the objective
is to minimize the angle between the gradient direction and
the vector pointing toward the ground-truth shape parameter.
We formulate an iterative approach to solve this minimization
problem. With extensive experiments in generic face alignment,
we show that our model improves the alignment accuracy
and speed compared to the state-of-the-art discriminative face
alignment approach.

I. INTRODUCTION

Model-based image registration/alignment is a fundamen-
tal topic in computer vision, where a model is deformed
such that its distance to an image is minimized. In particular,
face alignment is receiving considerable attention, because
it not only enables various practical capabilities such as
facial feature detection, pose rectification, face animation,
etc, but also poses many scientific challenges due to facial
appearance variations in pose, illumination, expression, and
occlusions.

There have been many successful studies on face align-
ment. Active Shape Model (ASM) [3] is one of the early
methods that fit a statistical shape model to an object class.
It was extended to Active Appearance Model (AAM) [1],
[4], which has become a popular approach for face align-
ment. During AAM-based model fitting, the Mean-Square-
Error between the appearance instance synthesized from the
appearance model and the warped appearance from the input
image is minimized by iteratively updating the shape and/or
appearance parameters. Although AAM performs well while
learning and fitting on a small set of subjects, its performance
degrades quickly when it is trained on a large dataset [17]
and/or fit to subjects that were not seen during the model
learning [9].

In addition to the generative model based approaches such
as AAM, there are also discriminative model based alignment
approaches. Boosted Appearance Model (BAM) [13], [14]
utilizes the same shape model as AAM, but an entirely

This work was supported by the National Institute of Justice, Office
of Justice Programs, US Department of Justice, under the award #2007-
DE-BX-K191. The opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily
reflect the views of the Department of Justice.

(a) (b)

ο

×
ο ο

ο

×
ο ο

× ×

Fig. 1. Alignment Score Function Learning. (a) A concave function
learned via BRM [31] has sub-optimal gradient directions. (b) Our model
attempts to enforce all gradient directions of the random samples on the
surface pointing toward the ground-truth alignment.

different appearance model that is essentially a two-class
classifier and learned discriminatively from a set of cor-
rectly and incorrectly warped images. During model fitting,
BAM aims to maximize the classifier score by updating
the shape parameter along the gradient direction. Though
BAM has shown to generalize better in fitting to unseen
images compare to AAM, one limitation is that the learned
binary classifier can not guarantee a concave score surface
while perturbing the shape parameter, i.e., moving along the
gradient direction does not always improve the alignment.
Boosted Ranking Model (BRM) [31] alleviates this problem
by enforcing the convexity through learning. Using pairs
of warped images, where one is a better alignment than
the other, BAM learns a score function that attempts to
correctly rank the two warped images within all training
pairs. However, in BRM the gradient direction can still have
a relative large angle with respect to the vector pointing to
the ground-truth shape parameter starting from the current
shape parameter. Hence, the alignment process may take
a convoluted path during the optimization, which not only
increases the chances of divergence, but also slows down
the alignment.

To address this limitation, as shown in Figure 1, this paper
proposes a novel approach to learn a discriminative face
model, named Optimal Gradient Pursuit Model (OGPM).
Using the same shape representation as BAM and BRM,
the learning of our appearance model, which is also an
alignment score function, is formulated with a very different
objective. That is, we aim to learn a score function, whose
gradients at various perturbed shape parameters have the
minimal angle with respect to the ideal travel direction,



i.e., the vector pointing directly to the ground-truth shape
parameter. The score function is composed of a set of weak
functions, each operating on one local feature in the warped
image domain. We formulate the objective function such
that each weak function can be estimated in an incremental
manner from a large pool of feature candidates. During the
model fitting, given an image with initial shape parameter,
we perform gradient ascent by updating the shape parameter
in the gradient direction, which is hopefully similar to the
ideal travel direction. Experiments on a large set of facial
images demonstrate the superior performance compared to
BRM.

II. PRIOR ART

Image alignment is a fundamental problem in computer
vision. The most popular work in face alignment are ASM,
AAM or their variations [5]–[8], [11], [22], [28]. In ASM,
the local appearance model for each landmark has been
trained generatively [5] or discriminatively [6]. In contrast,
most AAM-relevant work use the generative shape and
appearance models. For example, the inverse composition
method [18] greatly improves the efficiency of the AAM-
based face alignment. There are some AAM variations using
discriminative fitting methods [8], [22]. Other notable works
in face alignment are [12], [33].

In contrast, there are discriminative image alignment ap-
proaches where the training data of the appearance model
includes the incorrect images warped from perturbed shape
parameters. Notable examples are BAM [14] and BRM [31],
whose difference to our approach has been discussed in
Section I. We will also experimentally compare with BRM
in Section VI. In object tracking domain, there are work
learning to predict the motion vector using regression. For
example, Williams et al. [29] build a displacement expert,
which takes an image as input and returns the displacement,
by using Relevance Vector Machine. Our work differs in that
we estimate shape parameters in the high dimensional space,
which is much harder than that in the 2D space. In [32],
Zhou and Comaniciu propose to learning a regressor with
multidimensional output to predict the landmarks locations
from the image content. In contrast, we train a statistical
shape model where the shape parameter is the unknown
parameter to be estimated.

In face alignment, there are also prior work on learning a
discriminative appearance model for each landmark [30] in
the ASM framework, or one local-minima-free appearance
model [19] in the AAM framework. The work done by
Nguyen and la Torre has similar set-up as ours while the
main difference is in the specific learning approach being
employed. Note that image alignment problem is in the
context of registering between one image and a supervisely-
learned model, which is different to the conventional image
registration/tracking problem being solved between two im-
ages [10], [24], [26].
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Fig. 2. Shape Model and Warping Function. (a) Representation of the
mean shape. (b) The face image with a superimposed shape. (c) The face
image warped to the mean shape domain.

III. FACE MODEL

Similar to BAM and BRM, our face model is composed
of a generative shape model component and a discriminative
appearance model component. In this section, we will present
the model representation for both the shape and appearance
model components.

A. Shape Model

Landmark-based shape representation is a popular way to
describe the facial shape of an image. That is, a set of 2D
landmarks, {xi, yi}i=1,··· ,v , are placed on top of key facial
features, such as eye corner, mouth corner, nose tip, etc. The
concatenation of these landmarks forms a shape observations
of an image, s = [x1, y1, x2, y2, ..., xv, yv]T . Given a face
database where each image is manually labeled with land-
marks, the entire set of shape observations are treated as the
training data for the shape model. In our approach, we use
the same shape model as AAM, BAM and RAM, i.e., the
Point Distribution Model (PDM) [3] learned via Principal
Component Analysis (PCA) on the observation set. Thus,
the learned generative PDM can represent a particular shape
instance as,

s(p) = s0 +
n∑

i=1

pisi, (1)

where s0 and si are the mean shape and ith shape basis,
respectively. Both of them are the results of the PDM
learning. p = [p1, p2, ..., pn]T is the shape parameter. Similar
to the shape component of AAM [18], the first four shape
bases are trained to represent global translation and rotation,
while the remaining shape bases represent the non-rigid
deformation of facial shapes.

As shown in Figure 2(b), a warping function from the
mean shape coordinate system to the coordinates in the image
observation is defined as a piece-wise affine warp:

W(x0, y0;p) = [1 x0 y0]a(p), (2)

where (x0, y0) is a pixel coordinate within the mean shape
domain, and a(p) = [a1(p) a2(p)] is a unique 3× 2 affine
transformation matrix that relates each triangle pair in s0

and s(p). Given a shape parameter p, a(p) needs to be
computed for each triangle. However, since the knowledge
of which triangle each pixel (x0, y0) belongs to is known
a priori, the warp can be efficiently performed via a simple
table lookup (see [18] for detailed description). Using this
warping function, any face image can be warped into the
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Fig. 3. Appearance Features. (a) Warped face image with feature
parametrization. (b) Representation of the five feature types used by the
appearance model. (c) Notional template A.

mean shape and results in a shape-normalized face image
I(W(x;p)) (see Figure 2(c)), from which the appearance
model is learned.

B. Appearance Model

While the shape model learning can be simply conducted
via PCA, the appearance model learning is more complex
and also the focus of this paper. Hence, in this section,
we will only introduce the representation of our appearance
model, and its learning approach will be presented in Sec-
tion IV.

Following the same representation as BAM and BRM,
our appearance model is described by a collection of m
local features {ϕi}i=1,··· ,m that are computed on the shape-
normalized face image I(W(x;p)). We adopt the Haar-
like rectangular feature [20], [27] in our appearance repre-
sentation for the following reasons: (a) the computational
efficiency due to the integral image technique [27]; (b)
successful experiences in facial image processing; and (c)
making a fair comparison between our approach and BRM.

A rectangular feature can be computed as follows

ϕ
.= AT I(W(x;p)) , (3)

where A is an image template (Figure 3(c)). The inner
product between the template and the warped image is
equivalent to computing the rectangular feature using the
integral image. As shown in Figure 3(a), the image template
A can be parameterized by (α, β, γ, δ, τ), where (α, β) is
the top-left corner, γ and δ are the width and height, and τ
is the feature type. Figure 3(b) shows the five feature types
used in our model.

IV. ALIGNMENT LEARNING PROBLEM

Having introduced the appearance model representation, in
this section we describe in detail how to learn our appearance
model, which is essentially an alignment score function that
will be used during the model fitting stage.

To begin with, let us denote p as the shape parameter
of a given image that represents the current alignment of
the shape model (1). The goal of our appearance model
learning is the following. From labeled training data, we aim
to learn a score function F (p), such that, when maximized
with respect to p, it will result in the shape parameter of the
correct alignment. Specifically, if p0 is the shape parameter

corresponding to the correct alignment of an image, F has
to be such that

p0 = arg max
p

F (p) . (4)

A. Objective Function for Learning F

Given the above equation, we choose to optimize F (p) via
gradient ascent. That is, by assuming that F is differentiable,
the shape parameter is iteratively updated in each alignment
iteration starting from an initial parameter p(0)

p(i+1) = p(i) + λ
∂F

∂p
, (5)

where λ is a step size. After k iterations when the alignment
process converges, the alignment is considered successful if
the Euclidean distance ‖p(k)−p0‖ is less than a pre-defined
threshold.

From Equation (5), it is clear that ∂F
∂p indicates the

travel direction of the shape parameter p. Because the final
destination of such traveling is p0, the ideal travel direction
should be the vector that points to p0 starting from p, which
is denoted as ~p:

~p+ .=
p0 − p
‖p0 − p‖

. (6)

Similarly, the worst travel direction is the opposite direction
of ~p+, i.e., ~p− = −~p+. Hence, during the learning of the
score function F , we would like to see ∂F

∂p has a direction
that is as similar to the ideal travel direction ~p+ as possible,
or equivalently, as dissimilar to the worst travel direction ~p−

as possible. Specifically, if we define a classifier

H(p; ~p) =
∂F
∂p

‖∂F
∂p ‖

~p, (7)

which is the inner product between two unit vectors and
is also the cosine response of the angle between these two
vectors, then we have

H(p; ~p) =
{

+1 if ~p = ~p+ ,
−1 if ~p = ~p− . (8)

In practice, it is hard to expect H(p) can always equal to
1 or -1 as shown in the above equation. Thus, we formulate
the objective function of learning the H classifier as,

arg min
F

∑
p

(H(p; ~p+)− 1)2, (9)

where only the ideal travel direction ~p+ is used since it
can represent the constraint from ~p− as well. From now
on, we will simplify ~p+ as ~p for the clarity. This objective
function essentially aims to estimate a function F such that
its gradient direction has minimal angle with respect to the
ideal travel direction, at all possible shape parameters p for
all training data.

B. Solution for the Objective Function

In this section, we will describe our solution in minimizing
the objective function (9). First, let us assume our alignment
score function uses a simple additive model:



F (p;m) .=
m∑

i=1

fi(p) , (10)

where fi(p) is a weak function that operates on one rectan-
gular feature ϕi. Therefore, the gradient of F is also in an
additive form: ∂F (p;m)

∂p =
∑m

i=1
∂fi

∂p . By plugging this into
Equation (7), we have

H(p; ~p,m) =

∑m
i=1

∂fi

∂p

‖
∑m

i=1
∂fi

∂p ‖
~p

=
H(p; ~p,m− 1)‖∂F (p;m−1)

∂p ‖+ ∂fm

∂p
~p

‖∂F (p;m−1)
∂p + ∂fm

∂p ‖
.

(11)

Given the fact that H function can be written in a
recursive fashion, a natural way to minimizing the objective
function (9) is to use an incremental estimation. That is, by
defining a set of training samples and a hypothesis space
where the rectangle feature can be chosen from, we can
iteratively estimate each weak function fi and incrementally
add it into the target function F . We will now describe each
part of the learning process as follows.

a) Training samples: In our appearance learning,
a training sample is a N -dimensional warped image
I(W(x;p)). Given a face database {Ii}i∈[1,K] with manu-
ally labeled landmarks {si}, for each face image Ii, we use
Equation (1) to compute the ground-truth shape parameter
p0,i, and then synthesize a number of “incorrect” shape pa-
rameters {pj,i}j∈[1,U ] by random perturbation. Equation (12)
describes our perturbation, where ν is a n-dimensional vector
with each element uniformly distributed within [−1, 1], µ is
the vectorized eigenvalues of all shape bases in the PDM, and
perturbation index σ is a constant scale controls the range
of perturbation. Note that ◦ represents the entrywise product
of two equal-length vectors.

pj,i = pi + σν ◦ µ. (12)

Then, the set of warped images Ii(W(x;pj,i)) are treated
as positive training samples (yi = 1) for the learning.
Together with the ideal travel direction, this constitutes our
training set:

P
.= {Ii(W(x;pj,i)), ~pi}i=1,··· ,K; j=1,··· ,U . (13)

b) Weak function: In this work, we define the weak
function fi as

fi(p) .=
2
π

arctan(giϕi(p)− ti) , (14)

where gi = ±1, and the normalizing constant ensures that
fi stays within the range of [−1, 1]. This choice is based
on a few considerations. First, fi has to be differentiable
because we assume F is a differentiable function. Second,
we would like each function fi operates on one rectangular
feature ϕi only. Within the mean shape space, all possible
locations, sizes, and types of the rectangular features form

Algorithm 1: Model learning of OGPM
Data: Positive samples P from Equation (13)
Result: The alignment score function F
Initialize the score function F = 01

foreach t = 1, · · · ,m do2

Fit ft in the weighted least squares sense, such that3

ft = argmin
f

∑
ij

(1−H(pj,i; ~pi, t))
2 (15)

Update H(pj,i; ~pi, t) with ft4

F ←− F + ft5

return F =
∑m

t=1 ft.6

(a) (b) (c)

Fig. 4. Top Appearance Features. (a) Top 5 Haar features selected by
the our learning algorithm. (b) Top 6-15 Haar features. (c) Spatial density
map of the top 100 Haar features.

the hypothesis space F = {α, β, γ, δ, τ}, from which the
best feature can be chosen at each iteration.

c) Learning procedure: Algorithm 1 describes the pro-
cedure for learning the alignment score function (10). Note
that Step 3 is the most computationally intensive step
since the entire hypothesis space needs to be exhaustively
searched. Our incremental estimation of the score function
F is very similar to the boosting algorithm. The reason that
boosting is not used here is the function H can not be simply
represented in an additive form. Hence, in Step 3, the best
feature is chosen based on the L2 distance of H with respect
to 1, rather than that of the weak classifier in boosting-based
learning.

Basically learning the score function F is equivalent to
learning the set of features {ϕi}, the thresholds {ti}, and
the feature signs {gi}. In practical implementation, we set
gi = +1, and gi = −1 respectively and estimate the optimal
threshold for both cases. Eventually gi will be set based on
which case has a smaller error (Equation 15). The optimal
threshold is estimated by binary searching in the range of
feature values ϕi such that the error is minimized.

The final set of triples {(ϕi, gi, ti)}i=1,··· ,m, together with
the shape model {si}i=0,··· ,n is called an Optimal Gradient
Pursuit Model (OGPM). Figure 4 shows the top 15 features
selected by the learning algorithm, as well as the spatial
density map of the top 100 features. Notice that many
selected features are aligned with the boundaries of the facial
features.



Fig. 5. Face Dataset Samples. ND1 database [2] (left), FERET
database [21] (center), and BioID database [23] (right).

V. FACE ALIGNMENT

In this section, we will describe how to fit an OGPM to
the face of a given image I, with an initial shape parameter
p(0) (at the 0-th iteration). As shown in Equation (5), the
alignment is iteratively performed by using the gradient
ascent approach. From Equation (3), (10), and (14), we can
see that the derivative of F with respect to p is

∂F

∂p
=

2
π

m∑
i=1

gi

(
∇I∂W

∂p

)T

Ai

1 +
(
giAT

i I(W(x;p))− ti
)2 , (16)

where ∇I is the gradient of the image evaluated at W(x;p),
and ∂W

∂p is the Jacobian of the warp evaluated at p. The
BAM [14] has a detailed discussion on the alignment pro-
cedure, and the computational complexity, and efficient im-
plementation of ∂F

∂p . Compare to the BAM-based fitting, one
improvement we have is that the step size λ is dynamically
determined via line searching, rather that a simple static
constant. That is, at each iteration, we search for the optimal
λ within certain range such that the updated shape parameter
can maximally increase the current score function value
F (p).

VI. EXPERIMENTS

In this section we will present the various experiments
to demonstrate the properties of the proposed approach.
We begin with the description on the dataset used in our
experiments and then introduce each experiment.

A. Experimental Setup

Our experimental dataset contains 964 images from three
public available databases: the ND1 database [2], FERET
database [21] and BioID database [23]. There are 33 man-
ually labeled landmarks for each of the 964 images. To
speed up the training process, we down-sample the image
set such that the facial width is roughly 40 pixels across
the set. Sample images of these databases are illustrated in
Figure 5. As shown in Table I, we partition all images into
three non-overlapping datasets. Set 1 includes 400 images
(one image per subject) from two databases. Set 2 includes
334 images from the same subjects but different images as
the ND1 database in Set 1. Set 3 includes 230 images from
23 subjects in the BioID database that were never used in
the training. Set 1 is used as the training set for the model
learning and all three sets are used for testing the model
fitting. The motivation for such a partition is to experiment

TABLE I
SUMMARY OF THE DATASET.

ND1 FERET BioID
Images 534 200 230

Subjects 200 200 23
Variations Frontal view Pose Background, lighting

Set 1 200 200
Set 2 334
Set 3 230
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Fig. 6. Ranking Performance. For both Set 1 and 2, OGPM achieves
similar ranking performance as BRM.

various levels of generalization capability. For example, Set
2 can be tested as the unseen data of seen subjects; Set 3
can be tested as the unseen data of unseen subjects, which is
the most challenging case and most similar to the scenario
in practical applications.

In the experiments we compare our OGPM algorithm
with BRM based on two considerations. First, our proposed
algorithm is a direct extension of BRM. Second, it has been
shown the BRM outperforms other discriminative image
alignment such as BAM. During the model learning, both
BRM and OGPM are trained from 400 images of Set
1. BRM uses 24000 (= 400 × 10 × 6) training samples
synthesized from Set 1, where each image synthesizes 10
profile lines and each line has 6 evenly spaced samples. In
comparison, OGPM uses 12000 training samples, where each
image synthesizes 30 samples according to Equation (12).
The reason we use less samples for OGPM is that all
synthesized samples are randomly spread out, rather than
multiple samples selected from one profile line as in BRM.
Hence, OGPM is likely to achieve good performance with
less training samples. The manually labeled landmarks of
Set 1 images are improved using the automatical model
refinement approach in [17]. After model learning, the shape
model component of both BRM and OGPM is a PDM with 9
shape bases, and their appearance model (i.e., the alignment
score function) has 100 weak classifiers/functions.



TABLE II
ALIGNMENT PERFORMANCE (PIXELS) COMPARISON ON THREE SETS. σ

INDICATES THE AMOUNT OF PERTURBATION.

σ 2 4 6 8

Set 1 BRM 0.50 1.12 1.30 1.45
OGPM 0.47 0.57 0.70 0.87

Set 2 BRM 0.88 0.94 1.02 1.12
OGPM 0.58 0.72 0.81 0.93

Set 3 BRM 0.85 1.34 1.59 1.94
OGPM 0.80 1.12 1.35 1.60

B. Experimental Results

BRM aims to improve the convexity of the learned score
function by correctly ranking pair of warped images. OGPM
extents BRM in the sense that the score function should
not only be concave, but also have minimal angle between
the gradient direction and the vector pointing to the ground-
truth shape parameter. Hence, convexity is a good metric for
evaluating the score functions for both BRM and OGPM.
Similar to BRM, the convexity is measured by computing
the percentage of correctly ranked pairs of warped images.
Given Set 1 and Set 2, we synthesize two sets of pairs
respectively and test the ranking performance of BRM and
OGPM. As shown in Figure 6, the perturbation index σ
controls the amount of perturbation of the image pair (see
Equation 12). We can see that for both sets, OGPM achieves
very similar ranking performance as BRM, despite the fact
that, unlike BRM, OGPM does not utilize ranking in its
objective function directly. The only exception is the slight
better performance of BRM when the perturbation is very
small (σ = 1). We attribute this mostly to the labeling error
in the training data, since a small perturbation of labeled
landmark can also be treated as a fairly good alignment,
which makes the ranking harder.

In addition to the convexity measure, we also validate
the estimation of the angle between the gradient direction
and the vector pointing to the ground-truth shape parameter.
The minimization of this angle is the objective function of
OGPM, as represented by the H(p) function. Similar to
the aforementioned ranking experiments, given the Set 1,
we randomly synthesize six sets of warped images using
various perturbation index σ. Then for each image in a set,
we compute the H(p) score, and plot the average score of
each set in Figure 7. Similar experiments are conducted for
Set 2 as well. It is obvious that even though OGPM and
BRM have similar ranking performance, OGPM achieves
larger function score for both Set 1 and 2, hence smaller
gradient angle. This shows that using ranking performance
as the objective, as done by BRM, does not guarantee the
optimal angle estimation. Rather, we should directly use the
gradient angle as the objective function in order to obtain a
better alignment score function, as done by OGPM.

In the alignment experiments, we run the model fitting
algorithm on each image with a number of initial landmarks
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Fig. 7. Angle Estimation Performance. Compared to BRM, OGPM
clearly can estimate the gradient direction that is more similar to the ideal
travel direction for model fitting.

and evaluate the alignment results. The initial landmarks are
generated using Equation (12), i.e., randomly perturbing the
ground-truth landmarks by an independent uniform distribu-
tion whose range equals to a multiple (σ) of the eigenvalue
of shape basis during PDM training. Once fitting on one
image terminates, the alignment performance is measured
by the resultant Root Mean Square Error (RMSE) between
the aligned landmarks and the ground-truth landmarks.

We conduct the alignment experiments for all three sets
using both OGPM and BRM. Table II shows the RMSE
results in terms of pixels, where each element is an average
of more than 2000 trials at one particular perturbation index
σ. Hence, each image in Set 1, 2, and 3 is tested with 5, 6,
and 9 random trials, respectively. OGPM and BRM are tested
under the same condition. For example, both algorithms are
initialized with the same random trails and the termination
condition is the same as well. That is, the alignment iteration
exits if the alignment score F (p) can not increase further,
or the landmark difference (RMSE) between consecutive
iterations is less than a pre-defined threshold, which is 0.05
pixel in our work.

From Table II, we can see that for all three sets, OGPM
is able to achieve better alignment performance than BRM.
Note that the performance gain is more when the initial
perturbation is relatively large, such as σ=6 or 8, which are
the most challenging cases in practical applications. Given
the fact that our test images are in very low resolution,
we consider this is substantial performance improvement.
Comparing among the three data sets, the performance gain
in the training set (Set 1) is larger compared to the other two
data sets.

One obvious strength of smaller gradient angles is the
ability to converge in less iterations during the alignment. In
Figure 8, we show the histogram of the number of iterations
that OGPM and BRM requires to converge on Set 3, when
σ = 8. We can see that on average OGPM can converge
faster than BRM. Here, the average number of iterations of
OGPM is 5.47, while that of BRM is 6.40. Similarly, on Set
1, the average number of iterations of OGPM is 5.08, and



0 2 4 6 8 10
0

20

40

60

80

Number of ite ra tions

P
e

rc
e

n
ta

g
e

(%
)

BRM

OGP M

Fig. 8. Alignment Speed. Histogram of the number of iterations for fitting
on Set 3 when σ=8.

that of BRM is 6.09, when σ = 8.

VII. CONCLUSIONS

This paper proposes a novel face model, “Optimal Gra-
dient Pursuit Model”, for facial image alignment. Motivated
by the fact that a high dimensional concave score function
can have sub-optimal gradient directions, the objective of
our face model learning lies in the minimization of the angle
between the gradient direction and the vector pointing toward
the ground-truth shape parameter. We formulate an iterative
approach to solve this minimization problem. Through ex-
tensive experiments, we show that our model can improve
the alignment accuracy and speed compared to the BRM
approach.

Future work includes applying this image alignment
framework to objects other than faces since no prior knowl-
edge of human faces is used in our approach. Also, since
discriminative face alignment can take advantage of infinite
number of training samples (I(W(x;p))) through synthesis,
there is a possibility that model learning can be conducted
with a small number of labeled face images, which may
leverage the work of semi-supervised image alignment [15],
[16], [25].
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