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Abstract. This paper proposes a novel face mosaicing approach to mod-
eling human facial appearance and geometry in a unified framework.
The human head geometry is approximated with a 3D ellipsoid model.
Multi-view face images are back projected onto the surface of the ellip-
soid, and the surface texture map is decomposed into an array of local
patches, which are allowed to move locally in order to achieve better cor-
respondences among multiple views. Finally the corresponding patches
are trained to model facial appearance. And a deviation model obtained
from patch movements is used to model the face geometry. Our approach
is applied to pose robust face recognition. Using the CMU PIE database,
we show experimentally that the proposed algorithm provides better per-
formance than the baseline algorithms. We also extend our approach to
video-based face recognition and test it on the Face In Action database.

1 Introduction

Face recognition is an active topic in the vision community. Although many
approaches have been proposed for face recognition [1], it is still considered as
a hard and unsolved research problem. The key of a face recognition system is
to handle all kinds of variations through modeling. There are different kinds of
variations, such as pose, illumination, expression, among which, pose variation
is the hardest, and contributes more recognition errors than others [2]. In the
past decade, researchers mainly model each variation separately. For example,
by assuming constant illumination and the frontal pose, expression invariant
face recognition approaches are proposed [1]. However, although most of these
approaches perform well for specific variation, the performance degrades quickly
when multiple variations present, which is the case in real-world applications [3].

Thus, a good recognition approach should be able to model different kinds
of variations in an efficient way. For human faces, most prior modeling work
target at facial appearance using various pattern recognition tools, such as Prin-
cipal Component Analysis (PCA) [4], Linear Discriminate Analysis [5], Support
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Fig. 1. Geometric mapping Fig. 2. Up to 25 labeled facial features.

Vector Machine [5]. On the other hand, except for the 3D face recognition, the
human face geometry/shape is mostly overlooked in face recognition. We believe
that, similar to the facial appearance, the face geometry is also a unique charac-
teristic of human being. Face recognition can benefit if we can properly model
the face geometry, especially when pose variation is presented.

This paper proposes a face mosaicing approach to modeling both the facial
appearance and geometry, and applies it to face recognition. This paper extends
the idea introduced in [6, 7] by approximating the human head with a 3D ellip-
soid. As shown in Fig. 1, an arbitrary view face image can be back projected
onto the surface of the 3D ellipsoid, and results in a texture map. In multi-view
facial images based modeling, combining multiple texture maps is conducted,
where the same facial feature, such as the mouth’s corner, from multiple maps
might not correspond to the same coordinate on the texture map. Hence the
blurring effect, which is normally not a good property for modeling, is observed.

To reduce such blurring, the texture map is decomposed into a set of local
patches. Patches from multi-view images are allowed to move locally for achiev-
ing better correspondences. Since the amount of movement indicates how much
the actual head geometry deviates from the ellipsoid, a deviation model trained
from patch movements models the face geometry. Also the corresponding patches
are trained to model facial appearance. Our mosaic model is composed of both
models together with a probabilistic model Pd that learns the statistical distri-
bution of the distance measure between the test patch and the patch model [8].

Our face mosaicing approach makes a number of contributions. First, as the
hardest variation, pose variation is handled naturally by mapping images from
different view-angles to form the mosaic model, whose mean image can be treated
as a compact representation of faces under various view-angles. Second, all other
variations that could not be modeled by the mean image, for example, illumina-
tion and expression, are taken care of by a number of eigenvectors. Therefore,
instead of modeling only one type of variation, as done in conventional meth-
ods, our method models all possible appearance variations under one framework.
Third, a simple geometrical assumption has the problem since the head geometry
is not truly an ellipsoid. This is taken care of by training a geometric deviation
model, which results in better correspondences across multiple views.

There are many prior work on face modeling [9, 10]. Among them, Blanz
and Vetter’s approach [9] is one of the most sophisticated that applied to face
recognition as well, where two subspace models are trained for facial texture and



shape respectively. Given a test image, they fit the new image with two models
by tuning the models’ coefficients, which are eventually used for recognition.
Intuitively better modeling leads to better recognition performance. However,
a more sophisticated modeling also makes model fitting to be too difficult. For
example, both training and test images are manually labeled with 6 to 8 feature
points [9]. On the other hand, we believe that, unlike the rendering applications
in computer graphics, we might not need a very sophisticated geometric model
for recognition applications. The benefit with a simpler face model is that model
fitting tends to be easier and automatic, which is the goal of our approach.

2 Modeling the Geometric Deviation

To reduce the blurring issue in combining multiple texture maps, we obtain a
better facial feature alignment by relying on the landmark points. For the model
training, it is reasonable to manually label such landmark points.

Given K multi-view training facial images, {fk}, firstly we label the position
of facial feature points. As shown in Fig. 2, 25 facial feature points are labeled.
For each training image, only a subset of the 25 points is labeled according to
their visibility. We call these points as key points.

Second, we generate the texture map sk from each training image, and com-
pute key points’ corresponding coordinates bi

k(1 ≤ i ≤ 25) in the texture map
sk, as shown in Fig. 3. Furthermore, we would like to find the coordinate on the
mosaic model where all corresponding key points deviate to. Ideally if the human
head is a perfect 3D ellipsoid, the same key point bi

k(1 ≤ k ≤ K) from multiple
training texture maps should exactly correspond to the same coordinate. How-
ever, due to the fact that the human head is not a perfect ellipsoid, these key
points deviate from each other. The amount of deviation is an indication of the
geometrical difference between the actual head geometry and the ellipsoid.

Third, we compute the averaged positions bi
k(1 ≤ k ≤ K) of all visible key

points bi that correspond to the same facial feature. We treat this averaging,
shown in the 3rd row of Fig. 3, as the target position in the final mosaic model
where all corresponding key points should move toward. Since our resulting mo-
saic model is composed of an array of local patches, each one of the 25 averaged
key points falls into one particular patch, namely key patch.

Fourth, for each texture map, we take the difference between the positions of
key point bi

k and that of the averaged key point bi as the key patch’s deviation
flow (DF) that describes which patch from each texture map should move toward
that key patch in the mosaic model. However, there are also non-key patches in
the mosaic model. As shown in Fig. 4, we represent the mosaic model as a set
of triangles, whose vertexes are the key patches. Since each non-key patch falls
into at least one triangle, its DF is interpolated by the key patch’s DF.

For each training texture map, its geometric deviation is a 2D vector map vk,
whose dimension equals to the number of patches in vertical and horizontal di-
rections, and each element is one patch’s DF. Note that for any training texture
map, some elements in vk are considered missing. Finally the deviation model



∑
nN

1

Fig. 3. Averaging key points: the position
of key points in the training texture maps
(2nd row), which correspond to the same
facial feature are averaged and result in
the position in the final model (3rd row).

--

Fig. 4. Computation of patch’s DF: each
non-key patch falls into at least one tri-
angle; the deviation of a non-key patch is
interpolated by the key patch deviation of
one triangle.

θ = {g,u} is learned from the geometric deviation {vk} of all training texture
maps using the robust PCA [11], where g and u are the mean and eigenvec-
tors respectively. Essentially this linear model describes all possible geometric
deviation of any view angle for this particular subject’s face.

3 Modeling the Appearance

After modeling the geometric deviation, we need to build an appearance model,
which describes the facial appearance for all poses. On the left hand side of Fig. 5,
there are two pairs of training texture maps sk and their corresponding geometric
deviation vk. The resulting appearance model Π = {m,V} with one mean and
two eigenvectors are shown on the right hand side. This appearance model is
composed of an array of eigenspaces, where each is devoted to modeling the
appearance of the local patch indexed by (i, j). In order to train one eigenspace
for one particular patch, the key issue is to collect one corresponding patch
from each training texture map sk, where the correspondence is specified by
the geometric deviation vk

i,j . For example, the summation of v1
i,j and (40,83)

determines the center of corresponding patch, v1
i,j , in the texture map s1. Using

the same procedure, we find the corresponding patches sk
i,j(2 ≤ k ≤ K) from all

other texture maps. Note some of sk
i,j might be considered as missing patches.

Finally the set of corresponding patches are used to train a statistical model Πi,j

via PCA. We call the array of PCA models as the patch-PCA mosaic. Modeling
via PCA is popular when the number of training samples is large.

However, when the number of training samples is small, such as the training
of an individual mosaic model with only a few samples, it might not be suitable
to train one PCA model for each patch. Instead we would rather train a universal
PCA model based on all corresponding patches of all training texture maps, and
keep the coefficient of these patches in the universal PCA model as well. This is
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Fig. 5. Appearance modeling: the deviation
indicates the corresponding patch for each
of training texture maps; all corresponding
patches are treated as samples for PCA.

Fig. 6. The mean images of two
mosaic models without geometric
deviation (top) and with geomet-
ric deviation (bottom).

called the global-PCA mosaic. Note that the patch-PCA mosaic and the global-
PCA mosaic only differ in how the corresponding patches across training texture
maps are utilized to form a model, depending on the availability of training data
in different application scenarios.

Eventually the statistical mosaic model includes the appearance model Π,
the geometric deviation model θ and the probabilistic model Pd. We consider
that the geometric deviation model plays a key role in training the mosaic model.
For example, Fig. 6 shows the mean images of two mosaic models trained with
the same set of images from 10 subjects. It is obvious that the mean image on
the bottom is much less blurring and captures more useful information about
facial appearance. Note that this mean image covers much larger facial area
comparing to the up-right illustration of Fig. 5 since extrapolation is performed
while computing the geometric deviations of non-key patches.

4 Face Recognition using the Statistical Mosaic Model

Given L subjects with K training images per subject, an individual statistical
mosaic model is trained for each subject. For simplicity, let us assume we have
enough training samples and obtain the patch-PCA mosaic for each subject. We
will discuss the case of the global-PCA mosaic in the end of this section. We
now introduce how to utilize this model for pose robust face recognition.

As shown in Fig. 7, given one test image, we generate its texture map by
using the universal mosaic model, which is trained from multi-view images of
many subjects. Then we measure the distance between the test texture map and
each of the trained individual mosaic model, namely the map-to-model distance.
Note that the appearance model is composed of an array of patch models, which
is called the reference patch. Hence, the map-to-model distance equals to the



summation of the map-to-patch distances. That is, for each reference patch, we
find its corresponding patch from the test texture map, and compute its distance
to the reference patch.

Since we have been deviating corresponding patches during the training stage,
we should do the same while looking for the corresponding patch in the test
stage. One simple approach is to search for the best corresponding patch for
the reference patch within a search window. However, this does not impose any
constraint on the deviation of neighboring reference patches. To solve this issue,
we make use of the deviation model that was trained before.

As shown in Fig. 7, if we randomly sample one coefficient in the deviation
model, the linear combination of this coefficient describes the geometric deviation
for all reference patches. Hence, the key is to find the coefficients that provide the
optimal matching between the test texture map and the model. In this paper,
we adopt a simple sequential searching scheme to achieve this. That is, in a K-
dimensional deviation model, uniformly sample multiple coefficients along the
1st dimension while the coefficients for other dimensions are zero, and determine
one of them which results in the maximal similarity between this test texture
map and the model. The range of sampling is bounded by the coefficients of
training geometric deviations. Then we perform the same searching along the
2nd dimension while fixing the optimal value for the 1st dimension and zero for
all other dimensions. The searching is finished until the Kth dimension. Basically
our approach enforces the geometric deviation of neighboring patches to follow
certain constraint, which is described by the bases of the deviation model.

For each sampled coefficient, the reconstructed 2D geometric deviation (in
the bottom-left of Fig. 7) indicates where to find the corresponding patches in
the test texture map. Then the residue between the corresponding patch and the
reference patch model is computed, which is further feed into the probabilistic
model [8]. Finally the probabilistic measurement tells how likely this correspond-
ing patch belongs to the same subject as the reference patch. By doing the same
operation for all other reference patches and averaging all patch-based proba-
bilistic measurements, we obtain the similarity between this test texture map
and the model based on the current sampled coefficient. Finally the test image
is recognized as the subject who provides the largest similarity.

Depending on the type of the mosaic model (the patch-PCA mosaic or the
global-PCA mosaic), there are different ways of calculating the distance between
the corresponding patch and the reference patch model. For the patch-PCA
mosaic, the residue with respect to the reference patch model is used as the
distance measure. For the global-PCA mosaic, since one reference patch model
is represented by a number of coefficients, the distance measure is defined as the
nearest neighbor of the corresponding patch among all these coefficients.

5 Video-based Face Recognition

There are two schemes for recognizing faces from video sequences: image-based
recognition and video-based recognition. In image-based recognition, usually the
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Fig. 7. The map-to-patch distance: the geometric deviation indicates the patch cor-
respondence between the model and the texture map; the distance of corresponding
patches are feed into the Bayesian framework to generate a probabilistic measurement.

face area is cropped before feeding to a recognition system. Thus image-based
face recognition involves two separate tasks: face tracking and face recognition.

In our face mosaicing algorithm, given one video frame, the most important
task is to generate a texture map and compare it with the mosaic model. Since
the mapping parameter x, which is a 6-dimensional vector describing the 3D
head location and orientation [7], contains all the information for generating the
texture map, the face tracking is equivalent to estimating x, which can result in
the maximal similarity between the texture map and the mosaic model. We use
the condensation method [12] to estimate the mapping parameter x.

In image-based recognition, for a face database with L subjects, we build the
individualized model for each subject, based on one or multiple training images.
Given a test sequence and one specific model, a distance measurement is calcu-
lated for each frame by face tracking. Averaging of the distances over all frames
provides the distance between the test sequence and one specific model. After
the distances between the sequence and all models are calculated, comparing
these distances provides the recognition result of this sequence.

In video-based face recognition, two tasks, face tracking and recognition,
are usually performed simultaneously. Zhou et al. [13] propose a framework to
combine the face tracking and recognition using the condensation method. They
propagate a set of samples governed by two parameters: the mapping parameter
and the subject ID. We adopt this framework in our experiments.

6 Experimental Results

We evaluate our algorithm on pose robust face recognition using the CMU PIE
database [14]. We use half of the subjects (34 subjects) in PIE for training the
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Fig. 8. (a) Sample Images of one subject from the PIE database. (b) Mean images of
three individual mosaic models. (c) Recognition performances of four algorithms on
the CMU PIE database based on three training images.

probabilistic model. The 9 pose images per subject from remaining 34 subjects
are used for the recognition experiments.

Sample images and the pose labels from one subject in PIE are shown in
Fig. 8(a). Three poses (c27, c14, c02) are used for the training, and the remaining
6 poses (c34, c11, c29, c05, c37, c22) are used for test using four algorithms. The
first is the traditional eigenface approach [4]. We perform the manual cropping
and normalization for both training and test images. We test with different
number of eigenvectors and plot the one with the best recognition performance.
The second is the eigen light-field algorithm [15] (one frontal training image per
subject). The third algorithm is our face mosaic method without the modeling
of geometric deviation, which essentially sets the mean and all eigenvectors of
θ = {g,u} to be zero. The fourth algorithm is the face mosaic method with the
modeling of geometric deviation. Since the number of training images is small,
we train the global-PCA mosaic for each subject. Three eigenvectors are used in
building the global-PCA subspace. Thus each reference patch from the training
stage is represented as a 3-dimentional vector. For the face mosaic method, the
patch size is 4× 4 pixels and the size of the texture map is 90× 180 pixels. For
illustration purpose, we show the mean images of three subjects in Fig. 8(b).
Fig. 8(c) shows the recognition rate of four algorithms for each specific pose.

Comparing among these four algorithms, both of our algorithms works better
than the baseline algorithms. Obviously the mosaic approach provides a better
way of registering multi-view images for an enhanced modeling, unlike the naive
training procedure of the traditional eigenface approach. For our algorithms, the
one with deviation modeling performs better than the one without deviation
modeling. There are at least two benefits for the former. One is that a geometric
model can be used in the test stage. The other is that as a result of deviation
modeling, the patch-based appearance model also better captures the personal
characteristic of the multi-view facial appearance in a non-blurred manner.

We perform video-based face recognition experiments based on the Face In
Action (FIA) database [16], which mimics the “passport checking” scenario.
Multiple cameras capture the whole process of a subject walking toward the
desk, standing in front of the desk, making simple conversation and head motion,
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Fig. 9. (a) 9 training images from one subject in the FIA database. (b) The mean im-
ages of the individual models in two methods (left: Individual PCA, right: mosaicing).

PCA Mosaic

image-based method 17.24% 6.90%

video-based method 8.97% 4.14%

Table 1. Recognition error rate of different algorithms.

and finally walking away from the desk. Six video sequences are captured from
six calibrated cameras simultaneously for 20 seconds with 30 frames per second.

We use a subset of the FIA database containing 29 subjects, with 10 se-
quences per subject as the test sequences. Each sequence has 50 frames, and
the first frame is labeled with the ground truth data. We use the individual
PCA algorithm [17] with image-based recognition and the individual PCA with
video-based recognition as the baseline algorithms. For both algorithms, 9 im-
ages per subject are used for training and the best performance is reported by
trying different number of eigenvectors. Fig. 9(a) shows the 9 training images for
one subject in the FIA database. The face location of training images is labeled
manually, while that of the test images is based on the tracking results using our
mosaic model. Face images are cropped to be 64× 64 pixels from video frames.

We test two options for our algorithms based on the same training set (9
images per subject). The first is to use the individual patch-PCA mosaic with
image-based recognition, which uses the averaged distance between the frames
to the mosaic model as the final distance measure. The second is to use the
individual patch-PCA mosaic with video-based recognition, which uses the 2D
condensation method to perform tracking and recognition. Fig. 9(b) illustrates
the mean images in two methods. We can observe significant blurring effect in
the mean image of the individual PCA model. On the other hand, the mean
image of our individual patch-PCA mosaic model covers larger pose variation
while keeping enough individual facial characteristics.

The comparison of recognition performance is shown in Table 1. Two ob-
servations can be made. First, given the same model, such as the PCA model
or the mosaic model, video-based face recognition is better than image-based
recognition. Second, the mosaic model works much better than the PCA model
for pose-robust recognition.

7 Conclusions

This paper presents an approach to building a statistical mosaic model by com-
bining multi-view face images, and applies it to face recognition. Multi-view face



images are back projected onto the surface of an ellipsoid, and the surface tex-
ture map is decomposed into an array of local patches, which are allowed to
move locally in order to achieve better correspondences among multiple views.
We show the improved performance for pose robust face recognition by using
this new method and extend our approach to video-based face recognition.
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