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Abstract 
 

While traditional face recognition is typically based on still 
images, face recognition from video sequences has become 
popular recently.  In this paper, we propose to use 
adaptive Hidden Markov Models (HMM) to perform video-
based face recognition. During the training process, the 
statistics of training video sequences of each subject, and 
the temporal dynamics, are learned by an HMM.  During 
the recognition process, the temporal characteristics of the 
test video sequence are analyzed over time by the HMM 
corresponding to each subject.  The likelihood scores 
provided by the HMMs are compared, and the highest 
score provides the identity of the test video sequence. 
Furthermore, with unsupervised learning, each HMM is 
adapted with the test video sequence, which results in 
better modeling over time.  Based on extensive experiments 
with various databases, we show that the proposed 
algorithm provides better performance than using majority 
voting of image-based recognition results. 
 

1. Introduction 
 

For decades human face recognition has been an active 
topic in the field of object recognition. A general statement 
of this problem can be formulated as follows: Given still or 
video images of a scene, identify one or more persons in 
the scene using a stored database of faces [1]. A lot of 
algorithms have been proposed to deal with the image-to-
image, or image-based, recognition where both the training 
and test set consist of still face images. Some examples are 
Principal Component Analysis (PCA) [2], Linear 
Discriminate Analysis (LDA) [3], and Elastic Graphic 
Matching [4]. However, with existing approaches, the 
performance of face recognition is affected by different 
kinds of variations, for example, expression, illumination 
and pose. Thus, the researchers start to look at the video-to-
video, or video-based recognition [5][6][7][8], where both 
the training and test set are video sequences containing the 
face. 
    The video-based recognition has superior advantages 
over the image-based recognition. First, the temporal 
information of faces can be utilized to facilitate the 

recognition task. For example, the person-specific dynamic 
characteristics can help the recognition [5]. Secondly, more 
effective representations, such as a 3D face model [9] or 
super-resolution images [10], can be obtained from the 
video sequence and used to improve recognition results. 
Finally, video-based recognition allows learning or 
updating the subject model over time.  Liu et al. proposed 
an updating-during-recognition scheme, where the current 
and past frames in a video sequence are used to update the 
subject models to improve recognition results for future 
frames [8]. 

The temporal and motion information is a very important 
cue for the video-based recognition. In [5], Li suggested to 
model the face video as a surface in a subspace and 
changed the recognition problem to be a surface matching 
problem. Edwards et al. [6] proposed an adaptive 
framework on learning the human identity by using the 
motion information along the video sequence, which 
improves both face tracking and recognition. Recently, 
Zhou et al. proposed a probabilistic approach to video-
based recognition [7]. They modeled the identity and the 
face motion as a joint distribution, whose marginal 
distribution is estimated to provide the recognition result.  

The Hidden Markov Model (HMM) [11] has been 
successfully applied to model temporal information on 
applications such as speech recognition, gesture recognition 
[12], and expression recognition [13], etc. Samaria and 
Young used pixel values in each block as the observation 
vectors and applied HMM spatially to image-based face 
recognition [14]. In [15], Nefian proposed to utilize DCT 
coefficients as observation vectors and a spatially 
embedded HMM was used for recognition. Although other 
variations of HMM have been applied to face recognition 
spatially, few of them are dealing with video-based 
recognition.  

In this paper, we apply adaptive HMM temporally to 
perform the video-based face recognition. As shown in 
Figure 1, during the training process, the statistics of 
training sequences, and their temporal dynamics are learned 
by an HMM. During the recognition process, the temporal 
characteristics of the test video sequence are analyzed over 
time by the HMM corresponding to each subject. Our 
proposed algorithm can learn the dynamic information and 



improve the recognition performance compared to the 
conventional method that simply utilizes the majority 
voting of image-based recognition results. Also motivated 
by the research in speaker adaptation [16], during the 
recognition process, we adapt the HMM using the test 
sequences. Thus an updated HMM can provide better 
modeling and result in better performance over time. 
    The paper is organized as follows. In the next section, 
we briefly introduce HMM. In Section 3 our algorithms 
will be presented in detail. We discuss how to adapt the 
HMM in order to enhance the modeling and recognition 
performance. In Section 4, we compare the recognition 
performance of our algorithm with a baseline algorithm 
applied to various databases. Finally this paper is 
concluded in Section 5. 
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Figure 1 Temporal HMM for modeling face sequences 
 

2. Hidden Markov model 
 

A Hidden Markov Model is a statistical model used to 
characterize the statistical properties of a signal [11]. An 
HMM consists of two stochastic processes: one is an 
unobservable Markov chain with a finite number of states, 
an initial state probability distribution and a state transition 
probability matrix; the other is a set of probability density 
functions associated with each state. There are two types of 
HMM: discrete HMM and continuous HMM. The 
continuous HMM is characterized by the following: 

• N, the number of states in the model. We denote the 
individual state as },,,{S NSSS L21= , and the state 

at time t as tq , Tt ≤≤1 , where T is the length of the 

observation sequence. 
• A, the state transition probability matrix, i.e., 

{ }ija=A , where 
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• B, the observation probability density functions 
(pdf), i.e., { })O(B ib= , where 
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where ikc  is the mixture coefficient for kth mixture 

component in State i. M is the number of 
components in a Gaussian mixture model. 

),;( ikikN UµO  is a Gaussian pdf with the mean 

vector ikµ  and the covariance matrix ikU . 

• π , the initial state distribution, i.e., { }iπ=π , where 

[ ] NiSqP ii ≤≤== 11 ,π . 

Using a shorthand notation, an HMM is defined as the 
triplet 

  ( )π,B,Aλ = . 
 

3. Our proposed algorithms 
 

    In this section, we describe our proposed algorithms in 
detail. First, feature extraction, HMM training and HMM 
testing are presented. Then, we introduce an algorithm to 
adapt the HMM in order to enhance the modeling over 
time.  
 

3.1 Temporal HMM 
    
    When applying HMM to face recognition, researchers 
have proposed to use different features, for example, pixels 
values [14], eigen-coefficients and DCT coefficients [15], 
as the observation vectors. In our algorithm, each frame in 
the video sequence is considered as one observation. Since 
PCA gives the optimal representation of the images in 
terms of the mean square error, all face images are reduced 
to low-dimensional feature vectors by PCA. Given a face 
database with L subjects and each subject has a training 
video sequence containing T images. 
  { } LlTllll ≤≤= 121 ,,, f,,f,fF L  

    Each image only contains the face portion. By 
performing eigen-analysis for these TL ×  samples, we 
obtain an eigenspace with a mean vector m  and a few 
eigenvectors { }d21 V,,V,V L . All the training images are 

projected into this eigenspace and generate corresponding 
feature vectors, TtLllt ≤≤≤≤ 11 ,,e , which will be used as 

observation vectors in the HMM training. At this stage, we 
also compute the covariance matrix of all the feature 
vectors lte , eC , which is a diagonal matrix with 

eigenvalues as the diagonal elements. The matrix eC  

describes in general how all the face images distribute on 
each dimension of a low-dimensional eigenspace, which 
provides useful information for the HMM training. 
Essentially in our algorithm, PCA is used for the dimension 
reduction purpose. 
    Each subject in the database is modeled by a N-state 
fully connected HMM. The feature vectors Ttlt ≤≤1,e  



form the observation vectors O  for training the HMM of 
Subject l. The training for each HMM is as follows. First, 
the HMM ( )πBAλ ,,=  is initialized. Vector quantization 

is used to separate the observation vectors into N classes 
and the observation vectors associated with each class are 
used to generate the initial estimates for B, i.e., estimate 

ikc , ikµ  and ikU as in (1). Second, in order to maximize the 

likelihood ( )λ|OP , the model parameters are re-estimated 

by using the Expectation Maximization (EM) algorithm 
[16]. It produces a sequence of estimates for λ , given a set 
of observation vectors O , so that each estimate 

),,()( πBAλ =n  has a larger value of ( )λ|OP  than the 

preceding estimate )1( −nλ . The re-estimation is defined as 
follows: 
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where tqt
m  indicates the mixture component for State tq  

and time t. Equ. (6) is used to adapt the variance estimate 
from eC , which is a general model for the variance of all 

subjects. The parameter α  is a weighting factor and is 
chosen as 0.5 in our experiments. Normally during the 
training process, when the number of face images assigned 
to each state is less than the dimension of feature vectors, 

ikU  will be a singular matrix. This adaptation step can 

prevent this from happening. The model parameters are 
estimated iteratively using (2)-(6) until the likelihood 

( )λ|OP  converges.  

    In the recognition process, given a video sequence 
containing face images, all frames are projected into the 
eigenspace and the resulting feature vectors form the 
observation vectors. Then the likelihood score of the 
observation vectors given each HMM is computed, where 

the transition probability and observation pdf are used. The 
face sequence is recognized as Subject k if: 

( ) ( )llk PP λOλO |max| =  

 

3.2 Adaptive HMM 
 

    In typical speech recognition systems, there is a 
dichotomy between speaker-independent and speaker-
dependent systems. While speaker-independent systems are 
ready to be used without further training, their performance 
is usually two or three times worse than that of speaker-
dependent systems. However, the latter requires large 
amounts of training data from the designated speaker. To 
address this issue, the concept of speaker adaptation 
[16][17] has been introduced, where a small amount of data 
from the specific speaker are used to modify the speaker-
independent system and improve its performance. 
Similarly, in the vision community, Liu et al. [8] also 
proposed unsupervised model updating to enhance the 
object modeling and improve the recognition performance 
over time.  
    Motivated by these ideas, we propose to use adaptive 
HMM for video-based face recognition. That is, during the 
recognition process, after we recognized one test sequence 
as one subject, we can use this sequence to update the 
HMM of that subject, which will learn the new appearance 
in this sequence and provide an enhanced model of that 
subject. Obvious two questions need to be answered. First, 
how do we decide whether we should use the current test 
sequence for updating? This is important for avoiding 
wrong updating, i.e., one sequence is used to update other 
subject’s model, instead of his/her own model. Second, 
how do we adapt HMM? 
    Essentially for the first question, we would like to 
measure how confident that the recognition result for the 
current sequence is correct based on a certain feature. The 
more the confidence, the more certain we should use the 
current sequence to update the HMM. In our algorithm, we 
use the likelihood difference, i.e., the difference between 
the highest likelihood score and the second highest 
likelihood score, as the feature to make the decision. The 
reason is that for correct recognition, the likelihood 
difference tends to be large; while for incorrect recognition, 
the likelihood difference is usually small. So given a test 
sequence, we compare its likelihood difference with a pre-
defined threshold, and update the HMM only if the 
likelihood difference is larger than the threshold. In 
practice, this pre-defined threshold can be determined by 
performing experiments on a cross-validation data set. 
    We use the standard MAP adaptation technique [16] to 
adapt the HMM. That is, given an existing HMM oldλ  and 
observation vectors O from a test sequence, we estimate a 

new HMM, ( )π,B,Aλ = . We use oldλ  as the initial 



parameters of λ , and the EM algorithm is used to re-
estimate λ  except that the mean estimation is as follows: 
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where old

ikµ  is the mean vector from the existing HMM oldλ  

and β  is a weighting factor that gives the bias between the 

previous estimate and the current data. In our experiments, 
we choose β  to be 0.3. Also during the iteration of the EM 

algorithm, we do not update the covariance matrix of the 
observation pdf, ikU , because from speech research 

literature, the major discriminative information of an HMM 
is retained by the mean vectors instead of the covariance 
matrixes. Also in our experiments, updating the covariance 
matrix does not show significant improvements compared 
to no updating.  
 

4. Experiments 
 

4.1 Setup 
 
   In order to test the proposed algorithm, we have collected 
a Task database with 21 subjects. During the data 
collection, each subject is required to read a paper that is 
hung beside the monitor and type it using the keyboard. 
Thus essentially the subject switches between reading the 
paper, looking at the monitor and looking at the keyboard. 
For each subject we collected 2 sequences, where one has 
322 frames and is used for training; the other has around 
400 frames and is used for testing. From the whole video 
frame, we manually crop the face region as a face image 
with 16 by 16 pixels. Sample face images for some subjects 
are shown in Figure 2. In addition, 5 months after we 
captured the original Task database, we captured a new test 
set with different lighting conditions and camera settings, 
but with only 11 subjects available. 

The second database is the Mobo database [18], 
originally collected for human identification from distance. 
There are 24 subjects in this database. Each subject has 
four sequences captured in different walking situations: 
holding a ball, fast walking, slow walking, and walking on 
the incline. Each sequence has 300 frames. Three frames 
from one sequence are shown in Figure 3. Large head pose 
variation can be observed from this database. We crop the 
face portion from each frame and use it for experiments. 
The image size is 48 by 48 pixels. Some of the manually 
cropped faces are shown in  

Figure 4. For each subject, the first 150 frames of all four 
sequences are used for training, and the remaining 150 
frames of all sequences are used for testing. 

In order to mimic the practical situation, we use the test 
scheme shown in Figure 5. That is, given a test set with L 

subjects, we randomly choose a subject l, a starting frame k 
and a length z. Then frames { }11 −++ zklklkl ,,, f,f,f L  form a 

sequence for testing. Essentially this is similar to the 
practical situation where any subject can come to the 
recognition system at any time and with any duration. For 
both databases, we use this scheme to create a large amount 
of sequences for testing. 

 

 
 

Figure 2 Sample face images from our Task database 
 

 
 

Figure 3 Sample images from the Mobo database 

 

 
 

Figure 4 Cropped faces from the Mobo database 
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Figure 5 Test scheme 

 

4.2 Experimental results 
 



In order to compare video-based recognition with image-
based recognition, we choose the individual PCA method 
(IPCA) as a baseline image-based algorithm. It has been a 
popular face recognition method to build an individual 
eigenspace for each subject and perform recognition based 
on the residue [3]. Given a face sequence, after applying 
IPCA recognition to each frame, majority voting 
determines the identification of the whole sequence. We 
use this method as the baseline algorithm. 
   With the test scheme in Figure 5, we test the baseline 
algorithm on the Task database using 1000 sequences. By 
choosing different numbers of eigenvectors for the baseline 
algorithm, we can obtain different recognition performance. 
Typically the more eigenvectors the baseline algorithm 
uses, the better performance it has. However, after a certain 
number of eigenvectors are used, the performance does not 
improve any further. For the Task database, when 12 
eigenvectors are used, the baseline algorithm has the best 
performance: 9.9% recognition error rate. We also apply 
our algorithm on this database with the same 1000 
sequences. We use 45 eigenvectors during the dimension 
reduction and a 12-state HMM is used to model each 
subject. Generally speaking, the more states used to train 
one HMM, the better modeling we have, while we also 
have more parameters to estimate. For the Task database, 
we found 12 states is a good compromise between 
modeling and estimation. Each state uses one Gaussian 
distribution to model the observation probability. 
Eventually we obtain 7.0% recognition error rate, which is 
better than the best result we can get from the baseline 
algorithm. We also apply the adaptive HMM on the same 
test set and obtain 4.0% recognition error rate. Also, we do 
the same comparison with the newly captured test set. As 
shown in Table 1, although the overall recognition rate is a 
lot higher than the first test set because of the time elapse 
and the lighting and camera variations, we still see that our 
proposed methods work better than the baseline algorithm. 
However, the adaptive HMM does not improve a lot 
comparing to the temporal HMM because when the overall 
recognition error rate goes high, it is more likely to make 
wrong updating. 

Similarly we apply these three algorithms to the Mobo 
database as well. The same test scheme is utilized and 500 
randomly chosen sequences are used for testing. Different 
numbers of eigenvectors have been used for the baseline 
algorithm. It has the best performance with 2.4% 
recognition error rate when 7 eigenvectors are used. For 
our temporal HMM, we use 30 eigenvectors during the 
dimension reduction and train a 14-state HMM for each 
subject, where each state has one Gaussian distribution for 
modeling the observation probability. The recognition error 
rate is 1.6% for the temporal HMM. Similarly we also 
apply the adaptive HMM for the Mobo database and obtain 
1.2% recognition error rate. 

 We summarize the performance comparison among 
three algorithms in Table 1. As we can see, in both 
databases, our proposed algorithms perform much better 
than the baseline algorithm. Especially, the adaptive HMM 
algorithm almost halves the error rate of the baseline 
algorithm. 

 
Table 1 Comparison among three algorithms 

 

 Baseline Temporal HMM Adaptive HMM 
Mobo 2.4% 1.6% 1.2% 
Task 9.9% 7.0% 4.0% 

Task-new set 49.1% 31.0% 29.8% 
 

    There are a few reasons why the proposed algorithms 
work better than the baseline algorithm. The first is that 
HMM is able to learn both the dynamics and the temporal 
information. The second is that there is mismatching 
between the training and test sets, i.e., some of the test 
sequences show the new appearance that is barely seen in 
the training set. So the adaptive HMM enables the HMM to 
learn this new appearance in the test set and thus enhance 
the modeling. The third is the modeling ability of using 
observation pdf corresponding different states. For 
example, Figure 6 shows the training images of one subject 
in a subspace composed by the first three eigenvectors, 

},,{ 321 VVV . The plus signs show the feature vectors of all 

images from one training sequence. It illustrates that it is 
hard for IPCA to model this arbitrary distribution 
effectively since IPCA essentially assumes a single 
Gaussian distribution, while the four dots, which are the 
means of observation pdf corresponding to four states, can 
model the whole distribution better. We also plot the four 
means as images in Figure 7, where they seem to represent 
different head poses in the training sequence. 
 

 
 

Figure 6 The distribution of training faces in the 
eigenspace 

 



 
 

Figure 7 The mean faces corresponding to four states 
 

5. Conclusions 
 

In this paper, we propose to use adaptive HMM to 
perform video-based face recognition. During the training 
process, the statistics of training video sequences of each 
subject, and their temporal dynamics are learned by an 
HMM. During the recognition process, the temporal 
characteristics of the test video sequence are analyzed over 
time by the HMM corresponding to each subject. The 
likelihood scores provided by the HMMs are compared, 
and the highest score provides the identity of the test video 
sequence. Furthermore, with unsupervised learning, each 
HMM is adapted with the test video sequence, which 
results in better modeling over time.  Based on extensive 
experiments with various databases, we show that the 
proposed algorithm provides better performance than using 
majority voting of image-based recognition results. 

The paper shows that video-based face recognition is one 
promising way to enhance the performance of current 
image-based recognition. Along this direction, our future 
work is to combine the idea of spatial HMM with our 
temporal HMM to model both spatial and temporal 
information of the face sequences. Also, since the 
observation probabilities of HMM is used to model facial 
appearance, we can utilize it for face tracking, which 
enables both face tracking and recognition in the same 
framework. 
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