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Abstract

Active Appearance Model (AAM) represents the shape and appearance of an object

via two low-dimensional subspaces, one for shape and one for appearance. AAM for

facial images is currently receiving considerable attention from the computer vision

community. However, most existing work focuses on fitting an AAM to a single

image. For many applications, effectively fitting an AAM to video sequences is

of critical importance and challenging, especially considering the varying quality

of real-world video content. This paper proposes an Adaptive Active Appearance

Model (AAAM) to address this problem, where both a generic AAM component

and a subject-specific appearance model component are employed simultaneously

in the proposed fitting scheme. While the generic AAM component is held fixed, the

subject-specific model component is updated during the fitting process by selecting

the frames that can be best explained by the generic model. Experimental results

from both indoor and outdoor representative video sequences demonstrate the faster

fitting convergence and improved fitting accuracy.

Key words: Active Appearance Model, Model fitting, Subject-specific model,

Generic model
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PACS:

1 Introduction

Model-based image registration/alignment is a fundamental topic in computer

vision. Active Appearance Model (AAM) have been one of the most popular

models for image alignment [10]. Face alignment using an AAM is receiving

considerable attention from the computer vision community because it enables

various capabilities such as facial feature detection, pose rectification, and gaze

estimation. However, most existing work focuses on fitting the AAM to a single

facial image. With the abundance of surveillance cameras and greater need for

face recognition from video, methods to effectively fit an AAM to facial images

in videos are of increasing importance. This paper addresses this problem and

proposes a novel algorithm for it.

There are two basic components in face alignment using an AAM: model learn-

ing and model fitting. Given a set of facial images, model learning is the pro-

cedure of training the AAM, which is essentially two distinct linear subspaces

modeling facial shape and appearance respectively. Model fitting refers to es-

timating the parameters of the resulting AAM on faces in an image or video

frames by minimizing the distance measured between the image and the AAM.

In the context of fitting an AAM to video sequences, conventional methods

directly fit the AAM to each frame by using the fitting results, i.e., the shape

and appearance parameters, of the previous frame as the initialization of the

current frame. However, as shown in the previous work [16], fitting to faces

of an unseen subject can be hard due to the mismatch between the appear-
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ance of the facial images used for training the AAM and that of the video

sequences, especially when the video sequences are captured in the outdoor

environment. Also, the conventional method only registers each frame with

respect to the AAM, without enforcing the frame-to-frame registration across

video sequences, which is necessary for many practical applications, such as

multi-frame super-resolution [28].

To address this problem, we propose a novel model learning and fitting ap-

proach to continuously fit a mesh-based face model to video sequences. Both

a generic AAM component and a subject-specific appearance model compo-

nent are employed simultaneously in the proposed model learning, where the

subject-specific model is learned and updated in an online fashion by making

use of the test video sequence. Hence, in our approach, the training (learn the

subject-specific model) and test (fit the face model to a frame) phases take

place simultaneously. The proposed fitting algorithm is an extension of the

state-of-the-art image alignment algorithm – the Simultaneous Inverse Com-

positional (SIC) method [3], which minimizes the distance of the warped image

observation and the generic AAM model during the fitting. We call our pro-

posed approach as “Adaptive Active Appearance Model (AAAM)” algorithm,

which not only minimizes the aforementioned distance measure, but also the

distance between the warped image and the adaptive subject-specific model.

Note that here ”Adaptive” refers to the the subject-specific appearance model

component because the generic AAM component remains fixed throughout

our algorithm. Extensive experimental results demonstrate that the AAAM

algorithm improves both the fitting speed and the fitting accuracy compared

to the conventional SIC method. The earlier version of this work was published

at [23].
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The proposed approach has three main contributions.

1 In terms of model learning, our AAAM is composed of a generic AAM

and a subject-specific appearance model. By tailing toward the application

of fitting face models to videos sequences, we study various strategies of

adapting the subject-specific model in an online fashion using the video

content at previous time instances, so that the AAAM can fully utilize the

subject-specific information in face model fitting.

2 In terms of model fitting, this paper extends the conventional SIC method

by allowing a hybrid appearance model, which includes both an eigenspace-

based appearance model and a number of appearance templates. We provide

the derivation of the fitting method using this novel appearance model, as

well as the computation analysis.

3 In terms of applications, we improve the performance of fitting face models

to video sequences compared to the state-of-the-art SIC method. We demon-

strate that satisfying fitting performance can be observed when fitting a

generic model to unseen subjects, in both indoor and outdoor scenarios.

This paper is organized as follows. After a brief description of the related work

in Section 2, this paper presents the model learning and fitting methods of

the conventional AAM in Section 3. Sections 4 presents the proposed AAAM

algorithm in detail. Section 5 provides experimental results, and conclusions

are given in Section 6.
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2 Prior Work

Image alignment is a fundamental problem in computer vision. Since early

90s, ASM [10] and AAM [11,24] have become one of the most popular model-

based image alignment methods because of their elegant mathematical for-

mulation and efficient computation. For the template representation, AAM’s

basic idea is to use two eigenspaces to model the object shape and shape-free

appearance respectively. For the distance metric, the MSE between the ap-

pearance instance synthesized from the appearance eigenspace and the warped

appearance from the image observation is minimized by iteratively updat-

ing the shape and/or appearance parameters. ASM and AAM have been ap-

plied extensively in many computer vision tasks, such as facial image pro-

cessing [13, 14, 29], medical image analysis [6], image coding [4], industrial

inspection [27], object appearance modeling [17], etc. Cootes and Taylor [12]

have an extensive survey on this topic.

Due to the needs of many practical applications such as face recognition, ex-

pression analysis and pose estimation, extensive research has been conducted

in face alignment, among which AAM [3, 10] and their variations [5, 8, 14, 15]

are probably one of the most popular approach. Baker and Matthews [3] pro-

posed the Inverse Compositional (IC) method and SIC method that greatly

improves the fitting speed and performance. However, little work has been

done in fitting an AAM to facial video sequences in particular. Ahlberg [1]

utilized a simplified AAM to track facial features in videos. Koterba et al. [19]

proposed to use a 3D face model as a constraint in fitting multiple video

frames. Matthews et al. [25] also updated the generic AAM using the warped

image observation, such that a subject-specific model can be obtained during
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the fitting process. Comparing to their approach, we will show that treating

the previous frame information as an additional constraint can improve the

fitting speed, not to mention saving the extra time needed to update the bulky

eigenspace of the appearance model in an AAM. Bosch et al. [7] proposed an

Active Appearance Motion Model that captures the motion pattern in video

sequences by taking the concatenation of the landmarks from multiple frames

as training samples. This approach takes advantage of the periodic motion

pattern in medical image sequences. In contrast, our approach does not make

any assumption on the object’s motion. Batur and Hayes [5] propose an ex-

tension of AAM fitting algorithm in that the gradient matrix can be adapted,

rather than fixed, which offers improved fitting performance on static images.

This is very different to our approach since we study video-based fitting and

our appearance model contains both generic and subject-specific appearance

information.

3 Active Appearance Model

This section will first introduce the model learning of the conventional Active

Appearance Model, including the shape model and the appearance model. It

will then briefly describe the method of fitting AAM to a static image.

3.1 Model Learning

The shape model and appearance model part of an AAM are trained with a

representative set of facial images. The distribution of facial landmarks are

modeled as a multi-dimensional Gaussian distribution, which is regarded as
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the shape model. The procedure for training a shape model is as follows.

Given a face database, each facial image is manually labeled with a set of

2D landmarks, [xi, yi] i = 1, 2, ..., v. The collection of landmarks of one image

is treated as one observation from the random process defined by the shape

model, s = [x1, y1, x2, y2, ..., xv, yv]T. Eigen-analysis is applied to the observa-

tion set and the resulting linear shape model represents a shape as,

s(P) = s0 +
n∑

i=1

pisi, (1)

where s0 is the mean shape, si is the ith shape basis, and p = [p1, p2, ..., pn] are

the shape parameters. By design, the first four shape basis vectors represent

global rotation and translation. Together with other basis vectors, a mapping

function from the model coordinate system to the coordinates in the image

observation is defined as W(x; p), where x is a pixel coordinate defined by

the mean shape s0.

After the shape model is trained, each facial image is warped into the mean

shape using a piecewise affine transformation. These shape-normalized appear-

ances from all training images are fed into an eigen-analysis and the resulting

model represents an appearance as,

A(x;λ) = A0(x) +
m∑

i=1

λiAi(x), (2)

where A0 is the mean appearance, Ai is the ith appearance basis, and λ =

[λ1, λ2, ..., λm] are the appearance parameters. Figure 1 shows an AAM trained

using 534 images of 200 subjects from the ND1 3D face database [9]. In conclu-

sion, the collection of the shape model and appearance model is conventionally

treated as the AAM: = = {si, Aj}i∈[0,n],j∈[0,m].
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Fig. 1. The mean and first 7 basis vectors of the shape model (top) and the appear-

ance model (bottom) trained from the ND1 database. The shape basis vectors are

shown as arrows at the corresponding mean shape landmark locations.

3.2 Model Fitting

An AAM can synthesize facial images with arbitrary shape and appearance

within the range expressed by the training population. Thus, the AAM can be

used to explain a facial image by finding the optimal shape and appearance

parameters such that the synthesized image is as similar to the image obser-

vation as possible. This leads to the cost function used for model fitting [11],

J(p, λ) =
∑
x∈s0

[I(W(x; p))− A(x;λ)]2, (3)

which is the mean-square-error (MSE) between the image warped from the ob-

servation I(W(x; p)) and the synthesized appearance model instance A(x;λ).

Traditionally this minimization problem is solved by iterative gradient-descent

methods which estimate ∆p, ∆λ and add them to p, λ. Baker and Matthews [3]

proposed the compositional method to generate the new shape parameters

based on ∆p in their IC and SIC method. The key idea of IC and SIC is that

the role of the appearance template and the input image is switched when

computing ∆p. This enables the time-consuming steps of parameter estima-

tion to be pre-computed and performed outside of the iteration loop. We will

borrow this key idea in deriving the solution of our AAAM algorithm.
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4 Adaptive Active Appearance Model

Having introduced the conventional AAM, in this section we will first present

how to learn the Adaptive Active Appearance Model (AAAM) from a video

sequence. Then we will describe the method of fitting an AAAM to a video

frame in detail, as well as the computational cost.

4.1 Model Learning

Our approach studies the problem of fitting a statistical face model to faces

contained in a video sequence. Conventionally this video-based fitting problem

can be solved via learning an AAM in an offline fashion and treat the fitting

of the video frame almost the same as that of the static image. The only

difference between video-based fitting and image-based fitting might be that

in the former the fitting result of frame t−1 can be used as the initialization of

frame t, while in the latter the initialization might rely on the face detection.

The AAM can be offline learned from the training images of one subject with

manual labels of landmarks, which is normally considered as person-specific

AAM [16]. This type of AAM can fit very reliably to video sequences of the

same subject. However, the fitting performance degrades quickly when tested

on video sequences of unseen subjects, i.e., subjects different to the one in

the training data. One popular way to remedy this problem is to offline learn

a generic AAM using training images from a large set of subjects, with the

hope that the appearance variation of the test subject can be well explained

by the generic AAM. However, as shown in [16], the fitting performance of

the generic AAM on unseen subjects is still not satisfying. This is commonly
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known as the generalization problem of the conventional AAM.

It might be worthwhile to understand the cause of this generalization problem.

We assert this is mostly due to the representational power of the appearance

model. Even the generic AAM is trained from a large set of images, the ap-

pearance model only learns the appearance variation retained in the training

data. It is very likely that the appearance model can not represent the appear-

ance information of the unseen test subject sufficiently well. However, using

the MSE as the distance metric essentially employs an “interpretation through

synthesis” approach. Hence, if the appearance model is unable to synthesize an

appearance instance that is “similar” enough to the test image, the fitting pro-

cess will have difficult to estimate/interprate the correct landmark locations

of the test image. This problem can be even severe considering that the ap-

pearance parameters, which determines the synthesized appearance instance,

and the shape parameters, which controls the landmark locations, have to be

estimated simultaneously during the fitting.

Motivated by increasing the representational power of the appearance model,

we propose an Adaptive Active Appearance Model (AAAM), which is learned

and updated in an online fashion from a video sequence.

=̄ = {si, Aj,Mk}i∈[0,n],j∈[0,m],k∈[1,K] (4)

Our AAAM has the same shape model {si} as the generic AAM. While the

appearance model have two components: {Aj} is the appearance model learned

offline from a large set of labeled data, which is the same as the appearance

model of the generic AAM; {Mk} is the appearance model learned online from
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the video sequence being tested. Hence, {Mk} will contain the appearance

information of the subject in the video sequence, which will help dramatically

on the representational power of the appearance model. We consider {Mk} as

a subject-specific appearance model.

Before introducing how the subject-specific appearance model {Mk} is learned,

we first briefly mention the objective function of model fitting using our

AAAM. Given an AAAM =̄ and a test video frame It at time t, AAAM

uses the following objective function to perform the face model fitting:

Jt(p, λ) =
∑
x∈s0

[A0(x)+
m∑

i=1

λiAi(x)−It(W(x; p))]2+
w

K

K∑
k=1

∑
x∈s0

[Mk(x)−It(W(x; p))]2,

(5)

which is composed of two terms weighted by a weighting parameter w. The

first term is the same as Eq. (3), i.e., the MSE between the warped image and

the synthesized appearance instance from the generic appearance model {Aj}.

The second one is the MSE between the current warped image It(W(x; p)) and

the subject-specific appearance model {Mk}, which is obtained in an on-line

fashion from video frame observations at the previous time instances. Thus in

the fitting of each video frame, both MSE-based distance measures are served

as constraints to guide the fitting process.

In general, from the aforementioned object function, it is obvious that {Mk}

will be learned from the warped images of the previous video frames. There

are different strategies in learning and updating {Mk}.

Firstly, it can be the warped image of the video frame at time t− 1:

M0(x) = It−1(W(x; pt−1)). (6)

In this case, one image template serves as the subject-specific appearance
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model and is updated when the fitting is completed for each frame.

Secondly, rather than updating the appearance model at every frame, we only

retain a set of K warped images from previous frames, who have the small-

est MSE with respect to the generic appearance model, i.e., the first term

in Eq. (5). All K warped images (appearance templates) will be treated as

the subject-specific appearance model and used in the fitting of future video

frames. Once the fitting of the frame t−1 is finished, if the MSE of frame t−1

is less than the largest MSE among the K appearance templates, the warped

image It−1(W(x; pt−1)) will replace the template with the largest MSE. In this

approach, since the K appearance templates {Mk}k∈[1,K] are the best fitting

results based on the measurement of the generic AAM, they are most likely

to benefit the fitting of the remaining frames in the video sequence.

Thirdly, the warped images of L previous video frames averaged by a decaying

factor can also represent Mk(x):

M0(x) =
1− r

r(1− rL)

L∑
l=1

rlIt−l(W(x; pt−l)), (7)

where r is a decaying factor between 0 and 1. Similar to the first strategy,

one image template serves as the subject-specific appearance model and is

updated at every frame.

In Section 5, we will conduct experiments on AAAM fitting using the first

two strategies. Of course, other learning strategies of {Mk} are also possible,

for example, the average of L previous warped images without decaying, and

a dynamic eigenspace model of the previous warped images [21]. In the latter

case, an efficient eigenspace updating method can be used to sequentially add

the most recent warped image into the model [20], and additional appearance
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parameters of this eigenspace model should be incorporated into the the second

term of Eq. (5). In this paper, we view the various strategies as recipes of

model adaption. In other words, just like each recipe might be appreciated

by different people, various strategies are also applicable on different types

of videos. There is rarely a strategy that performs the best for all types of

facial videos. Hence, it is not the focus of this work to directly compare the

performance of various strategies. In the experiments, we will show that both

the first and second strategy can improve the conventional AAM for video-

based model fitting.

There are clear benefits from using both generic and subject-specific appear-

ance models during the face model fitting. First of all, in practical applications

there is always mismatch between the imaging environment of the images used

for training face models and the images to be fit, as well as the presence of the

specific appearance information of the subject being fit that is not modeled by

the generic appearance models. Thus the distance-to-subject-specific-model is

employed to bridge such a gap. Secondly, if we only use the subject-specific

model, the alignment error might propagate over time. The generic model is

well suited for preventing the error propagation and correcting the drifting.

Finally we also want to point out that there is one key assumption underly-

ing our adaptation framework. That is, the generic AAM model component

{si, Aj} is capable of fitting to certain video frames reasonably well. It is clear

that when fitting to the first frame of a video sequence, {Mk} is empty and

the generic AAM model needs to provide reasonable fitting in order to start

the learning of {Mk}. Otherwise {Mk} will be learned from noisy appearance

information and the potential of adaptation will be greatly limited. In prac-

tical scenarios, we argue this assumption can be satisfied because in general
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a video sequence is often a blend of “easy frames” and “difficult frames” in

terms of their level of difficulty for fitting. For example, images with frontal

view faces are easy ones, while images with profile view faces are difficult

ones. In a way, our adaption framework seeks to enhance the fitting of “dif-

ficult frames” by taking advantage of the subject-specific information from

the “easy frames”. In addition, the slowly varying facial appearance, such as

illumination, expression, and poses, also makes model adaptation necessary.

4.2 Model Fitting

Given an AAAM =̄ learned online and a video frame It, model fitting seeks

to minimize the objective function Eq. (5) by estimating the optimal shape

parameters p and appearance parameters λ simultaneously.

Using an approach similar to the IC and SIC algorithms [3], the proposed

AAAM fitting algorithm iteratively minimizes:

∑
x

[
A0(W(x;4p)) +

m∑
i=1

(λi +4λi)Ai(W(x;4p))− It(W(x; p))

]2

+
w

K

K∑
k=1

∑
x

[Mk(W(x;4p))− It(W(x; p))]2
(8)

with respect to 4p and 4λ = (4λ1, ...,4λm)T simultaneously, and then up-

dates the warp W(x; p) ← W(x; p) ◦W(x;4p)−1 and the appearance pa-

rameters λ← λ+4λ.

In order to solve for 4p and 4λ, the non-linear expression in Eq. (8) is lin-

earized by performing a first order Taylor series expansion on A0(W(x;4p)),

Ai(W(x;4p)), and Mk(W(x;4p)), and assuming that W(x; 0) is the iden-
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tity warp. This gives:

∑
x

[
A0(x) +∇A0

∂W

∂p
4p +

m∑
i=1

(λi +4λi)(Ai(x) +∇Ai
∂W

∂p
4p)− It(W(x; p))

]2

+
w

K

K∑
k=1

∑
x

[
Mk(x) +∇Mk

∂W

∂p
4p− It(W(x; p))

]2

.

(9)

The first term in the above equation can be simplified as follows by neglecting

the second order terms:

∑
x

[
A0(x) +

m∑
i=1

λiAi(x)− It(W(x; p)) + (∇A0 +
m∑

i=1

λi∇Ai)
∂W

∂p
4p +

m∑
i=1

Ai(x)4λi

]2

.

(10)

To simplify the notation, firstly we denote q = (pTλT)T and similarly 4q =

(4pT4λT)T. Thus q is a n + m dimensional vector including both the shape

parameters p and the appearance parameters λ. Secondly, we denote n + m

dimensional steepest-descent images:

SD0(x) =

[
(∇A0 +

m∑
i=1

λi∇Ai)
∂W

∂p1

, ..., (∇A0 +
m∑

i=1

λi∇Ai)
∂W

∂pn

, A1(x), ..., Am(x)

]
,

(11)

and

SDk(x) =

[
w

K
∇Mk

∂W

∂p1

, ...,
w

K
∇Mk

∂W

∂pn

,0, ...,0

]
. (12)

Thirdly, we denote the error images:

E0(x) = A0(x) +
m∑

i=1

λiAi(x)− It(W(x; p)), (13)

and

Ek(x) =
w

K
(Mk(x)− It(W(x; p))). (14)
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Equation (9) is simplified to:

K∑
k=0

∑
x

[Ek(x) + SDk(x)4q]2. (15)

The partial derivative of Eq. (15) with respect to 4q is:

2
K∑

k=0

∑
x

SDT
k(x)[Ek(x) + SDk(x)4q]. (16)

The closed form solution of Eq. (8) is obtained by setting Eq. (16) to equal

zero:

4q = −H−1
K∑

k=0

∑
x

SDT
k(x)Ek(x), (17)

where H−1 is the inverse of the Hessian matrix:

H =
K∑

k=0

Hk =
K∑

k=0

∑
x

SDT
k(x)SDk(x). (18)

The algorithm is summarized in Figure 2. Note that even the Hessian matrix is

the summation of K+1 Hk matrixes as indicated by Eq. (18), the summation

of K matrixes,
∑K

k=1 Hk, can be pre-computed, which is fixed as long as the

subject-specific appearance model is not updated. Once the model is updated,

for example one of the K appearance templates Mk, we need to re-compute

the following: the gradient, the steepest descent image and the Hessian matrix

for this particular Mk, and
∑K

k=1 Hk.

The computation cost of the AAAM fitting algorithm is summarized in Ta-

ble 1. It can be observed that the additional subject-specific appearance model

results in slight more computation in Step (2) and Step (8). However, given

the fact n + m � K, the per iteration computation cost of AAAM fitting,

O((n + m)2N + (n + m)3 + KnN), is almost the same as that of the SIC

algorithm, O((n+m)2N + (n+m)3) [2].
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Pre-compute:

(3) Evaluate the gradients ∇Mk, and ∇Ai for i ∈ [0,m], k ∈ [1, K]

(4) Evaluate the Jacobian ∂W
∂p

at (x; 0)

(5) Evaluate the steepest descent images and the Hessian matrixes

using Eq. (12) and
∑K

k=1 Hk

Iterate:

(1) Warp I with W(x; p) to compute I(W(x; p))

(2) Compute the error images Ek(x) using Eq. (13) and Eq. (14)

(6) Compute the steepest descent image SD0(x) using Eq. (11)

(7) Compute the Hessian matrix H using Eq. (18) and invert H

(8) Compute
∑K

k=0

∑
x SDT

k(x)Ek(x)

(9) Compute 4q using Eq. (17)

(10) Update W(x; p)←W(x; p) ◦W(x;4p)−1 and λ← λ+4λ

until ||4p|| ≤ ε

Fig. 2. Summary of the AAAM fitting algorithm.

5 Experiments

In this section, we will demonstrate the effectiveness of our proposed algorithm

in fitting facial video sequences. We will use the SIC algorithm as the baseline

for performance comparison because on one hand our algorithm is a direct

extension of the SIC algorithm, on the other hand SIC is also one of the most

well known methods in generic face alignment.

To evaluate our algorithm, we collect a large set of images and videos for the

experiments, as shown in Table 2. The training set is composed of three public

available databases: the ND1 database [9], which contains 200 facial images

with mostly frontal views from 200 subjects, and the FERET database [26],
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Table 1

The computation cost of the AAAM fitting algorithm. The right column indicates

the total cost for the pre-computation and each iteration. n is the number of shape

bases, m is the number of appearance bases, K is the number of appearance tem-

plates and N is the number of pixels in the mean shape domain.

P
re

-c
om

p.

Step 3 O(mN + KN)

Step 4 O(nN)

Step 5 O(nN + n2N) O((n2 + m + K)N)

P
er

It
er

at
io

n

Step 1 O(nN)

Step 2 O(mN + KN)

Step 6 O((n + m)N)

Step 7 O((n + m)2N + (n + m)3)

Step 8 O((n + m)N + KnN)

Step 9 O((n + m)2)

Step 10 O(n2 + m) O((n + m)2N + (n + m)3 + KnN)

which contains 200 images each from one subject with various poses, and

Cohn-Kanade facial expression database [18], which contains 563 images from

100 subjects with various emotion-specified expressions. Figure 3 shows sample

images from these three databases. The test set is composed of a number of

video sequences captured at our lab, whose subjects are not seen in the training

set. We have made efforts to ensure that the test set is representative for the

practical application scenarios. For example, our test set includes videos from

both indoor and outdoor, as well as different types of facial variations, such
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Table 2

Summary of the dataset.

name # images # subjects environment variation

ND1 [9] 200 200 indoor frontal

FERET [26] 200 200 indoor pose

CMU Exp. [18] 563 100 indoor expression

GRC1 980 1 outdoor pose

GRC2 970 1 outdoor resolution

GRC3-5 18885 3 indoor expression

(a) (b) (c)

Fig. 3. Examples of the face dataset: (a) ND1 database, (b) FERET database, (c)

CMU Cohn-Kanade facial expression database.

as pose, resolution and expression.

As we mentioned in the Section 4.1, there are different strategies in learning

and updating our AAAM. In the following sections, we will evaluate the per-

formance of our AAAM algorithm using the first and second learning strategy

respectively.
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5.1 The First Strategy

In the first strategy, the subject-specific appearance model {Mk} is simply

the warped image of the previous frame, as defined in Eq. (6). The generic

appearance model {Aj} and the shape model {si} need to be learned offline.

In our experiment, this offline learning is conducted on a 400-image set, where

200 of them are from the ND1 database and another 200 images are from the

FERET database. Each image in the 400-image set is manually labeled with

33 landmarks. Iterative model enhancement [22] is used in the training stage

and results in a more compact model than the conventional approach. The

resulting shape model {si} has 10 shape bases, the appearance model {Aj}

has 52 appearance bases, and the width of the mean shape is 62 pixels.

Two outdoor surveillance video sequences, whose subjects are not included in

the training set, are used for test. Both sequences are captured at 30 frames

per second (FPS). For comparison purpose, we have implemented both the SIC

and AAAM algorithms in MatlabTM. By manually placing the mean shape on

the first video frame, AAAM and SIC algorithms are used to fit the face model

to these test videos respectively. The weighting parameter for the AAAM

algorithm, w, is set to be 1. Ideally w should be dynamically set according

on the correctness of the appearance template M0. The first video sequence

(GRC1) contains 980 frames. The proposed AAAM algorithm successfully fits

the face over the entire video sequence while the SIC algorithm loses the fitting

starting from frame 780 due to a large pose change. In the case where there is

no manual label for each frame of the test video sequences, visual inspection

of the fitting results is one way of evaluating the performance. Figure 4 shows

the comparison between two methods on 6 frames in this video. A visually
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more accurately fitted mesh is observed when using the AAAM algorithm.

Note that the inaccurate fitting results of SIC is mainly due to the fact that

the imaging environment of the surveillance test video is very different from

that of the training data, which are high quality images captured indoor. This

is also the well-known generalization issue of the conventional AAM approach.

Other than visual inspection, an alternative way to evaluate the fitting perfor-

mance is to quantitatively compute the registration consistency across frames,

which is represented by the MSE of the warped image observations between

consecutive frames. As shown in Figure 5, AAAM provides on average lower

MSE for the entire sequence, especially when SIC has high MSE at certain

frames due to the changing facial appearance. Hence this shows superior frame-

to-frame registration using the AAAM algorithm. On one hand, this is a favor-

able property for many applications that requires accurate registration across

time, such as super-resolution from video sequences. On the other hand, this

is also an expected result since the frame-to-frame registration measure is a

part of the AAAM’s objective function.

Our proposed method can improve not only the fitting robustness and accu-

racy, but also the fitting speed. Figure 6 shows the number of iterations for

fitting each frame using the SIC and AAAM algorithm. The lower curve of

AAAM indicates that AAAM can converge much faster than SIC. This im-

provement is expected because the additional constraint in AAAM helps the

minimization procedure. Given the fact that the computation cost per itera-

tion in the fitting is almost the same as SIC, the average time for fitting one

frame using AAAM is much lower because less iterations are needed for fitting

to converge. Based on a MatlabTM implementation running on a conventional

2.13 GHz PentiumTM4 computer, on average AAAM takes 0.1254 sec. to fit
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Fig. 4. Comparison of the fitted mesh using the AAAM algorithm (solid line) and

the conventional SIC algorithm (dashed line) on 6 frames of video GRC3 (clipped

views from frame 1, 40, 87, 287, 734 and 767). The top image is the un-clipped

frame.

one frame compared to 0.2526 sec. by SIC.

Figure 7 shows the fitting results on another 970-frame-long video sequence

(GRC2), where a Pan-Tilt-Zoom (PTZ) camera is pointing at three subjects
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Fig. 5. The MSE of neighboring warped frames of a video sequence. Constant lower

MSE indicates the improved frame-to-frame registration using the AAAM algo-

rithm.
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Fig. 6. The number of iterations in fitting each frame of a video sequence. Constant

lower number of iterations is observed from the proposed AAAM algorithm.

and continuously zooming out 1 . This is to mimic the scenario where in surveil-

lance applications the subjects can have various distance to a camera and the

face image can be of low resolution. How to effectively fit a face model onto

this type of challenging real-world video sequence receives relatively little at-

tention in the vision community. The proposed AAAM algorithm successfully

fits the entire video sequence, even when zooming happens and large scale

change appears in consecutive frames. Note that the smallest face size in this

video sequence only has the face width of 15 pixels. However, when applying

the conventional SIC algorithm, the fitting diverges at frame 34 when the first

1 Please play the supplementary video 1 for viewing this result.
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Fig. 7. Fitting results with zoom in facial area using AAAM. Reliable fitting is

observed in dealing with zooming and low resolution, even for the facial area of 15

pixels wide (lower right).

zooming happens, and the fitting for the remaining frames are all failed.
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5.2 The Second Strategy

In this section, we will present experimental results using the second learning

strategy for the subject-specific appearance model. A subset of CMU Cohn-

Kanade facial expression database including 563 images from 100 subjects is

used as the training set, among which 97 images are with neutral expression

and the remaining images are manually selected peak expression in each of

the original expression session. Since we are interested in fitting face models

to videos with subtle facial expression changes, each image in the training set

is manually labeled with 72 landmarks, which is more than twice of the first

strategy. Also, we apply iterative model enhancement [22] in the offline train-

ing stage. The resulting shape model {si} has 29 shape bases, the appearance

model {Aj} has 181 appearance bases, and the width of the mean shape is

126 pixels.

The test set includes three video sequences, one for each unseen subject. Each

video is more than 7 minutes long and has 6295 frames in total. The size of the

video frame is 960×720 pixels and the average face width is 150 pixels. These

videos are captured via a web-cam while the subjects are asked to watch the

same media content displayed on a LCD monitor. Since we choose a popular

comics as the content, quite a lot facial expression, mostly smiling, can be

observed from the captured videos.

Unlike the previous section, here we would like to have a quantitative analysis

on the fitting performance. Hence, labeling the ground truth of landmark

locations on the video sequences is required. Obvious manually labeling each

frame of the entire sequence is practically impossible. We choose to rely on
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the person-specific AAM, which is known to have excellent performance when

the training and testing images are of the same subject [16], to provide the

ground truth. That is, for each sequence, we randomly select 20 frames and

manually label their landmarks. These 20 images and labels, together with the

shape labels in the Cohn-Kanade database, are use to train an AAM for each

sequence. Note that in the resulting AAM, the appearance model is learned

from 20 images only, while the shape model attributes to both the 20 images

and the labels in the Cohn-Kanade database. Finally the fitting results of

each video sequence using its own AAM are treated as the ground truth. We

visually go through the entire sequence and make sure that these ground truth

landmarks are satisfying.

We first compare the performance of our AAAM algorithm with the conven-

tional SIC algorithm. Given a video sequence, both algorithms initialize the

first frame by placing the mean shape within the face detection window. For

other frames, the fitted landmark locations from the previous frame will be

used as the initialization. We evaluate the fitting performance by computing

the MSE between the fitted landmark locations and the ground truth on a

per-frame basis. For our AAAM algorithm, we choose K to be 4 and w to

be 1.5. Figure 8 shows the comparison of two algorithms on all three test se-

quences. It can be observed that our algorithm not only achieves lower average

MSE compared to SIC, but also much less variation in the estimation error.

For example, the worst fitting error in AAAM is around 5 pixels, while for

SIC a small set of frames have MSE well above 10 pixels, especially for the

video GRC5. We show the fitting results of AAAM on the 8 frames of video

GRC5 in Figure 9 2 . Despite the large expression variation of the subject, our

2 Due the large number of landmarks and triangles in the mesh representation, we
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Fig. 8. Fitting performance comparison of AAAM and SIC on video GRC3, GRC4

and GRC5 from top to bottom. We plot the Cumulative Density Function (CDF) of

the landmark estimation error (MSE between estimated landmarks and the truth),

i.e., one point on the curve means that how much percentage of the frames have the

MSE less than the horizontal axis.

approach still captures most of the expression changes.

The next experiment is to study the influence of the number of appearance

choose to plot the contour defined by the estimated landmarks for the visibility

concern. Please play the supplementary video 2 for viewing this result.
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Fig. 9. One example un-clipped frame and fitting results on 8 frames (clipped view)

of video GRC5 using the AAAM algorithm.

templates, i.e., K in the subject-specific appearance model {Mk}. We fix the

weighting parameter w to be 1.5 and vary K to be 0, 1, 4, 8, and 12, respec-

tively. Notice that when K = 0, our AAAM fitting algorithm is equivalent to

the conventional SIC method since no subject-specific appearance template is

used during the fitting. Table 3 illustrates the results. We first evaluate the

mean of the MSE between the estimated landmarks and the ground truth for
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Table 3

Performance with different number of subject-specific appearance templates K

K 0 1 4 8 12

M
ea

n(
M

SE
)

(p
ix

el
)

GRC3 3.92 3.72 3.38 3.43 3.53

GRC4 3.31 3.29 2.59 3.67 3.47

GRC5 4.88 2.79 2.64 2.54 2.77

St
d(

M
SE

)
(p

ix
el

)

GRC3 1.08 0.68 0.56 0.50 0.55

GRC4 0.66 0.35 0.29 0.25 0.24

GRC5 6.00 0.63 0.33 0.35 0.47

P
er

c.
of

up
da

te
s

(%
)

GRC3 0 0.1 0.6 1.8 3.7

GRC4 0 0.6 2.4 4.4 2.9

GRC5 0 0.3 5.1 9.7 12.9

all 6295 frames. It can be seen that the best performance is obtained when

K is around 4. Also, the fact that K = 4 is always better than K = 0 shows

that the AAAM approach outperforms the SIC method. In contrast, the larger

K does not necessarily result in the better performance, as K = 12 always

has worse performance than K = 4. Similar conclusion also holds for variance

of the MSE for all frames. The smallest variance is obtained when K equals

to 4 or 8, which is substantially smaller than that of the SIC method (when

K = 0). The last measurement is the percentage of the frames being updated

into the subject-specific appearance model. Note that in the second strategy,

the updating happens only if we have a better fitting, i.e., the MSE of the cur-
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Table 4

Performance with different weighting parameter w

w 0.5 1 1.5 2 2.5

M
ea

n(
M

SE
)

(p
ix

el
)

GRC3 3.76 4.01 3.38 3.64 3.51

GRC4 3.15 4.14 2.59 3.21 3.00

GRC5 2.82 2.60 2.64 2.76 2.63

St
d(

M
SE

)
(p

ix
el

)

GRC3 1.14 0.62 0.56 0.78 0.55

GRC4 0.85 0.43 0.29 0.33 0.31

GRC5 0.65 0.44 0.33 0.38 0.32

P
er

c.
of

up
da

te
s

(%
)

GRC3 0.5 0.7 0.6 3.8 52.4

GRC4 1.3 0.1 2.4 3.5 63.3

GRC5 12.9 3.2 5.1 4.5 46.8

rent warped image with respect to {Aj} is less than the largest MSE among

the K templates {Mk}. It is expected that the larger K is, the more frequent

the subject-specific appearance model is updated. This is validated by our

experimental results. Also notice that when K = 4, only a small percentage

of the frames (up to 5.1%) among the entire video sequence is utilized for

updating, which ensures that the updating would not hinder the efficiency of

the fitting process.

We also compare the performance of our algorithm with respect to different

weighting parameter w, as shown in Table 4. It can be seen that in general

w = 1.5 is a good balance between the generic AAM and the subject-specific
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appearance model. Too large weights will make the minimization process focus

less on the first term, the MSE to the generic model, which is then unstable

and results in a high percentage of model updating (last three rows in the

table when w = 2.5). On the other hand, if too small weights are used, the

subject-specific model contributes less to the fitting process. Hence our ap-

proach becomes similar to the conventional SIC method and high variances of

the MSE are observed (Table 4 when w = 0.5).

6 Conclusions

This paper studies methods to effectively fit a mesh-based face representa-

tion to facial video sequences by using a novel statistical facial appearance

and shape model. Motivated by improving the generalization ability of the

conventional AAM, both a generic AAM and a subject-specific appearance

model are employed simultaneously in the proposed model learning and fit-

ting scheme. The subject-specific model is updated in an online fashion by

making use of the test video sequence. Various online learning strategies are

studied in this paper. By leveraging the idea of the SIC algorithm, we also in-

troduce an efficient implementation of the fitting algorithm using the AAAM.

Experimental results from various representative video sequences demonstrate

the improved fitting robustness, accuracy and speed.

Future directions of this work can be experimenting with other learning strate-

gies for the subject-specific model, such as Eq. (7), and as well as investigating

the option of dynamically determining the weighting factor w based on the

observed video frame.
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