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Abstract

Modern face alignment methods have become quite ac-
curate at predicting the locations of facial landmarks, but
they do not typically estimate the uncertainty of their pre-
dicted locations. In this paper, we present a novel frame-
work for jointly predicting facial landmark locations and
the associated uncertainties, modeled as 2D Gaussian dis-
tributions, using Gaussian log-likelihood loss. Not only
does our joint estimation of uncertainty and landmark lo-
cations yield state-of-the-art estimates of the uncertainty of
predicted landmark locations, but it also yields state-of-the-
art estimates for the landmark locations (face alignment).
Our method’s estimates of the uncertainty of landmarks’
predicted locations could be used to automatically identify
input images on which face alignment fails, which can be
critical for downstream tasks.

1. Introduction
Face alignment is the task of estimating the pixel loca-

tions of a set of predefined facial landmark points (e.g., eye
and mouth corners) in an input face image. Most methods
for face alignment focus on accurately estimating the facial
landmark locations [35, 37] without estimating the uncer-
tainty of these location estimates. Estimating uncertainty
not only enables the identification of failure cases in real-
world scenarios, but also allows downstream tasks to be
adjusted either automatically or manually based upon the
estimated uncertainty. Therefore, while it is certainly im-
portant to improve the accuracy of face alignment systems,
it is equally important to predict their uncertainty.

Our contributions can be summarized as follows. This
is the first work to introduce the concept of parametric un-
certainty estimation for image-based landmark estimation
(and for face alignment in particular). To estimate land-
mark locations in a differentiable manner, we do not se-
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Figure 1: Results of our joint face alignment and uncer-
tainty estimation on three test images. Ground truth (green)
and predicted (yellow) landmark locations are shown. The
estimated uncertainty of the predicted location of each land-
mark is shown in blue (Gaussian error ellipse for Maha-
lanobis distance 1). Landmarks that are occluded (e.g., by
the hand in center image) tend to have larger uncertainty.

lect the location of the maximum (argmax) of each land-
mark’s heatmap, but instead propose to use the spatial mean
of the positive elements of each heatmap. To estimate un-
certainty, we add a Cholesky Estimator Network (CEN)
branch to estimate the covariance matrix of a Gaussian un-
certainty distribution. We combine these estimates using a
Gaussian log-likelihood loss that enables simultaneous es-
timation of landmark locations and their uncertainty. This
joint estimation, which we call Uncertainty with Gaussian
Log-LIkelihood (UGLLI), yields state-of-the-art results for
both uncertainty estimation and facial landmark localiza-
tion. Moreover, we find that the choice of methods for cal-
culating mean and covariance is crucial. Landmark posi-
tions are best obtained by taking a spatial mean over the
heatmaps, rather than by direct regression. In contrast, the
uncertainty covariance matrices are best obtained by direct
regression, not from the heatmaps.

2. Related Work
Early methods for face alignment were based on Ac-

tive Shape Models (ASM) and Active Appearance Mod-
els (AAM) [9, 34], as well as their multi-view and multi-
camera variations [10, 1]. Subsequently, direct regression
methods (which map directly from the features extracted at
facial landmark locations to the face shape or landmark lo-
cations) became popular due to their excellent performance.
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Of these, tree-based regression methods [24, 14] proved
particularly fast, and the subsequent cascaded regression
methods [11, 33, 32] improved accuracy.

Recent approaches [41, 42, 38, 5, 30] are based on deep
learning. The currently most successful deep methods, such
as stacked hourglass networks [38, 5] and densely con-
nected U-nets (DU-Net) [30], use a cascade of deep net-
works, an architecture that was originally developed for
human body pose estimation [20]. These models [20, 5,
29, 30] are trained using the `2 distance between the pre-
dicted heatmap for each landmark and a proxy ground-truth
heatmap that is generated by placing a symmetric Gaussian
distribution with small fixed variance at the ground-truth
landmark location. They then infer landmark locations us-
ing the argmax of each predicted heatmap. Indirect infer-
ence through a predicted heatmap offers several advantages
over direct prediction [2].

However, this approach has at least two disadvantages.
First, it introduces quantization errors during inference,
since the heatmap’s argmax can only be determined to the
nearest pixel [18, 21, 28]. To achieve sub-pixel localiza-
tion for body pose estimation, [18] replaces the argmax with
a spatial mean over the softmax. In a different approach
to sub-pixel localization, which is applied to videos, [28]
samples two additional points adjacent to the max of the
heatmap to estimate a local peak. Second, using a symmet-
ric Gaussian proxy ground-truth heatmap makes it difficult
to infer uncertainties [7]. To estimate face alignment uncer-
tainty, [7] uses a non-parametric approach: a kernel density
network obtained by convolving the heatmaps with a fixed
symmetric Gaussian kernel.

Finally, there are other methods for regression with un-
certainty that have not been applied to landmark regression.
The mixture density network (MDN) [4] estimates param-
eters of Gaussian distributions in a mixture, though typi-
cally such Gaussians are one-dimensional or have diago-
nal covariance matrices. Also for 1-D regression, [16] uses
ensembles and adversarial training to produce two outputs,
one for prediction and one for uncertainty.

3. Proposed Method
Figure 2 shows an overview of our UGLLI Face Align-

ment. The input RGB face image is passed through a
DU-Net [30] architecture, to which we add two addi-
tional components branching from each hourglass (each
U-net). The first new component is a mean estimator,
which computes the estimated location of each landmark
as the weighted spatial mean of the positive elements of the
corresponding heatmap. The second new component, the
Cholesky Estimator Network (CEN), emerges from the bot-
tleneck layer of each hourglass (CEN weights are shared
across all hourglasses). The CEN estimates the Cholesky
coefficients of the covariance matrix of a 2D Gaussian prob-
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Figure 2: An UGLLI overview. From each hourglass, we
propose a shared Cholesky Estimator Network (CEN) that
is appended to the bottleneck layer and a mean estimator
that is applied to the heatmap. The figure shows the joint
landmark prediction and uncertainty estimation performed
for each hourglass i and each landmark j. The ground-truth
(labeled) landmark location is represented by pj .

ability distribution for each landmark location. For each
hourglass i and each landmark j, the landmark’s location
estimate µij and estimated covariance matrix Σij are tied
together by a Gaussian log-likelihood (GLL) loss func-
tion Lij , which enables end-to-end optimization of the en-
tire face alignment and uncertainty estimation framework.
Rather than the argmax of the heatmap, we choose a mean
estimator for the heatmap that is differentiable and en-
ables sub-pixel accuracy: the weighted spatial mean of the
heatmap’s positive elements. Unlike the non-parametric
model of [7], our uncertainty prediction method is paramet-
ric: we directly estimate the parameters of a single Gaussian
distribution. Furthermore, our method does not constrain
the Gaussian covariance matrix to be diagonal.

3.1. Mean Estimator

LetHij(x, y) denote the value at pixel location (x, y) of
the jth landmark’s heatmap from the ith hourglass. Then
the landmark’s location estimate µij = [µijx, µijy]

T is
given by first post-processing the pixels of the heatmapHij

with a function σ, then taking the weighted spatial mean of
the result. We considered three different functions for σ:
the ReLU function (eliminates the negative values), the soft-
max function (making the mean estimator a soft-argmax of
the heatmap [6, 39, 18, 13]), and a temperature-controlled
softmax function (which, depending on the temperature set-
ting, provides a continuum of softmax functions that range
from a “hard” argmax to the uniform distribution). As ex-
plained in Section 5, choosing σ to be the ReLU function
yields the simplest and best mean estimator. Estimating the
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landmark location from the positive heatmap by taking the
spatial mean can be considered as the maximum likelihood
estimate (MLE) of the mean of a 2D Gaussian distribution
that is sampled on a regular grid, where the heatmap values
represent the frequency of samples at each grid location.

3.2. Gaussian Log-Likelihood Loss

UGLLI uses heatmaps for estimating landmarks’ loca-
tions, but not for estimating their uncertainty. We exper-
imented with several methods for computing a covariance
matrix directly from a heatmap, but none was accurate
enough. We believe the reason is that many images have
some landmarks that can be located very accurately, and
thus the uncertainty of these locations is very small (a frac-
tion of a pixel) in at least one direction. In current heatmap-
based networks, however, the resolution of the heatmap is
too low to accurately represent such small uncertainties.

Cholesky Estimator Network (CEN) We represent the
uncertainty of each landmark location as a Gaussian distri-
bution with covariance matrix Σij , a 2×2 symmetric pos-
itive definite matrix. Σij has three degrees of freedom
that are captured by its Cholesky decomposition: a lower-
triangular matrix Lij such that Σij = LijL

T
ij . To estimate

the elements of Lij , we append a Cholesky Estimator Net-
work (CEN) to the bottleneck of each hourglass. The CEN
is a fully connected linear layer whose input is the bottle-
neck of the hourglass (128 × 4 × 4 = 2048 dimensions)
and output is a vector of 68 × 3 = 224 dimensions. Lij

must have positive diagonal elements to be the Cholesky
decomposition of a covariance matrix, so we pass the cor-
responding entries of the output through an ELU activation
function [8] to which we add a constant to ensure the output
is always positive (asymptote is negative x-axis).

Given the predicted Gaussian distribution for a landmark
of an input image at each hourglass i, the likelihood that the
landmark j is at image location pj is given by:

P (pj |µij ,Lij)=
exp
(
− 1

2 (pj−µij)
TΣ−1

ij (pj−µij)
)

2π
√
|Σij |

(1)

where Σij = LijL
T
ij . Thus, for each landmark in every in-

put image, the network outputs a Gaussian distribution (pa-
rameterized by µij and Lij). The goal of training is for the
network to learn a mapping from input images to Gaussian
distributions, such that the likelihood of the groundtruth
landmark locations (over all landmarks and all training im-
ages) is as large as possible. Maximizing the likelihood (1)
is equivalent to minimizing the negative log likelihood, so
we use the negative log likelihood as our loss function. Our
loss function Lij at each hourglass i for the landmark j can
be expressed as the sum of two terms, T1 and T2:

Lij = log |Σij |︸ ︷︷ ︸
T1

+ (pj − µij)
TΣ−1

ij (pj − µij)︸ ︷︷ ︸
T2

. (2)

In (2), T2 is the squared Mahalanobis distance, while T1
serves as a regularization or prior term that ensures that
the Gaussian uncertainty distribution does not get too large.
Note that if Σij is the identity matrix, (2) reduces to the
standard `2 distance. The objective for a single hourglass
is obtained by averaging the losses across all the landmarks
j = 1, ..., Np , and the total loss L for each input image is a
weighted sum of the losses of every hourglass i:

L =

K∑
i=1

λiLi , where Li =
1

Np

Np∑
j=1

Lij . (3)

At test time, each landmark’s estimated mean and covari-
ance matrix are derived from the final hourglass K.

4. Experiments
4.1. Data Splits

We use the 300-W [26, 25, 27] dataset for training, and
the 300-W and Menpo [40, 31] datasets for evaluation. Ev-
ery face in each dataset is labeled with the locations of
68 landmarks. The images are cropped using the detector
bounding boxes provided by the 300-W challenge and re-
sized to 256 × 256. Images with no detector bounding box
are initialized by adding 5% uniform noise to the location of
each edge of the tight bounding box around the landmarks,
as in [5]. There are two commonly used train/test splits of
the 300-W dataset; we evaluate our method on both.

Split 1 The train set includes 3148 images: the training
images from Helen [17] and LFPW [3], and all AFW [23]
images. The full test set has 689 images: the test images
from Helen and LFPW (common subset), and all IBUG im-
ages (challenge subset). As in [30], training images are aug-
mented randomly using scaling, rotation, and color jittering.

Split 2 The train set includes all 3837 training and test
images from Helen, LFPW, AFW, and IBUG. The test set
has 600 images, known as 300-W Indoor and Outdoor.
Training images are augmented randomly using scaling, ro-
tation, color jittering, and random occlusion, as in [5].

4.2. Training

We modified the PyTorch [22] code for DU-Net [30]
provided by the authors and initialized using their pre-
trained model (Split 1). The RMSprop optimizer is used
as in [5, 30], with batch size 24. We train for 40 epochs: 20
with learning rate 10−4, followed by 20 with learning rate
2×10−5. All hourglasses have equal weights λi = 1 in (3).
On a 12 GB GeForce GTX Titan-X GPU, training takes ∼2
hours (Split 1), and inference time per image is 17ms.

4.3. Evaluation metrics

Normalized Mean Error (NME). The NME for a single
face image is defined as:

NME (%) =
1

Np

Np∑
j=1

||pj − µKj ||2
d

× 100, (4)
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Table 1: NME comparison between our proposed method
and the state-of-the-art methods on the 300-W Common,
Challenge, and Full datasets (Split 1).

NMEinter-ocular (%) (↓)
Common Challenge Full

DSRN [19] 4.12 9.68 5.21
CPM+SBR [13] 3.28 7.58 4.10

SAN [12] 3.34 6.60 3.98
DAN [15] 3.19 5.24 3.59

DU-Net [30] (Public code) 2.97 5.53 3.47
UGLLI (Ours) 2.78 5.08 3.23

Table 2: NME and AUC comparison between our proposed
method and the state-of-the-art methods on the 300-W Test
(Split 2) and Menpo datasets.

NMEbox (%) (↓) AUC7
box(%) (↑)

300-W Menpo 300-W Menpo
2D-FAN [5] 2.56 2.32 66.90 67.40

KDN-Gaussian [7] 2.49 2.26 67.30 68.40
UGLLI (Ours) 2.24 2.20 68.27 69.85

where pj and µKj respectively denote the ground truth and
predicted location of landmark j from the final hourglass
K. Several variations of the normalizing term d have been
used in the literature. NMEinter-ocular [26, 15, 30] sets d
to the distance between the outer corners of the two eyes,
while NMEbox [40, 5, 7] sets d to the geometric mean of
the width and height of the provided ground-truth bound-
ing box

(√
wbbox · hbbox

)
. If a ground-truth bounding box

is not provided, the tight bounding box of the landmarks is
used [5, 7]. In each table, we report our results using the
same error metric as the previous methods compared.

Area Under the Curve (AUC). To compute the AUC,
first plot the cumulative distribution of the fraction of test
images whose NME (%) is less than or equal to the value
on the horizontal axis. The AUC for a test set is then com-
puted as the area under that curve, up to a cutoff NME value.
We report AUC with cutoff 7%, as in [5, 7].

5. Results
Evaluation of Landmark Location Prediction The

face alignment results for 300-W Split 1 and Split 2 are
summarized in Table 1 and Table 2, respectively. Table 2
also shows the results of our model (trained on Split 2) on
the Menpo dataset (6679 frontal training images with 68
landmarks), as in [5, 7]. The results in both tables show that
UGLLI significantly outperforms the state of the art.

Evaluation of Uncertainty Prediction We use the
fourth root of the determinant of the covariance matrix as
a scalar measure of estimated uncertainty: |ΣKj |1/4. Fig-
ure 3 plots the normalized estimated uncertainty vs. the nor-
malized landmark location error on all 300-W Test images
(Split 2). On the left, each point represents one landmark in
one image. On the right, each point represents the average
across all landmarks in one image. The Pearson correlation
coefficients over each plot show that our predicted uncer-

Figure 3: Left: Predicted uncertainty vs. actual error for
each landmark. Right: Predicted uncertainty vs. actual er-
ror for each image (averaged across all landmarks in image).

tainties are strongly correlated with the actual errors, and
ours outperform the uncertainty estimates of Chen et al. [7].

Ablation Studies Table 3 compares modifications of our
approach on Split 2. Table 3 shows that computing the
loss only on the last hourglass (HG) performs worse than
computing loss on all hourglasses, because of the vanishing
gradient problem [36]. Moreover, UGLLI’s Gaussian Log-
Likelihood (GLL) loss outperforms using MSE loss on the
landmark locations (equivalent to setting all Σij = I). Re-
garding the mean estimator, direct regression (Direct) from
each hourglass bottleneck to output the mean (rather than
using the heatmap) is ineffective, consistent with previous
observations that neural networks have difficulty predicting
continuous real values [2, 21]. As described in Section 3.1,
in addition to the ReLU function, we compared two other
functions for σ: soft-argmax (s-amax), and a temperature-
scaled soft-argmax (τ -s-amax). Results for temperature-
scaled soft-argmax and ReLU are essentially tied, but the
former is more complicated and requires tuning the temper-
ature parameter, so we chose ReLU for our UGLLI model.

Table 3: Ablation studies on 300-W Test and Menpo
datasets using our method trained on 300-W Split 2.

Change from UGLLI model: NMEbox (%) AUC7
box(%)

Changed From → To 300-W Menpo 300-W Menpo
Supervision All HGs → Last HG 2.47 2.34 65.07 68.06

Loss GLL → MSE 2.40 2.28 66.05 68.70

Mean
Estimator

Heatmap → Direct 4.95 4.60 34.45 42.05
ReLU → s-amax 3.01 2.81 57.44 61.30

ReLU → τ -s-amax 2.26 2.19 67.97 69.94
— UGLLI (Ours) 2.24 2.20 68.27 69.85

6. Conclusion
In this paper, we present UGLLI, a novel end-to-end

trainable framework for face alignment and uncertainty es-
timation using a Gaussian log-likelihood loss. The uncer-
tainty of each predicted landmark location is estimated as
a 2D Gaussian distribution, and the determinant of this co-
variance matrix is used as a scalar measure of uncertainty.
The joint estimation of landmark location and uncertainty
not only provides state-of-the-art uncertainty measures but
also yields state-of-the-art estimates for the landmark loca-
tions. Future work includes application of this framework to
uncertainty estimation in other landmark regression tasks,
such as human body pose estimation, as well as using esti-
mated uncertainties to selectively improve the predictions.
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