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Abstract

In this paper, we address the challenge of making ViT
models more robust to unseen affine transformations. Such
robustness becomes useful in various recognition tasks such
as face recognition when image alignment failures occur. We
propose a novel method called KP-RPE, which leverages key
points (e.g. facial landmarks) to make ViT more resilient to
scale, translation, and pose variations. We begin with the
observation that Relative Position Encoding (RPE) is a good
way to bring affine transform generalization to ViTs. RPE,
however, can only inject the model with prior knowledge that
nearby pixels are more important than far pixels. Keypoint
RPE (KP-RPE) is an extension of this principle, where the
significance of pixels is not solely dictated by their proximity
but also by their relative positions to specific keypoints within
the image. By anchoring the significance of pixels around
keypoints, the model can more effectively retain spatial re-
lationships, even when those relationships are disrupted by
affine transformations. We show the merit of KP-RPE in face
and gait recognition. The experimental results demonstrate
the effectiveness in improving face recognition performance
from low-quality images, particularly where alignment is
prone to failure. Code and pre-trained models are available.

1. Introduction

Geometric alignment has shown to be highly effective for
certain computer vision problems, such as face, body and gait
recognition [11, 12, 25, 30, 33, 34, 37, 40, 43, 48–50, 59, 69,
72, 82, 83, 87, 88]. Alignment is the process of transforming
input images, to a consistent and standardized form, often by
scaling, rotating, and translating. This standardization helps
recognition models learn the underlying patterns and features
more effectively. As a result, many state-of-the-art (SoTA)
face recognition models [11, 30, 49, 69] rely on well-aligned
datasets [10, 11, 22, 91] to achieve high accuracy.

Fig. 1 shows a toy example with a training dataset
MNIST [14] and test set AffNIST [57] which is in unseen
affine transformation of MNIST. Using a shallow ViT [15]
model, one can easily achieve 98.1% accuracy in the MNIST
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Figure 1. Toy Example illustrating how different Position Embed-
dings impact the ViT’s robustness to unseen affine transforms. Abs-
PE refers to the learnable Absolute Position Embedding. RPE and
iRPE refers to Relative Position Embedding adopted to ViT [28, 74].
Keypoints in MNIST is arbitrarily defined to be the four corners of
a box that covers a digit. Abs-PE* is drawing the keypoints onto
the input image. KP-RPE uses the keypoints to adjust the RPE.

test set. However, in AffNIST, ViT with the original Ab-
solute Position Embedding obtains only 77.27% accuracy.
Such a sharp decrease in performance with unseen affine
transform causes problems in applications that rely on accu-
rate input alignments.

In face recognition, alignment can be imperfect, espe-
cially in low-quality images where accurate landmark detec-
tion is difficult [10, 39]. Thus, images with low resolution or
taken in poor lighting may result in misalignment during test-
ing. Given the interplay between alignment and recognition,
it becomes crucial to proactively handle potential alignment
failures, which often result from, e.g., low-quality images.
In other words, there is a need for a recognition model that
is robust to scale, rotation, and translation variations.

We revisit the Relative Position Encoding (RPE) concept
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Figure 2. Illustration of RPE [60] and proposed KP-RPE. The blue arrow represents the learned attention offset Bij between a query i and
key j of attention in RPE. The query-key relationship at the same i and j should represent different relationships as the scale or pose change.
But Bij does not change in RPE. KP-RPE addresses this issue by incorporating the distance to the keypoints when calculating the learned
attention offset in RPE.

used in ViT [15] and find that RPE can be useful for introduc-
ing affine transform robustness. RPE [60] enables the model
to capture the relative spatial relationships among regions
of an image, learning the positional dependencies without
relying on absolute coordinates. As shown in Fig. 1, adding
RPE to ViT increases the performance in AffNIST. With
RPE [60], queries and keys of self-attention [68] at closer
distances can be assigned different attention weights com-
pared to those at a greater distance. While RPE allows the
model to exploit relative positions, it has a limitation: even
if an image changes in terms of scaling, shifting, or orienta-
tion, the significance of the key-query position in RPE stays
the same. This static behavior is illustrated in Figs. 2 a)-c).
Notably, the key-query relationship is the same regardless of
the corresponding pixels’ semantic meaning changes.

We hypothesize that an RPE which dynamically adapts
based on image keypoints, such as facial landmarks, could
improve the model’s comprehension of spatial relationships
in the image. By leveraging the spatial relationships with
respect to these keypoints, the model can adapt to variations
in scale, rotation, and translation, resulting in a more robust
recognition system capable of handling both aligned and mis-
aligned datasets. Fig. 2 d) highlights a keypoint-dependent
query-key relationship.

To this end, we introduce KeyPoint RPE (KP-RPE), a
method that dynamically adapts the spatial relationship in
ViT based on the keypoints present in the image. Our experi-
ments demonstrate that incorporating KP-RPE into ViT sig-
nificantly enhances the model’s robustness to misaligned test
datasets while maintaining or even improving performance
on aligned test datasets. We show the usage of KP-RPE
in face recognition and gait recognition as the inputs share
the same topology (face or body) that allows the keypoints
to be defined. Finally, KP-RPE is an order of magnitude
faster than iRPE [74], a widely used RPE that depends on
the image content.

In summary, the contributions of this paper include:
• The insight that RPE (or its variants) can improve the

robustness of ViT to unseen affine transformations.
• The development of Keypoint RPE (KP-RPE), a novel

method that dynamically adapts the spatial relationship in
Vision Transformers (ViT) based on the keypoints in the
image, significantly enhancing the model’s robustness to
misaligned test datasets while maintaining or improving
performance on aligned test datasets.

• Comprehensive experimental validation demonstrating the
effectiveness of our proposed KP-RPE, showcasing its po-
tential for advancing the field of recognition by bringing
model’s robustness to geometric transformation. We im-
prove the recognition performance across unconstrained
face datasets such as TinyFace [7] and IJB-S [29] and even
non-face datasets such as Gait3D [18, 87].

2. Related Works

Relative Position Encoding in ViT Relative Position En-
coding (RPE) is first introduced by Shaw et al. [60] as a
technique for encoding spatial relationships between differ-
ent elements in a sequence. By adding relative position en-
codings into the queries and keys, the model can effectively
learn positional dependencies without relying on absolute co-
ordinates. Subsequent works, such as those by Dai et al. [9]
and Huang et al. [28], refine and expand upon the concept
of RPE, demonstrating its effectiveness in natural language
processing (NLP) tasks.

The adoption of RPE in Vision Transformers [15] has
been explored by several researchers. For instance, Ra-
machandran et al. [53] propose a 2D RPE method that com-
putes the x, y distance in an image plane separately to in-
clude directional information. A notable RPE method in ViT
is iRPE [74], which considers directional relative distance
modeling as well as the interactions between queries and
relative position encodings in a self-attention mechanism.
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Despite the success of these RPE methods in various vi-
sion tasks, they do not specifically address the challenges
associated with scale, rotation, and translation variations
in face recognition applications. This shortcoming high-
lights the need for RPE methods that can better handle these
variations, which are common in real-world low-quality
face recognition scenarios. To address this, we propose
KP-RPE, which incorporates keypoint information during
the network’s feature extraction, significantly enhancing the
model’s ability to generalize across affine transformations.

Face Recognition with Low-Quality Images Recent FR
models [11, 27, 43, 49, 69] have achieved high perfor-
mance on datasets with discernable facial attributes, such
as LFW [25], CFP-FP [59], CPLFW [88], AgeDB [50],
CALFW [89], IJB-B [72], and IJB-C [48]. However, un-
constrained scenarios like surveillance or low-quality videos
present additional challenges. Datasets in this setting, such
as TinyFace [7] and IJB-S [29], contain low-quality images,
where detecting facial landmarks and achieving proper align-
ment becomes increasingly difficult. This adversely affects
existing FR models that rely on well-aligned inputs.

Several studies [20, 21, 26, 30, 31, 36, 41, 54, 63, 80,
84, 85] tackle recognition with low-quality imagery. Par-
ticularly, AdaFace [30] introduces an image quality adap-
tive loss function that reduces the influence of low-quality
or unidentifiable samples. A-SKD [63] employs teacher-
student distillation to focus on similar areas regardless of
image resolution. But, these models, which are trained on
aligned training sets, do not tackle the challenges associated
with misaligned inputs in real-world situations. In contrast,
KP-RPE adjusts spatial relationships within ViT based on
image keypoints, allowing the model to better generalize
even when alignment is unsuccessful in low-quality imagery.

Keypoints and Spatial Reasoning Keypoint detection,
often associated with landmarks, has been fundamental in
various vision tasks such as human pose estimation [5, 51],
face landmark detection [4, 35, 65, 81], and object localiza-
tion [52]. These keypoints serve as representative points that
capture the essential structure or layout of an object, facili-
tating tasks like alignment, recognition, and even animation.

Face landmark detection is commonly carried out along-
side face detection. MTCNN [81] is a widely-used method
for combined face detection and facial landmark localiza-
tion, utilizing cascaded CNNs (P-Net, R-Net, and O-Net)
that collaborate to detect faces and landmarks in an image.
RetinaFace [10], on the other hand, is a single-stage detec-
tor [38, 42] based landmark localization algorithm, demon-
strating strong performance when trained on the annotated
WiderFace [78] dataset. TinaFace [90] further enhances de-
tection capabilities by incorporating SoTA generic object

detection algorithms. MTCNN and RetinaFace are often
used for aligning face datasets.

Recent advances in keypoint detection techniques, par-
ticularly using deep neural networks, have led to us-
ing keypoints to improve the performance of recognition
tasks [64, 77]. For instance, [23] proposes a keypoint-based
pooling mechanism and shows promising results in skeleton-
based action recognition and spatio-temporal action localiza-
tion tasks. Albeit its benefit, many models including ViTs do
not have pooling mechanisms. KP-RPE is the first attempt
at incorporating keypoints into the RPE which can be easily
inserted into ViT models.

3. Proposed Method
3.1. Background

Self-Attention Self-attention is a crucial component of
transformers [68], which is a popular choice for a wide
range of NLP tasks. ViT [15] applies the same self-attention
mechanism to images, treating images as sequences of non-
overlapping patches. The self-attention mechanism in Trans-
formers calculates attention weights based on the compati-
bility between a query and a set of keys. Given a set of input
vectors, the Transformer computes query (Q), key (K), and
value (V) matrices through linear transformations:

Qi = xiWQ, Kj = xjWK , Vj = xjWV , (1)

where xi is the i-th input vector, and WQ, WK , and WV

are learnable weight matrices.
The self-attention mechanism computes attention weights

as the dot product between the query and key vectors, fol-
lowed by a softmax normalization:

eij =
QiK

T
j√

dk
, aij =

exp(eij)∑N
j=1 exp(eij)

, (2)

where dk is the dimension of the key vectors. Finally, the
output matrix Y is computed as the product of the attention
weight matrix and the value matrix: Yi =

∑N
j=1 aijVj .

Absolute Position Encoding Transformers are inherently
order invariant, as their self-attention mechanism does not
consider input token positions. To address this, absolute
position encoding is introduced [19, 68], which adds fixed,
learnable positional embeddings to input tokens:

x
′

i = xi + PE(i), (3)

where x
′

i is the updated input token with positional informa-
tion, xi is the original input token, and PE(i) is the positional
encoding for the i-th position. These embeddings, generated
using sinusoidal functions or learned directly, enable the
model to capture the absolute positions of elements.
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Relative Position Encoding (RPE) RPE, introduced by
Shaw et al. [60] and refined by Dai et al. [9] and Huang
et al. [28], encodes relative position information, essential
for tasks focusing on input element relationships. Unlike
absolute position encoding, RPE considers query-key inter-
actions based on sequence-relative distances. The modified
self-attention calculation for RPE is:

e′ij =
(Qi +RQ

ij)(Kj +RK
ij )

T

√
dk

,Yi =

n∑
j=1

aij(Vj+RV
ij).

(4)
Here, RQ

ij , RK
ij , and RV

ij are relative position encoding be-
tween the i-th query and j-th key with shape Rdz . Each R is
a learnable matrix of RK×dz , where Ri,j corresponds to the
relative position encoding for distance d(i, j) = k and K is
the maximum possible value of d(i, j). To obtain relative po-
sition encoding, we index the R matrix using the computed
distance R[d(i, j)]. Common choices for d are quantized
Euclidean distance, separate x, y cross distance [53]. [74]
uses a quantized x, y product distance, which encodes di-
rection information. Note, query location i is a 2D point
(ix, iy). Fig. 3 a) and b) illustrate the distance between i and
all possible j with different distance functions. For KP-RPE,
we modify [74] and allow the RPE to be keypoint dependent.

3.2. Keypoint Relative Position Encoding

Building upon the general formulation of [74], we begin
with the following RPE formulation:

e′ij =
QiKjT +Bij√

dk
. (5)

Here, Bij is a scalar that adjusts the attention matrix based
on the query and key indices i, j. Assuming a set of key-
points P ∈ RNL×2 is available for each x, our goal is to
make Bij dependent on P. For face recognition, P is the five
facial landmarks (two eyes, nose, mouth tips). For gait recog-
nition, P is 17 points from the joint locations of skeleton
predictions. For the MNIST toy example, P is five keypoints
from the four corners and the center of the minimum cover
box of a foreground image. As such P can be defined for
objects with shared topology.

The novelty of KP-RPE lies in the design of Bij . Since

Bij = W[d(i, j)] ∈ R1, (6)

comprises of a learnable table W and a distance function
d(i, j), we can make W or d(i, j) depend on the keypoints.
At a first glance, d(i, j,P), conditioning the distance on P
seems plausible. However, we find that it leads to inefficien-
cies, as distance caching, which is precomputing d(i, j) for a
given input size, is only feasible when d(i, j) is independent
of the input. Therefore, we propose an alternative where the
bias matrix itself, W, is a function of P:

Bij = f(P)[d(i, j)]. (7)

a) iRPE: Euclidean Distance b) iRPE: Product Distance

c) KP-RPE: Product Distance (Two different keypoints)

Figure 3. Depiction of key-query combinations in an image, given
a query location i = (7, 7) (⋆). Distinct colors represent varying
attention offset values in RPE based on the distance between i
and j. We are showing Bi=(7,7),j for all j ∈ (14× 14). a) The
distance function is a quantized Euclidean distance. b) Product
distance proposed in iRPE accounts for direction. c) We adopt b)
and allow Bi,j to vary based on keypoint locations (•).

We propose three variants of f(P) building up from the
simplest solution.

Absolute f(P). Let P ∈ RNL×2 be the normalized key-
points between 0 and 1. First, the simplest way to model
the indexing table is to linearly map P to the desired shape.
f(P) = P′WL where P′ ∈ R1×(2NL) is reshaped keypoints
P and WL ∈ R(2NL)×K is a learnable matrix. K is the max-
imum distance value in d(i, j). For each distance between i
and j, we learn a keypoint adaptive offset value. However,
this f(P) only works with the absolute position information
of P and the relative distance between i and j. It is missing
the relative distance between P and (i, j).

Relative f(P). To improve, f(P) can be adjusted to work
with the position of keys and queries relative to the keypoints.
In other words, so that the query-key relationship in Bij de-
pends on the query-landmark relationship. To achieve this,
we generate a mesh grid M ∈ RN×2 of patch locations con-
taining all possible combinations of ix and iy . N represents
the number of patches. We then compute the element-wise
difference between the normalized grid and keypoints P to
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Figure 4. a) Illustration of KP-RPE. First a mesh grid M and an image-specific keypoints P are generated. Then the broadcasted difference
D is calculated, and we linearly map D to f(P). Finally for a given i, j, we can find the Bij = f(P)[i, d(i, j)]), which is used to adjust
the attention map in self-attention. b) Backbone contains multiple transformer blocks followed by an MLP for classification. KP-RPE is
used where multi-head attention modules exist. KP-RPE is efficient as f(P) is computed once.

obtain a grid of i, j relative to the keypoints:

D = Expand(M, dim=1)− Expand(P, dim=0), (8)

where D is the broadcasted tensor difference of shape
RN×NL×2 . Finally, we reshape D and linearly project it
with WL. Specifically,

D′ = Reshape(D) ∈ RN×(2NL) (9)

f(P) = D′WL ∈ RN×K (10)

Bij = f(P)[i, d(i, j)] ∈ R1. (11)

In other words, the offset value Bij is determined with
respect to the positions of the keypoints and is unique for
each query location. This approach allows for more expres-
sive control of the query-key relationships with the keypoint
locations. An illustration of this is shown in Fig. 4.

Multihead Relative f(P). Lastly, we can further enhance
our method by tailoring the query-keypoint relationship
for each head in the attention mechanism. When there
are H heads, we simply expand the dimension of WL to
WL ∈ R(2NL)×HK . By reshaping f(P), we obtain f(P)h

for each head. Furthermore, considering the multiple self-
attentions in ViT which entails multiple RPEs, we can in-
dividualize f(P) for each self-attention by additionally in-
creasing the dimension of WL to WL ∈ R(2NL)×NdHK ,
where Nd represents the transformer’s depth. Since f(P)
is computed only once per forward pass, this modification
introduces negligible computational overhead compared to
other operations. In Sec. 4.2, we evaluate and compare the
various KP-RPE versions (basic, relative keypoint, multiple
relative keypoint), demonstrating the superior performance
of the multiple relative keypoint approaches.

4. Face Recognition Experiments

4.1. Datasets and Implementation Details

To validate the efficacy of KP-RPE, we train our model using
aligned face training data and evaluate on three distinct types
of datasets: 1) aligned face data, 2) intentionally unaligned
face data, and 3) low-quality face data containing misaligned
images. For the evaluation, aligned face datasets include
CFPFP [59], AgeDB [50], and IJB-C [48]. For unaligned
face data, we intentionally use the raw CFPFP [59] and
IJB-C [48] datasets without aligning them. Raw images,
as provided by their respective creators, are equivalent to
images cropped based on face detection bounding boxes.
Lastly, we assess the model’s robustness on low-quality face
datasets, specifically TinyFace [7] and IJB-S [29], which
are prone to alignment failures. This comprehensive setup
enables us to examine the effectiveness of our proposed
method across diverse data conditions.

The training datasets MS1MV2 [11] MS1MV3 [13] and
WebFace4M [91] are released as aligned and resized to 112×
112 by RetinaFace [10] whose backbone is ResNet50 model
trained on WiderFace [78]. For keypoint detection in KP-
RPE, we also use RetinaFace [10] but with lighter backbone
MobileNetV2 for faster inference. Given the sensitivity of
ViTs to hyperparameters, we report the exact settings for
learning rate, weight decay, and other parameters in the
supplementary material. For ablation dataset, we take the
MS1MV2 subset dataset as used in [30].

Following the training conventions of [30, 67], we adopt
RandAug [8], repeated augmentation [24], random resized
crop, and blurring. We utilize the AdaFace [30] loss func-
tion to train all models. For ablation, we employ ViT-small,
while for SoTA comparisons, we use ViT-base models. The
AdamW [46] optimizer and Cosine Learning Rate sched-
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Table 1. Ablation of RPE on ViT-small. Aligned is the standard protocol with raw face images (detector bounding box) aligned by
RetinaFace [10] and resized to 112×112. Unaligend takes the raw face images and simply resizes it to 112×112. Aligned setting always
shows better performances and Unaligned is for simulating alignment failure. Low Quality Aligned dataset may have alignment failures.

Method
Low Quality Aligned Dataset High Quality Aligned Dataset High Quality Unaligned Dataset

TinyFace [7] IJB-S [29] CFPFP [59] IJB-C [48] CFPFP [59] IJB-C [48]
Rank-1 Rank-5 Rank-1 Rank-5 Verification TAR@0.01% Verification TAR@0.01%

ViT 68.24 72.96 59.60 68.31 96.11 92.22 72.81 21.62
ViT + iRPE 69.05 73.10 62.49 70.50 97.01 92.72 77.91 34.73

ViT+KP-RPE 69.88 74.25 63.44 72.04 96.60 94.20 93.56 91.85

Table 2. Ablation of KP-RPE with three different formulations of keypoint dependent RPE tables f(P). The sharp increase in Unaligned
setting shows the robustness to unseen affine transform manifests with Relative f(P). Multihead f(P) further improves the performance.

Method
Low Quality Aligned Dataset High Quality Aligned Dataset High Quality Unaligned Dataset

TinyFace [7] IJB-S [29] CFPFP [59] IJB-C [48] CFPFP [59] IJB-C [48]
Rank-1 Rank-5 Rank-1 Rank-5 Verification TAR@0.01% Verification TAR@0.01%

KP-RPE Absolute f(P) 68.11 72.42 9.97 69.13 96.51 90.96 68.09 14.91
KP-RPE Relative f(P) 69.42 73.71 62.51 70.77 96.74 94.28 89.70 85.22
KP-RPE MultiHead f(P) 69.88 74.25 63.44 72.04 96.60 94.20 93.56 91.85

uler [45, 73] are used. In WebFace4M trained models, we
adopt PartialFC [1, 2] to reduce the classifier’s dimension.

4.2. Ablation Analysis

Row 1 in Tab. 1 shows results on the baseline ViT. Row 2 and
3 show results on the baseline ViT with iRPE and our pro-
posed KP-RPE. KP-RPE demonstrates a substantial perfor-
mance improvement on unaligned and low-quality datasets,
without compromising performance on aligned datasets. Last
row highlights the difference between ViT and ViT+KP-RPE.
Also, Fig. 5 shows the sensitivity to the affine transformation,
i.e., how the performance changes when one interpolates the
affine transformation from the face detection images to the
aligned images in CFPFP dataset.

Tab. 2 further investigates the effect of modifications to
KP-RPE. By making KP-RPE dependent on the difference
between the query and keypoints (row 2), we observe a
significant improvement in unaligned dataset performance.
Also, by allowing unique mapping for each head and module
in ViT (row 3), we achieve a further improvement. In other
words, more expressive KP-RPE is beneficial for learning
complex RPE that depends on the keypoints of an image.
Overall, the ablation study highlights the necessity of each
component in KP-RPE and the effectiveness of KP-RPE in
enhancing the robustness of face recognition models, partic-
ularly with unaligned and low-quality datasets.

4.3. Computation Analysis

In this section, we analyze the computational efficiency of
our proposed KP-RPE in terms of FLOPs, throughput, and
the number of parameters. Tab. 3 shows that KP-RPE is
highly efficient, with only a small increase in the computa-
tional cost (FLOPs) compared to the backbone: 0.02 GFLOP
increase for ViT Small and 0.07 GFLOP increase for ViT

Figure 5. Plot of Verification Accuracy in CFPFP [59]. On the
X-axis, we interpolate the affine transformation from raw data
(Detection Image) to canonical alignment (Alignment Image). Note
KP-RPE is robust to affine transformations, while all models have
been trained on the aligned image dataset.

Base (ViT vs ViT+KP-RPE). Notably, KP-RPE is consider-
ably more efficient than iRPE, which incurs an increase of
0.71 GFLOP for ViT Small and 1.42 GFLOP for ViT Base.

Considering training throughput, which factors in com-
putation time during training (with backpropagation), KP-
RPE’s efficiency is more pronounced. It only reduces
throughput by 9.15% for ViT Small and 16.44% for ViT
Base, as opposed to iRPE’s larger decrease. Also, we show
the GLOP and throughput with the landmark detection time
included. Landmark detection time is negliable comparted
to the total feature extraction time.

Also, our method introduces a negligible increase in the
number of parameters: just 0.05M for ViT Small and 0.21M
for ViT Base. Hence, incorporating KP-RPE into the model
achieves enhances performance without a substantial rise in
computational cost or model complexity.
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Table 3. Computation resource comparison. GFLOP refers to Giga Floating Operating per Second. We measure it as [55]. Throughput
refers to the number of images processed per second during the train/eval iteration.

GFLOP ∆ in GFLOP
Eval

Throughput
Train

Throughput
%∆ in Train
Throughput # Param

IResNet50 12.62 - 1432.72 img/s 337.93 img/s - 43.59M
ViT Small 17.42 1 1303.15 imgs/s 333.17 img/s 1 95.95M
ViT Small + iRPE 18.13 1 +0.71 832.12 imgs/s 186.55 img/s 1 -44.01% 96.07M
ViT Small + KP-RPE 17.44 1 +0.02 1145.90 imgs/s 302.70 img/s 1 -9.15% 96.00M
ViT Small + KP-RPE (+ Ldmk) 17.58 1 +0.16 1085.22 imgs/s 302.70 img/s 1 -9.15% 96.49M

IResNet101 24.19 - 773.12 imgs/s 189.74 img/s - 65.15M
ViT Base 24.83 2 644.10 imgs/s 162.94 img/s 2 114.87M
ViT Base + iRPE 26.25 2 +1.42 337.32 imgs/s 79.40 img/s 2 -51.27% 114.98M
ViT Base + KP-RPE 24.90 2 +0.07 502.57 imgs/s 136.15 img/s 2 -16.44% 115.08M
ViT Base + KP-RPE (+ Ldmk) 25.04 2 +0.21 489.37 imgs/s 136.15 img/s 2 -16.44% 115.56M

4.4. Comparison with SoTA Methods

In this section, we position ViT+KP-RPE, against SoTA
face recognition methodologies with large-scale datasets and
large models. We undertake a comprehensive evaluation,
covering both high-quality and low-quality image datasets.
The results, as shown in Tab. 4, underscore the strengths of
KP-RPE. Notably, the inclusion of KP-RPE does not impair
the performance on high-quality datasets, a testament to its
applicability to both low and high-quality datasets.

This becomes particularly compelling when we observe
the performance on low-quality datasets. Consistent with the
findings of our ablation study, the introduction of KP-RPE
leads to an appreciable improvement in these challenging
scenarios. This supports our thesis that face recognition
models with robust alignment capabilities can indeed en-
hance performance on low-quality datasets. In summary, our
model with KP-RPE not only maintains competitive perfor-
mance on high-quality datasets but also brings significant
improvements on low-quality ones, marking it a valuable
contribution to the field of face recognition.

4.5. Note on the Landmark Predictor

KP-RPE in all experiments uses our own MobileNet [58]
based RetinaFace [10] to predict landmarks for KP-RPE. We
train MobileNet version for computation efficiency. How-
ever, the original landmark predictor used for aligning the
test datasets is ResNet50-RetinaFace [10]. We also report the
KP-RPE performance with the officially released ResNet50-
RetinaFace. We report this to compare KP-RPE on the same
ground with other models by using the same landmark used
to pre-align the testset. The face recognition performance
of KP-RPE+Official is similar to KP-RPE+Ours (75.86 vs
75.80 in TinyFace Rank1). Our MobileNet-RetinaFace is im-
proved to perform similarly to ResNet50 in landmark predic-
tion by applying additional tricks while training. Therefore,
the face recognition performances are also similar. Unlike
vanilla RetinaFace on face alignment, ours is fully differ-
entiable during inference and name it Differentiable Face

Aligner. Details and analysis can be found in Supp.2 and 3.

4.6. Scalability on Larger Training Datasets

We train the ViT+KP-RPE model on a larger Web-
Face12M [91] dataset to demonstrate the potential of KP-
RPE in its scalability and applicability in real-world, data-
rich scenarios. Tab. 4’s last row shows that the performance
continues to increase with WebFace12M dataset.
Discussion. Why are noisy keypoints more useful in KP-
RPE than in simple alignment? The short answer is that not
all predicted points are noisy in an image while alignment as
a result of one or more noisy point impacts all pixels. For our
attempt at a more detailed answer, please refer to Supp.2.4.

5. Gait Recognition Experiments
KP-RPE is a generic method that can generalize beyond face
recognition to any task with keypoints. We apply KP-RPE
to gait recognition using body joints as the keypoints.

Dataset. We train and evaluate on Gait3D [87], an in-the-
wild gait video dataset. In our experiments, we use silhou-
ettes and 2D keypoints preprocessed and released by the
authors directly. Following SMPLGait [79, 87], we use rank-
n accuracy (n = 1, 5, 10), mean Average Precision (mAP),
and mean Inverse Negative Penalty (mINP) for evaluation.
Implementation Details. We implement SwinGait-2D [17]
as the baseline in our experiments. SwinGait-2D is cho-
sen over SwinGait-3D [17] because we focus on exploiting
the geometric information in gait recognition. SwinTrans-
former [44] uses vanilla relative positional encoding for each
windowed self-attention. To incorporate KP-RPE into the
SwinTransformer, we modify the 2D grid M to be the size
of the window as opposed to the image size. Following
the default configuration of [87], we use an AdamW [46]
optimizer with a learning rate 3 × 10−4 and weight decay
2 × 10−2, accompanied by an SGDR [45] scheduler. We
train our models for 60,000 iterations, sampling 32 subjects
and 4 sequences per subject in a batch.
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Table 4. SoTA comparison on low-quality and high-quality datasets. ViT models are ViT-Base sized.

Method Backbone Train Data
Low Quality Dataset High Quality Dataset

TinyFace [7] IJB-S [29] AgeDB [50] CFPFP [59] IJB-C [48]
Rank-1 Rank-5 Rank-1 Rank-5 Verification Accuracy TAR@FAR=0.01%

PFE [61]aaa CNN64 MS1MV2 [11] - - 50.16 58.33 - - -
ArcFace [11] ResNet101 MS1MV2 [11] - - 57.35 64.42 98.28 98.27 96.03
URL [62] ResNet101 MS1MV2 [11] 63.89 68.67 59.79 65.78 - 98.64 96.60
CurricularFace [27] ResNet101 MS1MV2 [11] 63.68 67.65 62.43 68.68 98.32 98.37 96.10
AdaFace [11] ResNet101 MS1MV2 [11] 68.21 71.54 65.26 70.53 98.05 98.49 96.89
AdaFace [11] ResNet101 MS1MV3 [13] 67.81 70.98 67.12 72.67 98.17 99.03 97.09
AdaFace [30] ViT MS1MV3 [13] 72.05 74.84 65.95 71.64 97.87 99.06 97.10
AdaFace [30] ViT+KP-RPE MS1MV3 [13] 73.50 76.39 67.62 73.25 97.98 99.11 97.16
ArcFace [11] ResNet101 WebFace4M [91] 71.11 74.38 69.26 74.31 97.93 99.06 96.63
AdaFace [30] ResNet101 WebFace4M [91] 72.02 74.52 70.42 75.29 97.90 99.17 97.39
AdaFace [30] ViT WebFace4M [91] 74.81 77.58 71.90 77.09 97.48 98.94 97.14
AdaFace [30] ViT+iRPE WebFace4M [91] 74.92 77.98 71.93 77.14 97.15 99.01 97.01
AdaFace [30] ViT+KP-RPE WebFace4M [91] 75.80 78.49 72.78 78.20 97.67 99.01 97.13
AdaFace [30] ResNet101 WebFace12M [91] 72.42 74.81 71.46 77.04 98.00 99.24 97.66
AdaFace [30] ViT+KP-RPE WebFace12M [91] 76.18 78.97 72.94 77.46 98.07 99.30 97.82

Table 5. KP-RPE performance on Gait3D [87] compared with the
baseline. KP-RPE boosts all metrics by a large margin.

Model Rank-1 Rank-5 mAP mINP

GaitSet [6] 36.7 58.3 30.01 17.30
MTSGait [86] 48.7 67.1 37.63 21.92
DANet [47] 48.0 69.7 — —
GaitGCI [16] 50.3 68.5 39.5 24.3
GaitBase [18] 64.6 81.5 55.31 31.63
HSTL [70] 61.3 76.3 55.48 34.77
DyGait [71] 66.3 80.8 56.40 37.30

SwinGait-2D [17] 67.1 83.7 58.76 34.36
+ KP-RPE 68.2 84.4 60.81 36.19

Results and Analyses. In Tab. 5, we compare to SoTA
approaches, including SwinGait-2D [17], with and without
KP-RPE. We can see that the KP-RPE shows a significant
improvement over SwinGait-2D, with 1.1% and 0.7% im-
provement on rank-1 and -5 accuracies, respectively. mAP
has improved by 2.05% and mINP by 1.23% of the base-
line) compared to SwinGait-2D. We believe that a great
portion of the improvement comes from KP-RPE exploiting
the gait information contained in 2D skeletons. Gait skele-
tons contain identity-related information, such as body shape
and walking posture. This demonstrates that KP-RPE is both
effective and generalizable to the gait recognition.

6. Conclusion

In this work, we introduce Keypoint-based Relative Posi-
tion Encoding (KP-RPE), a method designed to enhance the
robustness of recognition models to alignment errors. Our
method uniquely establishes key-query relationships in self-
attention based on their distance to the keypoints, improving
its performance across a variety of datasets, including those
with low-quality or misaligned images. KP-RPE demon-

strates superior efficiency in terms of computational cost,
throughput and recognition performance, especially when
affine transform robustness is beneficial. We believe that
KP-RPE opens a new avenue in recognition research, paving
the way for the development of more robust models.
Limitations. While KP-RPE shows impressive face recogni-
tion capabilities, it does require keypoint supervision, which
may not always be readily available and can constrain its
application, particularly when the dataset does not comprises
of images with a consistent topology. Future work should
consider the self-discovery of keypoints to lessen this depen-
dence, thereby boosting the model’s flexibility.

Potential Societal Impacts Within the CV/ML commu-
nity, we must strive to mitigate any negative societal impacts.
This study uses the MS1MV* dataset, derived from the dis-
continued MS-Celeb, to allow a fair comparison with SoTA
methods. However, we encourage a shift towards newer
datasets, showcasing results using the recent WebFace4M
dataset. Data collection ethics are paramount, often requiring
IRB approval for human data collection. Most face recogni-
tion datasets likely lack IRB approval due to their collection
methods. We support the community in gathering large,
consent-based datasets or fully synthetic datasets [3, 32],
enabling research without societal backlash.
Acknowledgments. This research is based upon work sup-
ported by the Office of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects Activity
(IARPA), via 2022-21102100004. The views and conclu-
sions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies, either expressed or implied, of ODNI, IARPA, or
the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.
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