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Abstract

In this paper, we introduce a novel approach to modeling non-stationary random processes. Given a set of training samples
sequentially, we can iteratively update the eigenspace to manifest the current statistics provided by each new sample. The
updated eigenspace is derived based more on recent samples and less on older samples, controlled by a number of decay
parameters. Extensive study has been performed on how to choose these decay parameters. Other existing eigenspace updating
algorithms can be regarded as special cases of our algorithm. We show the e6ectiveness of the proposed algorithm with both
synthetic data and practical applications on face recognition. Signi7cant improvements have been observed on face images
with di6erent variations, such as pose, expression and illumination variations. We expect the proposed algorithm to have other
applications in active recognition and modeling as well.
? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The principal component analysis (PCA) [1] has attracted
much attention among image analysis researchers. The ba-
sic idea is to represent images or image features in a trans-
formed space where the individual features are uncorrelated.
The orthonormal basis functions for this space, called the
eigenspace, are the eigenvectors of the covariance matrix of
the images or image features. PCA gives the optimal rep-
resentation of the images or image features in terms of the
mean square error.

PCA has been used extensively by researchers in many
7elds, such as data compression [2], feature extraction [3],
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and object recognition [4]. One of the successful appli-
cations of PCA is introduced in Ref. [5] and later made
popular by Turk and Pentland [6]. They projected a face
image into an eigenspace that is trained by all the images
of multiple subjects, and performed face recognition in this
eigenspace.

There are mainly two approaches to training the
eigenspace in the literature. The 7rst approach is to com-
pute the eigenvectors given a set of training samples si-
multaneously, which we refer to as batch training. In this
approach, PCA can be computationally intensive when it
is applied in the image domain. The power method [7] is
one approach to eDciently determine the dominant eigen-
vectors. Instead of determining all the eigenvectors, the
power method obtains only the dominant eigenvectors,
i.e., eigenvectors associated with the largest eigenvalues.
Researchers have explored how to perform PCA more ef-
7ciently. Turk and Pentland [6] calculated the eigenvectors
of an inner-product matrix instead of a covariance matrix,
which is eDcient in the case where the number of training
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samples is less than the dimension of the feature space.
The second approach is to iteratively re-calculate the ex-
isting eigenvectors by taking the training samples one by
one, which is called eigenspace updating, proposed for
its computational eDciency compared to the batch train-
ing approach [8]. A few other researchers have proposed
di6erent methods of eigenspace updating [9,10], and sug-
gested some interesting applications, such as salient view
selections [10].

PCA is originally created to model multidimensional
random variables. When extended to modeling random pro-
cesses, traditional PCA works well as long as the random
process under consideration is stationary. For non-stationary
random processes, PCA needs to be adapted to model the
time-varying statistics. To some extent, existing eigenspace
updating methods [8–10] already accomplish this implic-
itly, because they all try to compute eigenvectors itera-
tively as samples come in one by one. In this paper, we
propose a new eigenspace updating method to consider
non-stationary random processes explicitly by modifying
these methods in literature. In particular, our method puts
more weight on recent samples than on older samples by
using certain decay parameters, while traditional meth-
ods consider all samples equally and hence cannot e6ec-
tively represent the most recent statistics of the data. We
have also studied how to choose the decay parameters to
model the time-varying statistics in the least mean squares
sense.

For decades human face recognition has been an active
topic in the 7eld of object recognition. A general statement
of this problem can be formulated as follows: given still or
video images of a scene, identify one or more persons in
the scene using a stored database of faces [11]. There are
mainly two kinds of face recognition systems: the feature
matching-based approach and the template matching-based
approach. In the latter, applying PCA to obtain a face model
(also known as the eigenface approach [6]) plays a fun-
damental role. It has good performance for the case of
frontal face recognition with reasonable constraints on il-
lumination, expression variations, etc. However, in practi-
cal applications, when large variations, which may be due
to aging, changes in expressions and poses, and variations
caused by illumination, etc., appear in the test face im-
ages, the traditional PCA algorithm degrades quickly in
performance. Although some methods in literature work
well for the speci7c variations being studied, their perfor-
mance degrades rapidly when other variations are present
[12]. In order to approach this general problem, we pro-
pose an updating-during-recognition scheme, which tries to
make the recognition system more intelligent by learning
the variations over time using the testing images. In this pa-
per, we utilize our eigenspace updating method to learn the
time-varying statistics of the face images and eventually en-
hance the recognition performance. We use individual PCA
[13,14], instead of the universal PCA approach [6], as a
baseline of our face recognition system.

1.1. Previous work

The eigenspace updating has a number of advantages.
First, using the updating algorithm, we can determine the
eigenvectors more eDciently than the batch training ap-
proach [8]. Second, the updating algorithm allows the con-
struction of the eigenspace via a procedure that uses less
storage, so it renders feasible some previous inaccessible
problems, such as the training of a huge image data set
[9]. Third, the availability of the training data may be con-
strained in some applications, such as online training [10].
In that case, we have to iteratively perform PCA instead of
waiting for all the training data to be available.

Murakami and Kumar [8] proposed the 7rst eigenspace
updating algorithm. They iteratively generated the
inner-product matrix and calculated the eigenvectors when-
ever there is a new training sample. Chandrasekaran et al.
[10] also proposed an updating algorithm by performing
the singular value decomposition (SVD). They showed the
e6ectiveness of their algorithm in 3D object representation
from 2D images, which is useful in active recognition and
exploration. However, these two methods have limitations
when used for classi7cation because they assume the sam-
ples have zero mean. Hall et al. [9] addressed this issue and
proposed an updating method where the mean is updated
based on existing samples, and removed before PCA is
performed. They showed that for classi7cation, better per-
formance could be obtained by their approach compared to
those in Refs. [8,10]. Hall et al. [15] also proposed an algo-
rithm to eDciently merge and split eigenspace models. All
of these existing eigenspace updating methods, original de-
signed to model the statistics of random vectors, also work
for stationary random processes. They however cannot han-
dle non-stationary processes to represent the time-varying
statistics e6ectively, which is what our proposed algorithm
tries to address.

Some researchers have tried to utilize the information pro-
vided by the new data when the system is in use to enhance
the performance of face detection and tracking [16–19]. For
example, Kurita et al. [16] iteratively updated the prior prob-
abilities of the face location in the previous frames, which
can guide and speed up the face detection on the current
frame. Edwards et al. [17] described a method of updat-
ing the 7rst order global estimation of the identity, which
was integrated with an optimal tracking scheme. Wu et al.
[18] proposed to build a subspace representation via the
Gram–Schmidt orthogonalization procedure for the purpose
of video compression. Weng et al. [19] proposed to incre-
mentally derive discriminating features from training video
sequences. Compared to the prior work, our work extends
the idea of updating to face recognition and results in an
updating-during-recognition scheme.

1.2. Paper outline

In Section 2, we introduce our eigenspace updating al-
gorithms. Two algorithms aimed at di6erent application
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scenarios are presented in detail. When PCA is applied to
the high-dimensional image domain, we use the algorithm
based on updating an inner-product matrix. Otherwise, an
algorithm based on updating a covariance matrix can be
used.

In our eigenspace updating method, the decay parameters
play a key role on how well the time-varying statistics can
be modeled. Thus in Section 3, we theoretically and exper-
imentally show how to choose the decay parameters based
on the knowledge of model statistics.

In Section 4, we address the issue of iteratively updating
the individual eigenspace for face recognition. Given one
test image, we can use it to update the eigenspace when
we have high con7dence for its recognition result. Also we
propose to use a twin-subspace method to alleviate some
limitations and enhance the face recognition performance.

Experimental results using eigenspace updating methods
are presented in Section 5. We conduct experiments on
face databases containing di6erent variations, such as poses,

expressions and illuminations. We show that better perfor-
mance can be obtained in these applications by using our
eigenspace updating method.

In Section 6, we discuss the related issues for our work,
such as the video-based recognition and the high order sta-
tistical model for face sequences. We provide conclusions
in Section 7. Also in the appendix we compare our mean
estimation algorithm with the Kalman 7lter [20].

2. Eigenspace updating with decaying memory

2.1. Updating based on the covariance matrix

Suppose there is a random process {xn}, where n is the
time index, xn is a column vector in a d-dimensional space,
of which we want to 7nd the eigenspace. Each sample will
be available sequentially over time. If this random process
is stationary, we can estimate its mean by the following
equation:

m̂ =
xn + xn−1 + · · ·+ x1

n
:

If xn is a non-stationary random process, which implies that
it has a time-varying mean m̂n, we propose to estimate the
mean at time n as

m̂n =
xn + �mxn−1 + �2mxn−2 + · · ·

1 + �m + �2m + · · · ; (1)

where �m is the decay parameter. It controls how much the
previous samples contribute to the estimation of the current
mean. Since �m is in the range of 0–1, we have

1 + �m + �2m + · · ·= 1
1− �m

: (2)

Using (2) in (1), the resulting equation can be simpli7ed to

m̂n = �mm̂n−1 + (1− �m)xn: (3)

This equation reveals that based on the current sample and
the previously estimated mean, we can obtain the new esti-
mated mean in a recursive manner. How to choose �m mainly
depends on the knowledge of the random process. Note that
�m controls how fast we want to forget about the old sam-
ples. Therefore, if the statistics of the random process change
fast, we choose a small �m. If the statistics change slowly,
a large �m may perform better. In the next section, we will
introduce how to choose these decay parameters based on
the statistical knowledge of the samples.

After the mean of the random process has been estimated,
we can estimate the covariance matrix, Ĉn, at each time n by

Ĉn =
(xn − m̂n)(xn − m̂n)T + �v(xn−1 − m̂n−1)(xn−1 − m̂n−1)T + �2v(xn−2 − m̂n−2)(xn−2 − m̂n−2)T + · · ·

1 + �v + �2v + · · · ;

where �v is also a decay parameter, which is chosen based
on how fast the covariance of a random process is changing.
Now we can rewrite Ĉn in a similar manner as m̂n:

Ĉn = �vĈn−1 + (1− �v)(xn − m̂n)(xn − m̂n)
T: (4)

Since we obtain Ĉn at time n, we can perform PCA for
Ĉn and obtain the corresponding eigenvectors. We keep N
eigenvectors corresponding to the N largest eigenvalues.
In the recursive updating process, we only need to store
the mean vector m̂n and the covariance matrix Ĉn. All the
previous training samples can be discarded.

2.2. Updating based on the inner-product matrix

In many applications, PCA is applied directly in the image
domain, such as face recognition. Suppose the face image
has a size of 32 × 32, then the covariance matrix of an
image set would be 1024×1024. It is very ineDcient to store
and update it using the algorithm introduced in Section 2.1.
To solve this problem, we propose an updating algorithm
based on the inner-product matrix.

Suppose at time n, we already have performed PCA for
the random process at time n−1. Thus we have eigenvectors,
�(i)
n−1, and eigenvalues, 


(i)
n−1, of the covariance matrix, Ĉn−1.

We can write

Ĉn−1 = 
(1)n−1�
(1)
n−1�

(1)T
n−1 + 
(2)n−1�

(2)
n−1�

(2)T
n−1 + · · ·

+ 
(d)n−1�
(d)
n−1�

(d)T
n−1;

where eigenvalues, 
(i)n−1, have been sorted in the decreas-
ing order and the superscript (i) indicates the order of
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eigenvalues. By retaining only the 7rst Q eigenvectors (with
the largest eigenvalues), we can approximate Ĉn−1 as

Ĉn−1 ≈ 
(1)n−1�
(1)
n−1�

(1)T
n−1 + 
(2)n−1�

(2)
n−1�

(2)T
n−1 + · · ·

+ 
(Q)n−1�
(Q)
n−1�

(Q)T
n−1 : (5)

The criteria for choosing Q vary, and depend on practical
applications. We have tried three methods: (a) 7x Q to be a
constant value; (b) set a minimum threshold, and keep the
7rst Q eigenvectors whose eigenvalues are larger than this
threshold; (c) keep the eigenvectors corresponding to the
largest eigenvalues, such that a speci7c fraction of energy
in the eigenvalue spectrum is retained. These methods will
result in di6erent computational complexity for the updating
algorithm.

Now we can use (3) to estimate the mean at time n. By
replacing Ĉn−1 in Eqs. (4) with (5), we can obtain

Ĉn ≈ �v

(1)
n−1�

(1)
n−1�

(1)T
n−1 + �v


(2)
n−1�

(2)
n−1�

(2)T
n−1 + · · ·

+ �v

(Q)
n−1�

(Q)
n−1�

(Q)T
n−1 + (1− �v)(xn − m̂n)(xn − m̂n)

T:

An equivalent formulation as above is that

Ĉn ≈ BnBT
n ;

where

Bn =

[ √
�v


(1)
n−1�

(1)
n−1

√
�v


(2)
n−1�

(2)
n−1 · · ·

√
�v


(Q)
n−1�

(Q)
n−1

√
1− �v(xn − m̂n)

]
: (6)

Based on the Bn matrix, an inner-product matrix can be
formulated as

An = BT
nBn:

Furthermore, An can be described by the following equa-
tions:

(An)i; j = �v
√

(i)n−1


( j)
n−1ij; i; j = 1; 2; : : : ; Q;

(An)i;Q+1 = (An)Q+1; i =
√
�v(1− �v)


(i)
n−1(xn − m̂n);

i = 1; 2; : : : ; Q;

(An)Q+1;Q+1 = (1− �v)(xn − m̂n)
T(xn − m̂n): (7)

Since the matrix An is usually a small matrix with the size
of Q+1 by Q+1, we can determine its eigenvectors  n by
a direct method, which satis7es

An (i)
n = BT

nBn (i)
n = 
(i)n  (i)

n i = 1; 2; : : : ; Q + 1: (8)

By pre-multiplying (8) with Bn, we can obtain the eigen-
vectors of matrix Ĉn as follows:

�(i)
n = 
(i)−1=2

n Bn (i)
n i = 1; 2; : : : ; Q + 1; (9)

where the term 
(i)−1=2
n is to make the resulting eigenvector

to be a unit vector. Now we summarize the iterative updating
algorithm outlined in this section:

Initialization:

1. Given the 7rst two samples x0, x1, estimate the mean,
m1, by (3), and construct the matrix

B1 = [
√
�v(x0 − m̂1) (x1 − m̂1)]:

2. Based on Eqs. (8) and (9), we can get the eigenvector,
�1, and the eigenvalue, 
1.

Iterative updating:

1. Get a new sample xn.
2. Estimate the mean, m̂n, at time n by (3), and get the Bn

matrix from (6).
3. Form the matrix An by (7) and calculate its eigenvectors,

 n, and eigenvalues, 
n, by a direct method.
4. Sort the eigenvalues 
n, and retain Q corresponding

eigenvectors.
5. Obtain the eigenvectors, �n, at time n by (9).

We have mentioned three methods of choosing Q. If we
use the second and the third methods, Q will increase as
more and more training samples arrive till it reaches the
intrinsic dimensionality of previous training samples. Due
to the approximation in Eq. (5), among the Q eigenvectors,
typically the 7rst few eigenvectors are more precise than the
others. Therefore, in practice if we need N eigenvectors for
building an eigenspace, we would keep Q to be a number
larger than N .

2.3. An example with synthetic data

In this section, we want to show that our updating al-
gorithm can better model the statistics of a non-stationary
random process, compared to the traditional eigenspace up-
dating algorithms without decay parameters.

We generate 720 samples with a two-dimensional Gaus-
sian distribution, whose mean is zero and variances in the
horizontal and vertical direction are 1 and 7, respectively. If
we associate each sample with a time index, we can obtain
a random process. For each random variable in this random
process, we incrementally rotate it by a certain degree in the
two-dimensional space, and move its mean along the line,
x = y. The 7rst random variable rotates 0◦, the last one ro-
tates 90◦, and all the others rotate in between. In another
word, the synthetic data have the following statistics:[

mx[n]

my[n]

]
=

(
n=15

n=15

)
;

Cxy[n] =

(
1 24 sin(n�=720)

24 sin(n�=720) 1 + 48 cos2(n�=1440)

)
:
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Fig. 1. A synthetic random process.

Fig. 2. Estimation of the mean for a random process.

One example of this synthetic data is shown in Fig. 1. We
can see that the cluster of data keeps rotating and moving
away from the origin over time.

We use the algorithm introduced in Section 2.1 to update
the eigenspace, and show the estimation results of the mean
compared to the ground truth in Fig. 2. The traditional up-
dating algorithm without decay parameters is also applied
on the same data. We can see from Fig. 2 that its estimation
is much worse than our estimation. When the eigenspace is
updated by a new random variable, we calculate the orien-
tation of the 7rst eigenvector with respect to the horizon-
tal coordinate. Ideally the orientation should change from
90◦ to 0◦ according to the time coordinate. As shown in
Fig. 3, our algorithm can successfully estimate the statis-
tic of the time-varying random process. However, if we ap-
ply the traditional method without decay parameters on the
same data, the resulting orientation is around 45◦ because it

Fig. 3. Estimation of the variance for a random process.

considers all the previous samples equally. The traditional
method works well in the beginning as it removes the mean
as well. However, it quickly becomes worse because nei-
ther the mean nor the variance updating uses the decaying
parameters.

3. Choosing the decay parameters

In the proposed eigenspace updating algorithm, we need
to specify the decay parameters for both mean estimation
and variance estimation. In practice, for a recognition sys-
tem, there is usually a cross validation data available before
the testing stage of the system. Thus based on the cross val-
idation data, the optimal decay parameters speci7c to the
application could be obtained by exhaustive search within
the valid range, 0–1. If there is no cross validation data
available, how do we determine decay parameters? We will
answer it in this section.

Motivated by the Kalman 7lter, we can model the
time-varying mean and variance as autoregressive (AR)
random processes with certain parameters. Now the prob-
lem becomes, based on the models and the parameters, how
do we 7nd the optimal decay parameters without exhaus-
tive search? We will address mean estimation and variance
estimation separately.

3.1. Decay for mean estimation

Consider the model in Fig. 4, where the sample, xn, is a
scalar and generated by an AR(1) random process plus a
white noise, vn,

xn = mn + vn; (10)
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Fig. 4. AR(1) model for observed samples.

where the observation noise, vn, has zero mean and the vari-
ance of r. The AR(1) process is generated by the following
equation:

mn = �mn−1 + wn; (11)

where the white noise, wn, has zero mean and the variance
of q. Based on the above two equations, we can see that xn
and mn have the same mean. Given xn, we can estimate its
mean at each time instant by estimating the mean of mn at
that time instance, which is denoted as m̂n.
We consider that the mean is estimated via:

m̂n = �mm̂n−1 + �mxn; (12)

where �m and �m can take on any values between 0 and
1. Note that (12) is basically the same as (3) without the
constraint that �m=1−�m. Removing this constraint allows
us a more comprehensive study for choosing the decay.

Now the problem becomes to 7nd the optimal �m and �m,
which can make the m̂n as close to mn as possible. Let us
derive it by minimizing the estimation error, pn.

pn = E(mn − m̂n)
2:

By extending the above equation, we have

pn = �2(1− �m)
2pn−1 + (1− �m)

2q + �2
mr + h2E(m̂n−1)

2

− 2h�(1− �)E(m̂n−1(mn−1 − m̂n−1)); (13)

where h= �m − �(1− �m).
In order to have an explicit formulation for pn, we let h

be zero, i.e., �m and �m satisfy the following equation.

�=
�m

1− �m
: (14)

Thus pn can be simpli7ed as

pn = �2mpn−1 + (1− �m)
2q + �2

mr: (15)

When n goes to in7nity, pn converges to

pn→∞ =
(1− �m)2q + �2

mr
1− �2(1− �m)2

: (16)

By taking the derivative of pn→∞ with respect to �m to be
0, we can obtain the optimal value for �m:

�m =
r(�2 − 1)− q +

√
(r(1− �2) + q)2 + 4�2qr
2r�2

: (17)

Based on Eq. (14), the optimal value for �m is the following:

�m =
r(�2 + 1) + q−√(r(1− �2) + q)2 + 4�2qr

2r�
: (18)

We can see that as � increases, both �m and �m increase.
However, �m increases faster than �m since there is one more
term of � in the denominator of �m. This means that as
the random process changes more and more slowly, i.e., �
gets larger and larger, the previous estimate, m̂n−1, should
contribute more and more to the current estimate.

In order to show the e6ectiveness of our choice of decay
parameters, we perform an experiment based on synthetic
data. First, we synthesize a set of random processes using
the AR(1) process in Eqs. (10) and (11). By taking these
processes as observation samples and assuming we know
the parameters in the AR(1) process, i.e., �, r and q, we
can perform exhaustive search to 7nd the optimal decay pa-
rameters which can generate the minimum estimation error.
Also by using of (17) and (18), we can calculate the decay
parameters for our estimate. From Fig. 5, we can see that
our decay parameters are very close to the optimal decay
resulting from exhaustive search.

All the above derivation works in the scalar case. When
the sample, Xn, is a vector, we can obtain the same results
if we assume each element of Xn is independent. In the
appendix, we will compare the estimation performance be-
tween our estimate and other estimates, such as the Kalman
7lter and exhaustive search, in terms of estimation errors.

3.2. Decay for variance estimation

Similar to themean estimation, we study the case when the
observation, xn, is in the scalar form and it can be modeled
as

xn =
√
cnvn: (19)

Here the white noise, vn, has zero mean and variance of one.
Thus cn becomes the variance of xn, and we assume cn is
generated from an AR(1) random process using (11).
Now the problem becomes given an observation se-

quence, xn, estimate its variance, cn, based on the knowledge
of the parameter of the AR process, �, and the variance of
the white noise wn, q. We use the following equation as
the estimate. Similar to our previous section, we use two
parameters, �v and �v, to combine the information from the
previous estimate, ĉn−1, and the current sample, xn,

ĉn = �vĉn−1 + �vx
2
n: (20)

In order to 7nd the optimal �v and �v, we can derive it by
minimizing the estimation error. However, it turns out we
need to make a very strict constraint in the derivation in order
to obtain an explicit result. Experimentally, we found that
the estimation performance of the derivation result under
this strict constraint is not satisfying. Thus we want to solve
this problem by an empirical method.
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Fig. 5. Optimal decay parameters vs. our estimated decay parameters (left: r=q = 3; right: r=q = 1).

Basically, two parameters will a6ect the selection of decay
parameters. The 7rst one �, the parameter of the AR process,
de7nes how fast the variance cn changes over time. Since
in most applications the variance does not change too fast,
we will study the case where � is between 0.6 and 1. The
second one q, the variance of the white noise wn, de7nes
how much variability the variance itself will have over time.
The larger wn, the larger range the variance will vibrate.
In our experiments, we will change these two parameters,
and observe the corresponding e6ect on the optimal decay
parameters.

By 7xing the above two parameters, we can synthesize
the ground truth cn and observation samples, xn. The op-
timal decay parameters in the sense of minimal estimation
error can be obtained by exhaustive search. Now changing
the � to be other values, synthesizing data and performing
estimation many times, we found the optimal �v and �v ac-
tually change very little, which means they are basically un-
a6ected by �. For a 7xed q, by tuning di6erent �, we can
obtain both the mean and variance of the optimal �v and �v.
By varying q from 25 to 10 000, we can obtain four curves
according to the above four statistics. We show the results in
Fig. 6, where the horizontal axis represents the square root
of q. From this 7gure, we can see that even though the stan-
dard deviation varies over a large range, the optimal decay
parameters do not change signi7cantly. The same experi-
ment can be performed by 7xing q and varying �. We plot
the resulting optimal decay parameters according to di6er-
ent � in Fig. 7. Thus a good choice of our estimate is to
choose the mean of optimal decay parameters as the value
of �v and �v, where �v = 0:85 and �v = 0:13.
We now conduct an experiment to compare the estimation

performance of di6erent approaches. In Fig. 8, we show
the estimation performance of four approaches according to
di6erent �. The 7rst one is exhaustive search by constraining
that �v and �v sum to one. The second one is also exhaustive
search, but both the optimal �v and �v are searched in the

Fig. 6. Optimal decay parameters according to the di6erent standard
deviation of the white noise.

range 0–1. The third one is the sample variance, which is
calculated from all the samples with equally weighting. The
last one is our estimate where two 7xed decay parameters are
used. From this 7gure, we can see that �v and �v summing
to one is not a bad constraint since the performance is only
slightly worse than the unconstrained case. Also, when �
is large, which indicates the variance changes slowly, our
estimate works much better than the sample variance. But
when the variance changes too fast, batch variance turns
out to be better than ours because it is harder to estimate
the variance for each time instance. Actually in practical
applications, the variance tends to change slowly, where � is
closer to 1. Similar to the mean estimate, when the samples
are in the form of vectors, we can obtain the same results
by extending our estimate to the vector form.
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Fig. 7. Optimal decay parameters according to di6erent �.

Fig. 8. Results of the variance estimation.

4. Face recognition based on updating individual PCA

When applied to face recognition, the proposed
eigenspace updating algorithm results in an updating-
during-recognition scheme. That is, the eigenspace for each
subject is updated by test images while each of them being
recognized. There are two reasons for doing this. First, in
many applications it is not feasible to capture many train-
ing images for each subject containing enough variations
for statistical modeling of that subject. Usually only a few
images under the normal condition are available for train-
ing. Thus, it would be better if more and more images of
that subject are used to update its model during the testing
stage. Secondly, people change their appearance over time.
Even if there are many images available for training, the
system may not recognize faces when a subject changes
the appearance due to aging, expression, pose, and illumi-

nation changes. A recognition system that is able to learn
the changing appearance of the subject and adapt to it can
achieve better performance.

In using our updating method for face recognition, we
assume the test images are from a face sequence and
there is continuity between consecutive frames. In Section
4.1, we introduce the scheme based on updating a single
eigenspace model for each subject. Since this approach may
su6er from slow learning, in Section 4.2 we also propose a
twin-subspace approach to alleviating this problem.

4.1. Single-subspace updating scheme

Given a set of face images from K subjects for training,
each subject has one individual eigenspace trained from
his/her own images. When a test image arrives, it is pro-
jected into every individual eigenspace and assigned to the
one that gives the minimal residue, which is de7ned by the
di6erence between the test image and its projection in
the eigenspace.

Now we need to decide whether to update the eigenspace
model of the recognized subject, using the test image. First,
by comparing the minimal residue with a pre-de7ned thresh-
old, we can see whether the current model can represent the
test image well. If it does, we do not perform updating since
this test image does not bring enough new statistical infor-
mation for the model. Second, we calculate the con7dence
measure as the di6erence between the residue of the sec-
ond candidate and the residue of the top candidate. Then the
con7dence measure is compared with another pre-de7ned
threshold. If the con7dence measure is larger than the thresh-
old, this test image will be utilized to update the assigned
eigenspace using our updating method. Basically the larger
the con7dence measure, the more con7dence we have about
the current recognition result. Thus as time goes on, the
eigenspace will adapt to the most recent statistics of the
subject’s appearance, and be able to recognize more “new
looking” images from that subject.

One risk in this approach is that sometimes the eigenspace
model is not updated by the test images with new appearance
because of not-high-enough con7dence measures, while in
the same time the test images keep showing new appear-
ances. In this case, it is likely the test images will not be
correctly recognized because they show di6erent appearance
as the current model, which only represents out-of-date ap-
pearances. This is the problem with slow learning, i.e., the
model does not learn fast enough in order to recognize the
test images with new appearances. To alleviate this prob-
lem, we introduce the twin-subspace updating scheme in
Section 4.2.

4.2. Twin-subspace updating scheme

In this scheme, we train two subspaces, the static model
and the dynamic model, for each subject. The static model is
trained from the original training images of that subject, and
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Fig. 9. Testing of the twin-subspace updating scheme.

the dynamic model is updated from the test images during
the testing stage.

When one test image arrives, we calculate its residue to
both subspaces for each subject. Then the smaller residue is
considered as the distance between the test image and that
subject. Eventually the test image is recognized as the sub-
ject with the minimal distance. Same as the previous sec-
tion, we also make the decision of updating based on two
thresholds. The 7rst threshold 7lters out the test image with-
out enough variations with respect to the current model. The
second threshold is compared with the con7dence measure,
which is the di6erence between the top candidate and the
second candidate in terms of distance. Test images with low
con7dence in its recognition result are rejected from being
used for updating. In this scheme, only the dynamic model
is updated by the test images, and the static model will never
be changed once it is trained from the original training im-
ages. As illustrated in Fig. 9, each one of the K subjects has
two models, the static one, Si, and the dynamic one, Di. The
residues r1;1; r2;2; : : : ; rk;2 are calculated as the distances be-
tween the test sample and each class. In this case Subject 2
is the recognition result because it has the minimal distance
r2;2. Suppose Subject k is the second candidate. The con7-
dence measure rk;2 − r2;2 is then utilized to decide whether
this test sample will be used to update the dynamic model
of Subject 2, D2.

The main reason we propose this updating scheme is to
capture di6erent aspects of facial appearance. That is, the
static model is used to capture the subject’s more intrin-
sic appearance based on training images, while the dynamic
model is used to capture the time-varying statistics on the
appearance. The second reason is to deal with the slow learn-
ing problem. Because there are two models for each subject
during testing, even the test image might not match well
with the dynamic model because of the slow learning in the
dynamic model, it is still possible that the static model will
match with the test image and let the test image update the
current dynamic model. Thus the dynamic model can learn
the time-varying statistics and bene7t future recognition.

In practice, many factors decide whether we should use
the single subspace scheme or the twin-subspace scheme.

For example, we should use the single subspace scheme
when there is small amount of variations in the testing im-
ages. Also, when we need to deal with the recurrent type of
variations, such as pose, expression, illumination, and facial
hair variations, we should use the twin-subspace scheme.
While for non-recurrent type of variation, such as aging, the
single subspace scheme would be more proper because only
the most current statistics, which is captured by the dynamic
model, will be useful for future recognition.

5. Experimental results

We conduct experiments on face data sets that contain
di6erent variations, such as poses, illuminations and expres-
sions. We will show that for all these variations, our algo-
rithm can achieve much better performance than methods
without updating, because we can model variations in a sub-
ject’s appearance over time and thus improve the recogni-
tion performance. The methods we compare with are the
individual PCA method without updating, and traditional
eigenspace updating without decay.

In practical applications of face recognition, the human
face usually undergoes di6erent kinds of variations, most
of which come from the pose, expression, illumination and
the combination of them. In order to show the e6ectiveness
of our algorithm in dealing with these variations, experi-
ments are conducted on data sets with these three types of
variations.

5.1. Pose data set

We collected a face database with 20 subjects. Each
subject has 10 training images. The test images for each
subject come from a video sequence, where the subject con-
tinuously shows di6erent poses. Both the test and training
images are of 32× 32 grayscale images. There are 210 test
images within one sequence for each subject. In Fig. 10,
we show sample face images from six subjects in this data
set, where the images in the same row belong to the same
subject. A lot of pose variations can be observed from this
data set. Also notice the registration error in some images.
This is a very challenging data set for face recognition.

We show the experiment results in Fig. 11. The horizontal
axis shows the index of the test images, and the vertical
axis shows the recognition error rate based on the number
of test images so far. We perform experiments on di6erent
random orders of the test sequence and show the average
of them in the 7gure. Three algorithms have been tested on
this data set. The 7rst one is the individual PCA method,
which works worst because there is no updating involving
in the testing stage. The second is our updating method
with dynamically estimated decay parameters, which has
better performance than the individual PCA method. The
third one is our twin-subspace method. It has signi7cant
improvement compared to the other two methods since it
models the statistics more comprehensively for the changing
appearance over time.
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Fig. 10. Sample images of face sequences showing di6erent poses.
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Fig. 11. Experiment results with di6erent approaches on the pose
data set.

In the previous experiment, we do not use eigenvectors
in constructing the eigenspace for each training subject. So
basically only the mean is used for recognition. Because
the number of eigenvectors will a6ect the recognition per-
formance, we also perform experiments with di6erent num-
ber of eigenvectors. Table 1 shows di6erent recognition
error rates with respect to di6erent number of eigenvectors
used in constructing the individual eigenspace. Among these
three methods, our twin-subspace updating method has the
best performance and the individual PCA works the worst.
From this experiment we can see that a proper updating
method will work better than a non-updating method in face

Table 1
Recognition error rate with di6erent number of eigenvectors

Number of eigenvectors 0 2 4 6
Individual PCA method 27.88% 19.62% 16.43% 14.76%
Our method with dynamic decay parameters 18.57% 10.67% 8.49% 6.87%
Our twin-subspace method 5.77% 4.83% 4.15% 3.98%

recognition. Also the twin-subspace method is a promising
approach to deal with large variations, such as poses in this
data set.

5.2. Expression data set

We collected another face database with 30 subjects. Each
subject has 5 training images and 70 test images. Each image
is of the size of 32×32 pixels. The test images for each sub-
ject come from a video sequence, where the subject shows
varying expressions. The sample images from six subjects
are shown in Fig. 12. We use the same test scheme as the
pose data set. The result is shown in Fig. 13. We try both
using 7xed decay parameters and tuning the decay parame-
ters online according to the changing statistics. Here we use
the AR(1) random process as the model for face sequences.
In all three methods we only update the mean and do not
use any eigenvectors.

From this experiment we see that updating methods with
decay parameters have better performance than the updating
method without decay. Also dynamically tuning decay pa-
rameters during the testing stage enhances the modeling of
time-varying statistics and hence improves the recognition
performance.

5.3. PIE database

In this experiment, we use a subset of the CMU PIE
database [21], which has 7 subjects. Each subject has 24
images, which have the size of 64 × 64 pixels, showing
the same expression and pose while under continuous
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Fig. 12. Sample images of six subjects from the expression data set.

Fig. 13. Experiment results with di6erent approaches on the ex-
pression data set.

varying illuminations. We use 3 images for training and the
remaining 21 images for testing. One eigenvector is used for
building eigenspace for each subject. Part of the test images
for one subject are shown in Fig. 14. Since the number of

Fig. 14. Images of one subject from PIE database.
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Fig. 15. Experiment results with di6erent approaches on the PIE
database.

test images per subject is small, during the testing only
one image, instead of continuous few frames, is tested
whenever a subject is randomly selected. The experi-
ment result shown in Fig. 15 also indicates that our
approach can achieve better performance compared to
others.
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6. Discussion

6.1. Frame- and video-based recognition

While in Section 5 we treat each test image indepen-
dently and perform a frame-based recognition, we can also
do a video-based recognition in the following two applica-
tions scenarios. One is that we recognize the human from
the video sequence in a online fashion and do not know
when the subject will leave or another subject will come
in. In this case, we need to know the recognition results
up to the current frame immediately. Many online recog-
nition and veri7cation systems of human faces belong to
this case. We call this scenario as online video. The other
is that we could oTine process the video content, such as
indexing of the meeting records or analyzing surveillance
videos, where we are interested in the recognition results
after all the frames of one sequence have been captured.
This is called o;ine video. We illustrate these scenarios
in Fig. 16.

For the online video, by using a face-tracking program
[22], we can keep tracking human faces and crop the face
region for recognition. With the face tracking, we also know
whether the current frame and the previous frames belong
to the same subject. An intuitive idea is to use majority
voting to see which subject is mostly recognized among
all the previous frames. Then a decision will be made on
whether using the current frame to update the eigenspace.
For the case of the oTine video, we can still use the updating
based on the majority voting in processing frames one by
one. However, as shown in the third row of Fig. 16, once a
sequence has done with the recognition, we can use all the
frames in this sequence to update the eigenspace of the most
recognized subject, while this is not feasible in the online
video case because it needs to store all the previous frames in
one sequence. We have also performed experiments for both
the online video and the oTine video cases, and the result

0

1

K-1

Frame based

Online video

Offline video

Frame 1 Frame j

Recognized as Subject 1, update
the eigenspace of Subject 1

Recognized as Subject 1, update
using the whole sequence

Recognized as Subject 1, update
the eigenspace of Subject 1

Fig. 16. Three application scenarios.

shows that for the same database, the recognition per-
formance can be signi7cantly improved by using the
video-based recognition.

6.2. AR(k) process for decay estimation

In Section 3, we solve the problem of determining
decay parameters given the parameters of AR(1) pro-
cess. However, in face recognition application, given a
face sequence, how can we apply the theory in Section
3 on it, i.e., how can we determine whether a face se-
quence can be approximated by AR(1) or high order AR
process; how do we estimate the parameters for an AR
process?

The answer to the above questions involves two steps be-
fore applying our updating algorithm on the face sequence.
One is the model selection. The other is model 7tting. Model
selection determines k in an AR(k) process. Model 7tting
estimates the parameters in a speci7c AR(k) process. There
are many existing techniques to solve these two problems
in signal processing literature [23]. For example, model
selection can be done by 7nding k whose AR(k) has one
pole that is close to 0, which means it can be approximated
by AR(k − 1). Table 2 shows the corresponding model
parameters by assuming 7ve face sequences as AR(k)
random processes with k equals to 1 or 2. We found for
most face sequences with expression variations, AR(1) is
a good statistical model, while for face sequences showing
pose variations, some of them might need AR(2) to model
them.

In Section 3, we assume that the observation samples
come from the noised version of the AR(1) random process.
However, what happen if the samples are actually intrinsic
high order AR process, for example, AR(2) random pro-
cess? In this case, how do we derive the relation between
the model parameters, �1, �2, r; q, and the decay parameters,
�m, �m?
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Table 2
Model parameters for real face sequences

Expression 1 Expression 2 Expression 3 Pose 1 Pose 2

� in AR(1) 0.9998 0.9998 0.9998 0.9975 0.9998
�1 in AR(2) 0.9997 0.9997 0.9502 0.9982 0.9347
�2 in AR(2) 0.1084 −0.0209 −0.0158 0.3283 0.5659

wn
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xn

mn

Z-1 Z-1

wn

vn

mn

Z-1 Z-1

xn

p1

�1

p2

�2

un

Fig. 17. AR(2) model for observed samples.

First of all, we can separate an AR(2) random process
into two AR(1)-like random processes as follows:

H (Z) =
m(Z)
w(Z)

=
1

1− �1Z−1 − �2Z−1

=
1

1− p1Z−1

1
1− p2Z−1

=
u(Z)
w(Z)

m(Z)
u(Z)

= H1(Z)H2(Z):

This is also illustrated in Fig. 17. Now if we compare two
AR(1)-like random processes with the AR(1) random pro-
cess in Fig. 4, we can see that un plays the similar role as
wn in Fig. 4. Thus given an AR(2) random process, we can
calculate the variance of un and treat it as q. Then by using
q, r and �2 in Eqs. (17) and (18), we can obtain the de-
cay parameters. Similarly for an AR(k) random process, we
can separate it into two parts: an AR(k − 1) random pro-
cess and an AR(1)-like random process, where the former
contributes the noise signal for the latter.

One di6erence in solving decay parameters for AR(1)
and AR(2) is that, un is not a white noise while wn being
a white noise is one assumption in deriving (17) and (18).
However, if wn is not a white noise, there will be a small
no-zeros terms in the right side of the objective function,
(13). Thus the solution provided in Eqs. (17) and (18) will
become sub-optimal for the AR(2) case. We have performed
simulation on estimating the mean of an AR(2) random

process, and we found the estimation error of our estimate
is very close to the one from exhaustive search.

7. Conclusions and future works

In this paper, we introduced a novel approach to updating
the eigenspace for non-stationary random processes. Given
a new training sample, we iteratively update the eigenspace
to manifest the current statistics provided by the new sam-
ple. The updated eigenspace is based more on the recent
samples and less on the older samples. Extensive study has
been performed on how to choose the decay parameters in
our updating method. We showed the e6ectiveness of our
algorithm using both synthetic data and practical applica-
tions on face recognition. The experiments results indicate
that the random processes in many practical applications are
essentially non-stationary, which results in the signi7cantly
improved performance by our updating method compared
to other methods in literature.

As a modeling tool, our eigenspace updating method can
also be applied to other applications, for example, the detec-
tion of signal changing [24,25] and video coding. We have
already applied it to the shot boundary detection [27] and the
detection of facial expression changes. It is able to model
the most recent statistics over time, and thus any change in
signals can be detected from the residue between the new
signal and the eigenspace.

In face recognition, many approaches have been proposed
to deal with di6erent variations. While each approach works
well for the speci7c variation being studied, performance
degrades rapidly when other variations are present. In prac-
tice, the test images usually undergo the mixture of varia-
tions, such as expressions, poses and illuminations. Trying
to use a static model to cover all these variations is diD-
cult. Using the proposed updating method is one solution.
Instead of trying to model all variations at once, we try to
dynamically model only the most recent variations.

There are many interesting directions to be explored fur-
ther. For example, in our updating method, the eigenvector
expansion is truncated as in (5), which results in an approx-
imate representation for the covariance matrix. Can we have
a better estimation for the covariance by adding a diago-
nal term that accounts for the discarded residue? Also, as
the eigenspace only provides a subspace representation for
a data set, it lacks a probabilistic measure for the samples in
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the data set. Can we borrow the idea of probabilistic PCA
[26] and update the eigenspace in a probabilistic framework,
i.e., the resulting eigenspace can have a probabilistic inter-
pretation for each sample? Further, while applying updating
methods, a good scheme to decide when to perform updat-
ing is very critical and requires more study. Finally, how to
take advantage of the timing information and perform the
video-based recognition is also an interesting topic worth
further study.
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Appendix

In the Kalman 7lter, there are 7ve iterative steps to per-
form the estimation. They can be described by the following
7ve equations:

m̂−
n = �m̂n−1; (A.1)

p−
n = �pn−1 + q; (A.2)

m̂n = m̂−
n + kn(xn − m̂−

n ); (A.3)

kn =
p−
n

p−
n + r

;

pn = (1− kn)p
−
n : (A.4)

By extending (A.3) with (A.1), we get

m̂n = �(1− kn)m̂n−1 + knxn: (A.5)

If we compare the above equation with our estimate, we can
7nd that kn corresponds to �m, and �(1 − kn) corresponds
to �m in our estimate. By combining (A.2) and (A.4), the
converge formula of pn when n goes in7nity can be found.
Since kn only depends on pn−1, q, and r, eventually we can
obtain the converging formulation for kn, which is exactly
the same as �m in Eq. (17). Hence �(1 − kn) has the same
formulation as �m in Eq. (18). From this, we can see that our
estimate turns out to be the converging form of the Kalman
7lter.

We conduct the following experiment to show the esti-
mation performance. Given di6erent random processes syn-
thesized by tuning di6erent � in the AR(1) process, we can
estimate the model parameters 7rst. Then we can utilize the
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Fig. 18. Mean estimation based on estimated model parameters.

model parameters to derive the decay parameters for our
updating method. For the AR(1) random process, we can
estimate model parameters as following:

Rxx(k) = E(xnxn+k) = E((mn + vn)(mn+k + vn+k))

= E(mnmn+k) + E(vnvn+k) = Rmm(k) + Rvv(k);

Rmm(k) =
q

1− �2
�|k|:

Basically by calculating Rxx(0), Rxx(1), up to Rxx(k), we
can estimate q, r and � based on the above two equations.
Since there are estimation errors in estimating these model
parameters, we are interested in how our estimate performs
based on these estimated model parameters.

Then these model parameters are fed into both the Kalman
7lter and our estimate to estimate the mean of the random
process. Since we have the ground truth of the mean, we
can also perform exhaustive search for the decay parameters
as well. In Fig. 18, we show the estimate errors of three
di6erent estimates and also the variance between the given
samples and the ground truth. We can see that for di6erent
choices of �, our estimate performs better than the Kalman
7lter, especially in the region with large �.
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