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Abstract Pose-invariant face alignment is a very chal-
lenging problem in computer vision, which is used as a
prerequisite for many facial analysis tasks, e.g., face recog-
nition, expression recognition, and 3D face reconstruction.
Recently, there have been a few attempts to tackle this prob-
lem, but still more research is needed to achieve higher
accuracy. In this paper, we propose a face alignment method
that aligns an image with arbitrary poses, by combining the
powerful cascaded CNN regressors, 3D Morphable Model
(3DMM), and mirrorability constraint. The core of our pro-
posed method is a novel 3DMM fitting algorithm, where the
camera projection matrix parameters and 3D shape param-
eters are estimated by a cascade of CNN-based regressors.
Furthermore, we impose the mirrorability constraint during
the CNN learning by employing a novel loss function inside
the siamese network. The dense 3D shape enables us to
design pose-invariant appearance features for effective CNN
learning. Extensive experiments are conducted on the chal-
lenging large-pose face databases (AFLW and AFW), with
comparison to the state of the art.

Keywords Pose-invariant face alignment · CNN · Cascaded
regressor · Dense model fitting · Mirrorability constraint
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1 Introduction

Face alignment is the process of aligning a face image and
detecting a set of fiducial points, such as mouth corners, nose
tip, etc. Face alignment is a keymodule in the pipeline ofmost
facial analysis tasks, normally after face detection and before
subsequent feature extraction and classification. As a result,
improving the face alignment accuracy is helpful for numer-
ous facial analysis tasks, e.g., face recognition (Wagner et al.
2012), face de-identification (Jourabloo et al. 2015) and 3D
face reconstruction (Roth et al. 2015, 2016).

Due to its importance, face alignment has been well
studied during past decades (Wang et al. 2014), with thewell-
known Active Shape Model (Cootes et al. 1994) and Active
Appearance Model (AAM) (Matthews and Baker 2004; Liu
2009). Recently, face alignmentworks are very popular in top
vision venues and achieve a lot of attentions. The existing
approaches can be categorized into three groups: Con-
strained Local Model-based approaches (Cootes et al. 1994;
Saragih et al. 2009), AAM-based approaches (Matthews
and Baker 2004; Liu 2009, 2010) and regression-based
approaches (Valstar et al. 2010; Cao et al. 2014c; Zhang
et al. 2008). In spite of the fruitful prior work and ongoing
progress of face alignment (e.g., the latest impressive iBUG
results (Tzimiropoulos 2015) and the first 3D face alignment
challenge (Jeni et al. 2016), face alignment for large-pose
faces is still very challenging and there is only a fewpublished
work in this direction, as summarized in Table 1. Therefore,
this is a clear research gap that needs to be addressed, which
is exactly the focus of this work.

To tackle pose-invariant face alignment, our technical
approach is motivated by the need to address the inherent
challenges associated with this problem, Fig. 1. First of all,
faces have different numbers of visible landmarks under pose
variation, and the spatial distribution of the landmarks is
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Fig. 1 The proposed method estimates landmarks for large-pose
faces by fitting a dense 3D shape. From left to right: initial land-
marks, fitted 3D dense shape, estimated landmarks with visibil-
ity. The green/red/yellow dots in the right column show the visi-
ble/invisible/cheek landmarks, respectively (Color figure online)

highly pose dependent. This presents challenges for existing
face alignment approaches since most of them are based on
2D shape models, which inherently have difficulty in model-
ing the 3D out-of-plane deformation and handling large-pose
face alignment. In contrast, given the fact that a face image is
a projection of a 3D face, we propose to use a dense 3DMor-
phable Model (3DMM) to reconstruct the 3D shape of face
and the projection matrix as the latent representation of a 2D
face shape. Therefore, face alignment amounts to estimating
this representation, i.e., performing the 3DMM fitting to a
face image with arbitrary poses.

Second, our approach to large-pose face alignment is
through 3DMM fitting. However, the classic analysis-by-
synthesis-based optimization approach for 3DMM fitting is
not only inefficient (e.g., 40 seconds per image in Amberg
et al. (2008)), but also based on the assumption that the 2D
landmarks are provided either manually or with a separate
face alignment routine (Qu et al. 2015; Jeni et al. 2015),
which conflicts with the goal of our work. This motivates
us to employ the powerful cascaded regressor approach to
learn the mapping from a 2D face image to its representation.
Since the representation is composed of 3D parameters, the
mapping is likely to be more complicated than the cascaded
regressor in 2D face alignment (Cao et al. 2014c). Therefore,
we propose to use Convolutional Neural Networks (CNN) as
the regressor in the cascaded framework, to learn the map-
ping. While most prior work on CNN-based face alignment
estimate no more than six 2D landmarks per image (Zhang
et al. 2014b; Sun et al. 2013), our cascaded CNN can produce
a substantially larger number (34) of 2D and 3D landmarks.
Further, using landmark marching (Zhu et al. 2015b), our
algorithm can adaptively adjust the 3D landmarks during the
fitting, so that the local appearances around cheek landmarks
contribute to the fitting process.
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Third, conventional 2D face alignment approaches are
often driven by the local appearance feature patch around
each estimated 2D landmark. Even at the ground truth land-
mark, such as the outer eye corner, it is hard to assume
that the local patches from faces at various poses cover the
same area of facial skin anatomically, which poses addi-
tional challenge for the learning algorithm to associate a
unified and distinctive pattern with the ground truth land-
mark. Fortunately, in our work, we can leverage the dense
3D face model as an oracle to build dense feature corre-
spondence across various poses and expressions. Therefore,
we propose two novel pose-invariant local features, as the
input layer for CNN learning. We also utilize person-specific
surface normals to estimate the visibility of each landmark
by inspecting whether its surface normal has a positive z
coordinate, and the estimated visibilities are dynamically
incorporated into the CNN regressor learning such that only
the extracted features from visible landmarks contribute to
the learning.

Fourth, the CNN regressor deals with a very challenging
learning task given the diverse facial appearance across all
poses. To facilitate the learning task under large variations
of pose and expression, we develop two new constraints to
learn the CNN regressors. One is that, there is inherent ambi-
guity in representing a 2D face shape as the combination of
the 3D shape and projection matrix. Therefore, in addition
to regressing toward such a non-unique latent representation,
we also propose to constrain the CNN regressor in its ability
to directly estimate 2D face shapes. The other is that, a hori-
zontally mirrored version of a face image is still a valid face
and their alignment results should be the flip version of each
other. In thiswork,wepropose aCNNarchitecturewith a new
loss function that explicitly enforces these constraints. The
new loss functionminimizes the difference of face alignment
results of a face image and its mirror, in a siamese network
architecture (Bromley et al. 1993). Although this mirrora-
bility constraint was an alignment accuracy measure used
in post-processing (Yang and Patras 2015), we integrate it
directly in CNN learning.

These algorithm designs collectively lead to the proposed
pose-invariant face alignment algorithm. We conduct exten-
sive experiments to demonstrate the capability of proposed
method in aligning faces across poses on two challenging
datasets, AFLW (Köstinger et al. 2011) and AFW (Zhu and
Ramanan 2012), with comparison to the state of the art.

We summarize the main contributions of this work as:

• Pose-invariant face alignment by fitting a dense 3DMM,
and integrating estimation of 3D shape and 2D facial
landmarks from a single face image.

• The cascaded CNN-based 3D face model fitting algo-
rithm that is applicable to all poses, with integrated

landmark marching and contribution from local appear-
ances around cheek landmarks during the fitting process.

• Dense 3D face-enabled pose-invariant local features and
utilizing person-specific surface normals to estimate the
visibility of landmarks.

• A novel CNN architecture with mirrorability constraint
that minimizes the difference of face alignment results of
a face image and its mirror.

The rest of this paper is organized as follow. In the next
section prior works are summarized. Section 3 describes
pose-invariant face alignment algorithm with two different
CNN architectures and two types of pose-invariant local
features. Experimental results are reported in Section 4. Con-
clusions and future directions are in Section 5.

The preliminary version of this work appears in Jourabloo
and Liu (2016). We extend it in a number of ways: (i) pro-
posed a new CNN architecture and new loss function for
integrating mirrorability constraint in the training process of
CNN; (ii) added synthetic face images to the training set; and
(iii) compared implementation of proposed method with two
different CNN toolboxes.

2 Prior Work

We review prior work in four areas related to the proposed
method: pose-invariant face alignment, 3D face model fit-
ting to a single image, face alignment via deep learning, and
sharing information in face alignment and deep learning.
Pose-invariant face alignment The methods of Yu et al.
(2013); Zhu and Ramanan (2012); Hsu et al. (2015) com-
bines face detection, pose estimation and face alignment. By
using a 3D shape model with optimized mixture of parts,
(Yu et al. 2013) is applicable to faces with a large range
of poses. In Wu and Ji (2015), a face alignment method
based on cascade regressors is proposed to handle invisi-
ble landmarks. Each stage is composed of two regressors
for estimating the probability of landmark visibility and the
location of landmarks. This method is applied to profile-view
faces of FERET database (Phillips et al. 2000). However, as
a 2D landmark-based approach, it cannot estimate 3D face
poses. Occlusion-invariant face alignment, such as RCPR
(Burgos-Artizzu et al. 2013), may also be applied to handle
large poses since non-frontal faces are one type of occlu-
sions. Tulyakov and Sebe (2015) is a very recent work that
estimates 3D landmark via regressors. However, it only tests
on synthesized face images up to ∼50◦ yaw. The most rel-
evant prior work is Jourabloo and Liu (2015), which aligns
faces of arbitrary poses with the assistant of a sparse 3D
Point Distribution Model (PDM). The model parameter and
projection matrix are estimated by the cascade of linear or
non-linear regressors. We extend (Jourabloo and Liu 2015)
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Table 2 The comparison of most recent 3D face model fitting methods

Method Integrated 2D
landmark

No of 2D
landmarks

Testing database Pose range 3D bases Method

(Qu et al. 2015) No 68 Basel [-30◦, 30◦] Basel bases Adaptive contour fitting

(Jeni et al. 2015) No 77 to 1024 BU-4DFE;
BP-4DS; videos

[-60◦, 60◦] Bases from
BU-4DFE &
BP-4DS

Cascaded regressor;
EM

(Zhu et al. 2015c) Yes – FRGC Frontal Basel bases Cascaded regressor

Proposed method Yes – AFW; AFLW All poses Basel bases 3D cascaded regressor

in a number of aspects, including fitting a dense 3D mor-
phable model, employing the powerful CNN as the regressor,
using 3D-enabled features, estimating cheek landmarks and
utilizing the mirror CNN architecture. Table 1 compares the
pose-invariant face alignment methods.
3D face model fitting Table 2 shows the most recent 3D face
model fitting methods to a single image. Almost all prior
works assume that the 2D landmarks of the input face image
is either manually labeled or estimated via a face alignment
method. In Jeni et al. (2015), a dense 3D face alignment from
videos is proposed. At first, a dense set of 2D landmarks are
estimated by using the cascaded regressor. Then, an EM-
based algorithm is utilized to estimate the 3D shape and 3D
pose of the face from estimated 2D landmarks. The authors
in Qu et al. (2015) aim to make sure that the locations of
2D contour landmarks are consistent with the 3D face shape.
In Zhu et al. (2015c), a 3D face model fitting method based
on the similarity of frontal view face images is proposed. In
contrast, our proposed method is the first approach to inte-
grate 2D landmark estimation as part of the 3D face model
fitting for large poses. Furthermore, all prior 3D face model
fitting works process faces with up to 60◦ yaw while our
method can handle all view angles.
Face alignment via deep learning With the continuous suc-
cess of deep learning in vision, researchers start to apply
deep learning to face alignment. Sun et al. (2013) proposed
a three-stage face alignment algorithm with CNN. At the
first stage, three CNNs are applied to different face parts
to estimate positions of different landmarks, whose aver-
ages are regarded as the first stage results. At the next two
stages, by using local patches with different sizes around
each landmark, the landmark positions are refined. Similar
face alignment algorithms based on multi-stage CNNs are
further developed by Zhou et al. (2013) and CFAN (Zhang
et al. 2014a). InZhang et al. (2014a), a face alignmentmethod
based on cascade of stacked auto-encoder (SAE) networks
can progressively refine locations of 2D landmarks at each
stage. TCDCN (Zhang et al. 2014b) uses one-stage CNN to
estimates positions of five landmarks given a face image.
The commonality among most of these prior works is that
they only estimate 2D landmarks and the number of land-

marks is limited to 6. In comparison, our proposed method
employs CNN to estimate 3D landmarks, as the byproduct of
the 3D surface reconstruction. As a result, the number of esti-
mated landmarks is bounded by the number of 3D vertexes,
although the evaluation is conducted for 34 landmarks.
Sharing information in face alignment and deep learning
Utilizing different side information in face alignment can
improve the alignment accuracy. TCDCN (Zhang et al.
2014b) jointly estimates auxiliary attributes (e.g., gender,
expression) with landmark locations to improve alignment
accuracy. In Yang and Patras (2015), the mirrorability con-
straint, i.e., the alignment difference between a face and its
mirrored counterpart, is used as a measure for evaluating the
alignment results without the ground truth, and for choos-
ing a better initialization. Consensus of occlusion-specific
regressors (Yu et al. 2014) in a Bayesian model is used to
share information among different regressors. In Zhu et al.
(2015a) multiple initializations are used for each face image
and a clusteringmethod combines, the estimated face shapes.
For deep learningmethods, sharing information is performed
either by transferring the learned weights from a source
domain to the target domain (Yosinski et al. 2014), or byusing
the siamese networks (Zagoruyko andKomodakis 2015; Bell
and Bala 2015) to share the weights among branches of the
network and make a final decision with combined responses
of all branches. Compared to the prior work, the proposed
method integrates the mirrorability constraint in a siamese
network, which explicitly contributes to network learning,
rather than as a post-processing metric (Yang and Patras
2015). The siamese network allows us to share information
between face images and their mirrored ones. Feeding all
local patches into CNN shares information among patches,
rather than one local patch for one CNN (Zhang et al. 2014b;
Sun et al. 2013).

3 Unconstrained 3D Face Alignment

The core of our proposed 3D face alignment method is the
ability to fit a dense 3DMorphableModel to a 2D face image
with arbitrary poses. The unknown parameters of fitting, the
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Fig. 2 The overall process of the proposed method

3D shape parameters and the projection matrix parameters,
are sequentially estimated through a cascade of CNN-based
regressors. By employing the dense 3D shape model, we
enjoy the benefits of being able to estimate 3D shape of
face, locate the cheek landmarks, use person-specific 3D
surface normals, and extract pose-invariant local feature rep-
resentation, which are less likely to achieve with a simple
PDM (Jourabloo and Liu 2015). Figure 2 shows the overall
process of the proposed method.

3.1 3D Morphable Model

To represent a dense 3D shape of an individual’s face, we use
3D Morphable Model (3DMM),

S = S0 +
Nid∑

i=1

piidS
i
id +

Nexp∑

i=1

piexpS
i
exp, (1)

where S is the 3D shape matrix, S0 is the mean shape, Siid
is the i th identity basis, Siexp is the i th expression basis, piid
is the i th identity coefficient, and piexp is the i th expression
coefficient. The collection of both coefficients is denoted as
the shape parameter of a 3D face, p = (pTid , pTexp )T . We use
the Basel 3D face model as the identity bases (Paysan et al.
2009) and the face wearhouse as the expression bases (Cao
et al. 2014b). The 3D shape S, along with S0, Siid , and S

i
exp,

is a 3 × Q matrix which contains x, y and z coordinates of
Q vertexes on the 3D face surface,

S =
⎛

⎝
x1 x2 · · · xQ
y1 y2 · · · yQ
z1 z2 · · · zQ

⎞

⎠ . (2)

Any 3D face model will be projected onto a 2D image
where the face shape may be represented as a sparse set of

N landmarks, on the facial fiducial points. We denote x and
y coordinates of these 2D landmarks as a matrix U,

U =
(
u1 u2 · · · uN

v1 v2 · · · vN

)
. (3)

The relationship between the 3D shape S and 2D land-
marks U can be described by using the weak perspective
projection, i.e.,

U = sRS(:,d) + t, (4)

where s is a scale parameter, R is the first two rows of a
3 × 3 rotation matrix controlled by three rotation angles
α, β, and γ (pitch, yaw, roll), t is a translation parameter
composed of tx and ty , d is a N -dim index vector indicat-
ing the indexes of semantically meaningful 3D vertexes that
correspond to 2D landmarks. We form a projection vector
m = (s, α, β, γ, tx , ty )T which collects all parameters to
this projection. We assume the weak perspective projection
model with six degrees of freedom, which is a typical model
used in many prior face-related work (Xiao et al. 2004; Jeni
et al. 2015).

At this point, we can represent any 2D face shape as the
projection of a 3D face shape. In other words, the projection
parameter m and shape parameter p can uniquely repre-
sent a 2D face shape. Therefore, the face alignment problem
amounts to estimatingm and p, given a face image. Estimat-
ing m and p instead of estimating U is motivated by a few
factors. First, without the 3D modeling, it is non-trivial to
model the out-of-plane rotation, which has a varying num-
ber of landmarks depending on the rotation angle. Second,
as pointed out by Xiao et al. (2004), by only using 1

6 of
the number of the shape bases, 3DMM can have an equiva-
lent representation power as its 2D counterpart. Hence, using
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3D model leads to a more compact representation of shape
parameters.
Cheek landmarks correspondence The projection relation-
ship in Eq. 4 is correct for frontal-view faces, given a constant
index vector d. However, as soon as a face turns to the non-
frontal view, the original 3D landmarks on the cheek become
invisible on the 2D image. Yet most 2D face alignment algo-
rithms still detect 2D landmarks on the contour of the cheek,
termed “cheek landmarks”. Therefore, in order to still main-
tain the 3D-to-2D correspondences as Eq. 4, it is desirable to
estimate the 3D vertexes that match with these cheek land-
marks. A few prior works have proposed various approaches
to handle this (Qu et al. 2015; Zhu et al. 2015b; Cao et al.
2014a). In this paper, we leverage the landmark marching
method proposed in Zhu et al. (2015b).

Specifically, we define a set of paths each storing the
indexes of vertexes that are not only the most closest ones
to the original 3D cheek landmarks, but also on the contour
of the 3D face as it turns. Given a non-frontal 3D face S,
by ignoring the roll rotation γ , we rotate S by using the
α and β angles (pitch and yaw), and search for a vertex
in each predefined path that has the maximum (minimum)
x coordinate, i.e., the boundary vertex on the right (left)
cheek. These resulting vertexes will be the new 3D land-
marks that correspond to the 2D cheek landmarks. We will
then update relevant elements of d to make sure these ver-
texes are selected in the projection of Eq. 4. This landmark
marching process is summarized inAlgorithm 1 as a function
d ← g(S,m). Note that when the face is approximately of
profile view (|β| > 70◦), we do not apply landmarkmarching
since the marched landmarks would overlap with the exist-
ing 2D landmarks on the middle of nose and mouth. Figure 3
shows the defined set of pathes on the 3D shape of face and
one example of applying Algorithm 1 for updating vector d.

3.2 Data Augmentation

Given that the projection matrix parameter m and shape
parameter p are the representation of a face shape, we should
have a collection of face images with ground truthm and p so
that the learning algorithm can be applied. However, while

Fig. 3 The landmark marching process for updating vector d. (a, b)
show the defined paths of cheek landmarks on the mean shape; (c) is
the estimated face shape; (d) is the estimated face shape by ignoring
the roll rotation; and (e) shows the locations of landmarks on the cheek

Algorithm 1: Landmark marching g(S,m).
Data: Estimated 3D face S and projection matrix parameterm
Result: Index vector d
/* Rotate S by the estimated α, β */

1 Ŝ = R(α, β, 0)S
2 if 0◦< β < 70◦ then
3 foreach i = 1, · · · , 4 do
4 Vcheek(i) = argmaxid (Ŝ(1,Pathcheek(i)))

5 if −70◦< β < 0◦ then
6 foreach i = 5, · · · , 8 do
7 Vcheek(i) = argminid (Ŝ(1,Pathcheek(i)))

8 Update 8 elements of d with Vcheek.

U can be manually labeled on a face image,m and p are nor-
mally unavailable unless a 3D scan is captured along with a
face image. For most existing face alignment databases, such
as the AFLW database (Köstinger et al. 2011), only 2D land-
mark locations and sometimes the visibilities of landmarks
aremanually labeled,with no associated 3D information such
as m and p. In order to make the learning possible, we pro-
pose a data augmentation process for 2D face images, with
the goal of estimating their m and p representation.

Specifically, given the labeled visible 2D landmarks U
and the landmark visibilities V, we estimate m and p by
minimizing the following objective function:

J (m,p) = ||(sRS(:, g(S,m)) + t − U) � V||2F , (5)

which is the difference between the projection of 3D land-
marks and the 2D labeled landmarks. Note that although the
landmark marching g(:, :) makes cheek landmarks “visible”
for non-profile views, the visibility V is still necessary to
avoid invisible landmarks, such as outer eye corners and half
of the face at the profile view, being part of the optimization.

3.2.1 Optimization

For convenient optimization of Eq. 5, we redefine all projec-
tion parameters as a projection matrix, i.e.,

M =
[
sR

tx
ty

]
∈ R

2×4. (6)

Also, we denote d = g(S,m) in Eq. 5 by assuming it is
a constant given the currently estimated m and p. We then
rewrite Eq. 5 as,

J (M,p) =
∣∣∣∣

∣∣∣∣

(
M

[
S(:,d)

1T

]
− U

)
� V

∣∣∣∣

∣∣∣∣
2

F
. (7)

To minimize this objective function, we alternate the min-
imization w.r.t. M and p at each iteration. We initialize
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the 3D shape parameter p = 0 and estimate M first, by
Mk = argminM J (M,pk−1),

Mk = UV

[
S(:,dV )

1T

]T ([
S(:,dV )

1T

] [
S(:,dV )

1T

]T )−1

,

(8)

where UV is zero-mean positions (by removing the mean
from all the elements) of visible 2D landmarks, dV is a vector
contains the index of visible landmarks. Given the estimated
Mk , we then use the Singular Value Decomposition (SVD)
to decompose it to various elements of projection parameter
m, i.e,Mk = BDQᵀ. The first diagonal element ofD is scale
s and we decompose the rotation matrix R = BQᵀ ∈ R

2×3

to three rotation angles (α, β, γ ). Finally, the mean values of
U are translation parameters tx and ty .

Then, we estimate pk = argminp J (Mk,p). Given the
orthogonal bases of 3DMM, we choose to compute each ele-
ment of p one by one. That is, piid is the contribution of i-th
identity basis in reconstructing the dense 3D face shape,

piid =
Tr

(
Ûᵀ
V Ûidi

)

Tr
(
Ûᵀ
idi
Ûidi

) , (9)

where

ÛV = Mk
[
S(:,dV )

1T

]
, Ûidi = Mk

[
Siid(:,dV )

1T

]
.

Here ÛV is current residual of position of 2D visible land-
marks after subtracting contribution of Mk , and Tr() is the
trace function. Once piid is computed, we update ÛV by sub-
tracting the contribution of i-th basis and continue to compute
pi+1
id . We alternatively estimateM and p until the changes of

M and p are small enough. After each step of applying Eq. 8
for computing a new estimation of M and decomposing to
its parametersm, we apply the landmarkmarching algorithm
(Algorithm 1) to update the vector d.

3.3 Cascaded CNN Coupled-Regressor

Given a set of Nd training face images and their augmented
(i.e., “ground truth”) m and p representation, we are inter-
ested in learning a mapping function that is able to predictm
and p from the appearance of a face. Clearly this is a com-
plicated non-linear mapping due to the diversity of facial
appearance. Given the success of CNN in vision tasks such
as pose estimation (Pfister et al. 2015), face detection (Li et al.
2015), and face alignment (Zhang et al. 2014b), we decide
to marry the CNN with the cascade regressor framework by
learning a series of CNN-based regressors to alternate the

estimation of m and p. To the best of our knowledge, this
is the first time CNN is used in 3D face alignment, with the
estimation of over 10 landmarks.

For each training image Ii , in addition to the ground truth
mi and pi , we also initialize image’s representation by,m0

i =
h(m̄,bi ) and p0i = 0. Here m̄ is the average of ground truth
parameters of projection matrices in the training set, bi is
a 4-dim vector indicating the bounding box location, and
h(m,b) is a function that modifies the scale and translations
of m based on b.

Thus, at the stage k of the cascaded CNN, we can learn a
CNN to estimate the desired update of the projection matrix
parameter,

�k
m = argmin�k

m
J�

=
Nd∑

i=1

||�mk
i − CNNk

m(Ii ,Ui , v
k−1
i ;�k

m)||2, (10)

where the true projection update is the difference between the
current projectionmatrix parameter and the ground truth, i.e.,
�mk

i = mi − mk−1
i , Ui is current estimated 2D landmarks,

computed via Eq. 4, based on mk−1
i and dk−1

i , and vk−1
i is

estimated landmark visibility at stage k − 1.
Similarly another CNN regressor can be learned to esti-

mate the updates of the shape parameter,

�k
p = argmin�k

p
J�

=
Nd∑

i=1

||�pki − CNNk
p

(
Ii ,Ui , vki ;�k

p

)
||2. (11)

Note that Ui will be re-computed via Eq. 4, based on the
updated mk

i and dki by CNNm .
We use a six-stage cascaded CNN, including CNN1

m ,
CNN2

m , CNN
3
p, CNN

4
m , CNN

5
p, and CNN

6
m . At the first stage,

the input layer of CNN1
m is the entire face region cropped by

the initial bounding box, with the goal of roughly estimat-
ing the pose of the face. The input for the second to sixth
stages is a 114×114 image that contains an array of 19×19
pose-invariant feature patches, extracted from the current
estimated 2D landmarksUi . In our implementation, since we
have N = 34 landmarks, the last two patches of 114 × 114
image are filled with zero. Similarly, for invisible 2D land-
marks, their corresponding patches will be filled with zeros
as well. These feature patches encode sufficient information
about the local appearance around the current 2D landmarks,
which drives the CNN to optimize the parameters�k

m or�k
p.

Also, through concatenation, these feature patches share the
information among different landmarks and jointly drive the
CNN in parameter estimation. Our input representation can
be extended to use a larger number of landmarks and hence
a more accurate dense 3D model can be estimated.
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Note that since landmark marching is used, the estimated
2D landmarksUi include the projection of marched 3D land-
marks, i.e., 2D cheek landmarks. As a result, the appearance
features around these cheek landmarks are part of the input
to CNN aswell. This is in sharp contrast to Jourabloo and Liu
(2015) where no cheek landmarks participate the regressor
learning. Effectively, these additional cheek landmarks serve
as constraints to guide how the facial silhouettes at various
poses should look like, which is essentially the shape of the
3D face surface.

Another note is that, instead of alternating between the
estimation of m and p, another option is to jointly esti-
mate both parameters in each CNN stage. Experimentally
we observed that such a joint estimation schedule leads to a
lower accuracy than the alternating scheme, potentially due
to the different physical meaning ofm and p and the ambigu-
ity of multiple pairs of m and p corresponding the same 2D
shape. For the alternating scheme, nowwe present two differ-
ent CNN architectures, and use the same CNN architecture
for all six stages of the cascade.

3.4 Conventional CNN (C-CNN)

The architecture of the first CNN is shown in Fig. 4. It has
three convolutional layers where each one is followed by
a pooling layer and a batch normalization layer. Then, one
fully connected layer and ReLU layer and, at the end of the
architecture, it has one fully connected layer and one Euclid-
ian loss (J�) for estimating the projection matrix parameters
or 3D shape parameters. We use rectified linear unit (ReLU)
(Glorot et al. 2011) as the activation function which enables
CNN to achieve the best performance without unsupervised
pre-training.

3.5 Mirror CNN (M-CNN)

We deal with two inherent ambiguities when we estimate
projection matrix parameter m and 3D shape parameter p.
First, mutiple pairs of m and p can represent the same 2D
face shape. Second, the estimated updates ofm and p are not
explicitly related to the face alignment error. In other words,

2×2 150 6 or 228 5×52×26×63×36×6

Input Image Feature 20 50 100

114×114

Fig. 4 Architecture of C-CNN (the same CNN architecture is used
for all six stages). Color code used: purple = extracted image feature,
orange = Conv, brown = pooling + batch normalization, blue = fully
connected layer, red = ReLU. The filter size and the number of filters
for each layer are shown on the top and the bottom respectively (Color
figure online)

the changes in m and p are not linearly related to the 2D
shape changes. To remedy these ambiguities, we predict 2D
shape update simultaneously while estimating the m and p
updates.

We extend the CNN architecture of each cascade stage
by encouraging the alignment results of a face image and its
mirror to be highly correlated. To this end, we use the idea
of mirrorability constraint (Yang and Patras 2015) with two
main differences. First, we combine this constraint with the
learning procedure rather than using it as a post-processing
step. Second, we integrate the mirrorability constraint inside
a siamese CNN (Bromley et al. 1993) by sharing the net-
work’s weights between the input face image and its mirror
image and adding a new loss function.

3.5.1 Mirror Loss

Given the input image and its mirror image with their ini-
tial bounding boxes, we use function h(m̄,b), that modifies
the scale and translations of m̄ based on b, for initialization.
Then, according to the mirror ability constraint, we assume
that the estimated update of shape for the input image should
be similar to the update of shape for the mirror image with
a reordering. This assumption is true when both images are
initialized with the same landmarks up to a reordering, which
is true in all cascade stages. We use the mirror loss to mini-
mize the Euclidian distance of estimated shape update of two
images. The mirror loss at stage k is,

J kM = ||�Ûk − C
(
�Ûk

M

)
||2, (12)

where �Ûk is the input image’s shape update, �Ûk
M is the

mirror image’s shape update andC() is a reordering function
to indicate landmark correspondence betweenmirror images.

3.5.2 Mirror CNN Architecture

The new CNN architecture follows the siamese network
(Bromley et al. 1993) with two branches whose weights are
shared. Figure 5 shows the architecture of the M-CNN. The
top and bottom branches are feeded with the extracted input
feature from a training image and its mirror respectively.
Each branch has two convolutional layers and two layers of
locally connected layers. The locally connected layer (Taig-
man et al. 2014) is similar to convolutional layer and learns
a set of filters for various regions of its input. The locally
connected layers are spatial location dependent, which is a
correct assumption for our extracted image feature at each
stage. After each of these layers, we have one pooling and
batch normalization layers. At the end in the top branch,
after a fully connected layer, batch normalization, ReLU and
dropout layers, we have two fully connected layers, one for
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Input Image Feature

Mirror Image Feature

shared weights 

200 6 or 228 

68 

3×33×33×33×33×35×53×35×5

68

12 24 36 48

114×114

Fig. 5 Architecture of theM-CNN (the sameCNN architecture is used
for all six stages). Color code used: purple = extracted image feature,
orange = Conv, brown = pooling + batch normalization, green = locally
connected layer, blue = fully connected layer, red = batch normalization
+ ReLU + dropout. The filter size and the number of filters of each layer
are shownon the top and thebottom of the topbranch respectively (Color
figure online)

estimating the update of parameters (J�) and the other one
for estimating the update of 2D shape via the loss (JU ),

J kU = ||�Uk − �Ûk ||2. (13)

In the bottom branch, we only have one loss (JMU ) for
estimating the update of 2D shape in the mirror image. In
total, we have four loss functions, one for the updates of m
orp, two for the 2D shape updates of two images respectively,
and one mirror loss. We minimize the total loss at stage k,

J kT = J k� + λ1 J
k
U + λ2 J

k
MU + λ3 J

k
M , (14)

where λ1 to λ3 are weights for loss functions. Despite M-
CNN appears more complicated to be trained than C-CNN,
their testing are the same. That is, the only useful result at
each cascade stage of M-CNN is the estimated update of the
m or p, which is also passed to the next stage and initialize
the input image features. In other words, the mirror images
and estimated �U in both images only serve as constraints
in training, and are neither needed nor used in testing.

3.6 Visibility and 2D Appearance Features

One notable advantage of employing a dense 3D shapemodel
is thatmore advanced2Dfeatures,whichmight beonlypossi-
ble because of the 3Dmodel, can be extracted and contribute
to the cascaded CNN learning. In this work, these 2D fea-
tures refer to the 2D landmark visibility and the appearance
patch around each 2D landmark.

In order to compute the visibility of each 2D landmark,
we leverage the basic idea of examining whether the 3D sur-
face normal of the corresponding 3D landmark is pointing
to the camera or not, under the current camera projection
matrix (Jourabloo and Liu 2015). Instead of using the aver-
age 3D surface normal for all humans, we extend it by using
person-specific 3D surface normal. Specifically, given the

Fig. 6 The person-specific 3D surface normal as the average of nor-
mals around a 3D landmark (black arrow). Notice the relatively noisy
surface normal of the 3D “left eye corner” landmark (blue arrow) (Color
figure online)

current estimated 3D shape S, we compute the 3D surface
normals for a set of sparse vertexes around the 3D landmark
of interest, and the average of these 3D normals is denoted
as N. Figure 6 illustrates the advantage of using the average
3D surface normal. Given N, we compute,

v = Nᵀ · (R1 × R2) , (15)

where R1 and R2 are the first two rows of R. If v is positive,
the 2D landmark is considered as visible and its 2D appear-
ance feature will be part of the input for CNN. Otherwise,
it is invisible and the corresponding feature will be zero for
CNN. Note that this method does not estimate occlusion due
to other objects such as hairs.

In addition to visibility estimation, a 3D shape model can
also contribute in generating advanced appearance features
as the input layer for CNN. Specifically, we aim to extract a
pose-invariant appearance patch around each estimated 2D
landmark, and the array of these patches will form the input
layer. In Yang et al. (2015), a similar feature extraction is
proposed by putting different scales of input image together
and forming a big image as the appearance feature. We now
describe two proposed approaches to extract an appearance
feature, i.e., a 19 × 19 patch, for the nth 2D landmark.
Piecewise affine-warped feature (PAWF) Feature correspon-
dence is always very important for any visual learning, as
evident by the importance of eye-based rectification to face
recognition (Shan et al. 2004). Yet, due to the fact that a 2D
face is a projection of 3D surfacewith an arbitrary viewangle,
it is hard to make sure that a local patch extracted from this
2D image corresponds to the patch from another image, even
both patches are centered at the ground truth locations of the
same nth 2D landmark. Here, “correspond” means that the
patches cover the exactly same local region of faces anatomi-
cally.However,with a dense 3Dshapemodel in hand,wemay
extract local patches across different subjects and poses with
anatomical correspondence. These correspondences across
subjects and poses facilitate CNN to learn the appearance
variation induced by misalignment, rather than subjects or
poses.
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Fig. 7 Feature extraction process, (a–e) PAWF for the landmark on
the right side of the right eye, (f–j) D3PF for the landmark on the right
side of the lip

In an offline procedure, we first search for T vertexes on
the mean 3D shape S0 that are the most closest to the nth
landmark (Fig. 7b). Second, we rotate the T vertexes such
that the 3D surface normal of the nth landmark points toward
the camera (Fig. 7c). Third, among the T vertexes we find
four “neighborhood vertexes”, which have the minimum and
maximum x and y coordinates, and denote the four vertex
IDs as a 4-dim vector d(n)

p (Fig. 7d). The first row of Fig. 7
shows the process of extracting PAWF for right landmark of
the right eye.

During the CNN learning, for the nth landmark of i th
image, we project the four neighborhood vertexes onto the
i th image and obtain four neighborhood points, U(n)

i = sRS

(:,d(n)
p )+t, based on the current estimated projection param-

eter m. Across all 2D face images, U(n)
i correspond to

the same face vertexes anatomically. Therefore, we warp
the imagery content within these neighborhood points to
a 19 × 19 patch by using the piecewise affine transforma-
tion (Matthews and Baker 2004).

This novel feature representation can be well extracted
in most cases, except for cases such as the nose tip at the
profile view. In such cases, the projection of the nth landmark
is outside the region specified by the neighborhood points,
where one of the neighborhood points is invisible due to
occlusion. When this happens, we change the location of the
invisible point by using its relative distance to the projected
landmark location, as shown in Fig. 8.
Direct 3D projected feature (D3PF) Both D3PF and PAWF
start with the T vertexes surrounding the nth 3D landmark
(Fig. 7g). Instead of finding four neighborhood vertexes as in
PAWF,D3PF overlays a 19×19 grid covering the T vertexes,
and stores the vertexes of the grid points in d(n)

d (Fig. 7i). The
second row of Fig. 7 shows the process of extracting D3PF.
Similar to PAWF, we can now project the set of 3D vertexes
S(:,d(n)

d ) to the 2D image and extract a 19 × 19 patch via
bilinear-interpolation, as shown in Fig. 9. We also estimate
the visibilities of the 3D vertexes S(:,d(n)

d ) via their surface
normals, and zero will be placed in the patch for invisible

Fig. 8 Examples of extracting PAWF. When one of the four neighbor-
hood points (red point in the bottom-right) is invisible, it connects to the
2D landmark (green point), extends the same distance further, and gen-
erate a new neighborhood point. This helps to include the background
context around the nose (Color figure online)

Fig. 9 Example of extracting D3PF

ones. For D3PF, every pixel in the patch will be correspond-
ing to the same pixel in the patches of other images, while
for PAWF, this is true only for the four neighborhood points.

3.7 Testing

The testing part of both C-CNN and M-CNN are the same.
Given a testing image I and its initial parameter m0 and p0,
we apply the learned cascaded CNN coupled-regressor for
face alignment. Basically we iteratively use Rk

m(·;�k
m) to

compute �m̂, update mk , use Rk
p(·;�k

p) to compute �p̂,
and update pk . Finally the dense 3D shape is constructed via
Eq. 1, and the estimated 2D landmarks are Û = sRŜ(:,d)+t.
Note that we apply the feature extraction procedure one time
for each CNN stage.

4 Experimental Results

In this section, we design experiments to answer the fol-
lowing questions: (1) What is the performance of proposed
method on challenging datasets in comparison to the state-
of-the-art methods? (2) How do different feature extraction
methods perform in pose-invariant face alignment? (3) What
is the performance of proposed method with different CNN
architectures and with different deep learning toolboxes?
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Fig. 10 a AFLW original (yellow) and added landmarks (green), b
Comparison of mean NME of each landmark for RCPR (blue) and
proposed method (green). The radius of circles is determined by the
mean NME multipled with the face bounding box size (Color figure
online)

4.1 Experimental Setup

Databases Given that this work focus on pose-invariant face
alignment, we choose two publicly available face datasets
with labeled landmarks and a wide range of poses.

AFLW database (Köstinger et al. 2011) is a large face
dataset with 25K face images. Each image is manually
labeled with up to 21 landmarks, with a visibility label for
each landmark. In Jourabloo and Liu (2015), a subset of
AFLW is selected to have a balanced distribution of yaw
angles, including 3901 images for training and 1299 images
for testing. We use the same subset and manually label 13
additional landmarks for all 5200 images.We call these 3901
images as the base training set. The definition of original
landmarks and added landmarks is shown in Fig. 10a. Using
ground truth landmarks of each image, we find the tight-
est bounding box, expand it by 10% of its size, and add
10% noise to the top-left corner, width and height of the
bounding box (examples in the 1st row of Fig. 16). These
randomly generated bounding boxes mimic the imprecise
face detection window and will be used for both training and
testing.

AFWdataset (Zhu and Ramanan 2012) contains 468 faces
in 205 images. Each face image is manually labeled with up
to 6 landmarks and has a visibility label for each landmark.
For each face image a detected bounding box is provided,
and will be used as initialization. Given the small number of
images, we only use this dataset for testing.

We use the Nid = 199 bases of Basel FaceModel (Paysan
et al. 2009) for representing identity variation and the Nexp =
29 bases of face wearhouse (Cao et al. 2014b) for repre-
senting expression variation. In total, there are 228 bases
representing 3D face shapes with 53, 215 vertexes.
Synthetic training data Unlike conventional face alignment,
one of the main challenges in pose-invariant face alignment

is the limited training images. There are only two publicly
available face databases with a wide poses, along with land-
mark labeling. Therefore, utilizing synthetic face images is
an efficient way to supply more images into the training set.
Specifically, we add 16, 556 face images with various poses,
generated from 1035 subjects of LFPW dataset (Belhumeur
et al. 2011) by the method of Zhu et al. (2015b), to the base
training set. We call this new training set as the extended
training set.
Baseline selection Given the explosion of face alignment
work in recent years, it is important to choose appropri-
ate baseline methods so as to make sure the proposed
method advances the state of the art. We select the most
recent pose-invariant face alignment methods for compar-
ing with the proposed method, according to Table 1. We
compare the proposed method with two methods on AFLW:
(1) PIFA (Jourabloo and Liu 2015) is a pose-invariant face
alignment method which aligns faces of arbitrary poses with
the assistant of a sparse 3D point distribution model, (2)
RCPR (Burgos-Artizzu et al. 2013) is a method based on
cascade of regressors that represents the occlusion-invariant
face alignment. For comparison on AFW, we select three
methods: (1) PIFA (Jourabloo and Liu 2015), (2) CDM (Yu
et al. 2013) is a method based on Constrained Local Model
(CLM) and the first one claimed to perform pose-free face
alignment, (3) TSPM (Zhu and Ramanan 2012) is based on
a mixtures of trees with a shared pool of parts and can han-
dle face alignment for large pose face images. It can be seen
that these baselines are most relevant to our focus on pose-
invariant face alignment.
Parameter setting For implementing the proposed methods,
we use two different deep learning toolboxes. For imple-
menting the C-CNN architecture, we use the MatConvNet
toolbox (Vedaldi and Lenc 2015) with a constant learning
rate of 1e−4, with ten epochs for training each CNN and a
batch size of 100. For the M-CNN architecture, we use the
Caffe toolbox (Jia et al. 2014) with a learning rate of 1e−7
and the step learning rate policy with a drop rate of 0.9, in
70 epochs at each stage and a batch size of 100. We set the
weight parameters of the total loss λ1 to λ3 in Eq. 14 to 1. For
RCPR, we use the parameters reported in its paper, with 100
iterations and 15 boosted regressors. For PIFA, we use 200
iterations and 5 boosted regressors. For PAWF and D3PF, at
the second stage T is 5000, and 3000 for the other stages.
According to our empirical evaluation, six stages of CNN are
sufficient for convergence of fitting process.
Evaluation metricsGiven the ground truth 2D landmarksUi ,
their visibility vi , and estimated landmarks Ûi of Nt testing
images, we use two conventional metrics for measuring the
error of up to 34 landmarks: (1) Mean Average Pixel Error
(MAPE) (Yu et al. 2013), which is the average of the estima-
tion errors for visible landmarks, i.e.,
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MAPE = 1
∑Nt

i |vi |1

Nt ,N∑

i, j

vi ( j)||Ûi (:, j) − Ui (:, j)||, (16)

where |vi |1 is the number of visible landmarks of image Ii ,
and Ui (:, j) is the j th column of Ui . (2) Normalized Mean
Error (NME), which is the average of the normalized esti-
mation error of visible landmarks, i.e.,

NME= 1

Nt

Nt∑

i

⎛

⎝ 1

di |vi |1
N∑

j

vi ( j)||Ûi (:, j)−Ui (:, j)||
⎞

⎠ ,

(17)

where di is the square root of the face bounding box
size (Jourabloo and Liu 2015). The eye-to-eye distance is
not used in NME since it is not well defined in large poses
such as profile.

4.2 Comparison Experiments

Feature extraction methods To show the advantages of the
proposed features, Table 3 compares the accuracy of the pro-
posed method on AFLW with 34 landmarks, with various
feature presentation (i.e., the input layer for CNN2 to CNN6).
For this experiment, we use the C-CNN architecture with the
base training set. The “Extracted Patch” refers to extracting
a constant size (19× 19) patch centered by an estimated 2D
landmark, from a face image normalized using the bounding
box, which is a baseline feature widely used in conventional
2D alignmentmethods (Zhu et al. 2015a; Zhang et al. 2014a).
For the feature “+Cheek Landmarks”, additional up to four
19 × 19 patches of the contour landmarks, which are invis-
ible for non-frontal faces, will be replaced with patches of
the cheek landmarks, and used in the input layer of CNN
learning. The PAWF can achieve higher accuracy than the
D3PF. By comparing Column 1 and 3 of Table 3, it shows
that extracting features from cheek landmarks are effective
in acting as additional visual cues for the cascaded CNN
regressors. The combination of using the cheek landmarks
and extracting PAWF achieves the highest accuracy, which
will be used in the remaining experiments. Figure 11 shows
the errors on AFLW testing set after each stages of CNN for
different feature extraction methods. There is no difference
in the errors of the first stage CNN because it uses the global

Table 3 NME (%) of the proposed method with different features with
the C-CNN architecture and the base training set

PAWF + Cheek
landmarks

D3PF + Cheek
landmarks

PAWF Extracted patch

4.72 5.02 5.19 5.51

1 2 3 4 5 6
4

5

6

7

8

Stages

N
M

E 
(%

)

Extracted Patch
PAWF
D3PF + Cheek Landmarks
PAWF + Cheek Landmarks

Fig. 11 Errors on AFLW testing set after each stages of CNN for dif-
ferent feature extraction methods with the C-CNN architecture and the
base training set. The initial error is 25.8%

Table 4 The NME (%) of three methods on AFLWwith the base train-
ing set

Proposed method (C-CNN) PIFA RCPR

4.72 8.04 6.26

Fig. 12 Comparison of NME for each pose with the C-CNN architec-
ture and the base training set

Fig. 13 The comparison of CED for different methods with the C-
CNN architecture and the base training set

appearance in the bounding box, rather than the array of local
features.

CNN is known for demanding a large training set, while
the 3901-image AFLW training set is relatively small from
CNN’s perspective. However, our CNN-based regressor is
still able to learn and align well on unseen images. We
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Fig. 14 Result of the proposed method after the first stage CNN. This
image shows that the first stage CNN can model the distribution of face
poses. The right-view faces are at the top, the frontal-view faces are at
the middle, and the left-view faces are at the bottom

Table 5 The NME (%) of three methods on ALFW with extended
training set and Caffe toolbox

Proposed method
(M-CNN)

Proposed method
(C-CNN)

RCPR

4.52 5.38 7.04

attribute this fact to the effective appearance features pro-
posed in this work, i.e., the superior feature correspondence
enabled by the dense face model reduces CNN’s demand for
massive training data.
Experiments on AFLW dataset We compare the proposed
method with the two most related methods for aligning faces

with arbitrary poses. For both RCPR and PIFA, we use their
source code to perform training on the base training set.
The NME of the three methods on the AFLW testing set are
shown in Table 4. The proposed method can achieve better
results than the two baselines. The error comparison for each
landmark is shown in Fig. 10b.As expected, the contour land-
marks have relatively higher errors and the proposed method
has lower errors than RCPR across all of the landmarks.

By using the ground truth landmark locations of the test
images, we divide all test images to six subsets according to
the estimated yaw angle of each image. Figure 12 compares
the proposed method with RCPR. The proposed method can
achieve better results across different poses, andmore impor-
tantly, is more robust or has less variation across poses.
For the detailed comparison on the NME distribution, the
Cumulative Errors Distribution (CED) diagrams of various
methods are shown in Fig. 13. The improvement seems to be
over all NME values, and is especially larger around lower
NMEs (≤8%).Weuse the t-SNE toolbox (Maaten andHinton
2008) to apply dimension reduction on the output of ReLU
layer in the first stage CNN. The output of each test image
is reduced to a two-dimensional point and all test images are
plotted based on their location of the points (Fig. 14). This
figure shows that the first stage CNN can model the distribu-
tion of face poses.
Experiments on the AFLW dataset with M-CNN We use the
extended training set and the mirror CNN architecture (M-
CNN) for this experiment.We report theNME results of three
methods in Table 5. The M-CNN architecture, which incor-
porates the mirror constraint during the learning, achieves
approximately 16% reduction of error over the C-CNNarchi-
tecture implemented with the Caffe toolbox. This shows the
effectiveness of the mirrorability constraint in the new archi-
tecture.

The comparison of Tables 4 and 5 shows that the accuracy
of the RCPR method is lower with the extended training set
than with the base training set. We attribute this to the low
quality of the side parts of the synthesized large-pose face

Table 6 The MAPE of six
methods on AFW

Proposed method
(M-CNN + PAWF)

Proposed method
(C-CNN + PAWF)

Proposed method
(C-CNN + D3PF)

PIFA CDM TSPM

6.52 7.43 7.83 8.61 9.13 11.09

Table 7 The six-stage NMEs of
implementing C-CNN and
M-CNN architectures with
different training data sets and
CNN toolboxes

Sett. Toolbox Method/data S-1 S-2 S-3 S-4 S-5 S-6

1 MatConvNet C-CNN/Base set 7.68 5.93 5.58 4.94 4.89 4.72

2 Caffe 8.75 6.32 6.15 5.55 5.53 5.44

3 M-CNN/Base set 7.18 6.06 5.83 5.08 4.91 4.76

4 C-CNN/Extended set 8.44 6.78 6.60 5.75 5.70 5.38

5 M-CNN/Extended set 7.41 6.16 5.80 4.76 4.67 4.52

The initial error is 25.8%
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Fig. 15 The distribution of visibility errors for each landmark. For six
landmarks on the horizontal center of the face, their visibility errors are
zeros since they are always visible

images. Although the method in Zhu et al. (2015b) can syn-
thesize side-view face images, the synthesized images could
have some artifacts on the side part of the face. These artifacts
make it hard for the local fern features-based RCPR method

to simultaneously estimate the location and the visibility of
landmarks.

In our proposed method, we arrange the extracted PAWF
patches in a spatial array and use it as the input to CNN.
An alternative CNN input is to assign the extracted PAWF
patches to different channels and construct a 19 × 19 × 34
input datum. To evaluate its performance, considering the
change of the input size, we modify the CNN architecture in
Fig. 5 by removing the first, the third and the fourth pooling
layers. The NME of M-CNN with the extended training set
is 4.91%, which shows that arranging the PAWF patches as
a large image is still superior.
Experiments on AFW dataset The AFW dataset contains
faces of all pose ranges with labels of 6 landmarks.We report
the MAPE for six methods in Table 6. For PIFA, CDM and
TSPM, we show the error reported in their papers. Again

Fig. 16 The results of the proposed method on AFLW and AFW.
The green/red/yellow dots show the visible/invisible/cheek landmarks,
respectively. First row initial landmarks for AFLW, Second estimated
3D dense shapes, Third estimated landmarks, Forth and Fifth estimated
landmarks for AFLW, Sixth estimated landmarks for AFW. Notice that

despite the discrepancy between the diverse face poses and constant
front-view landmark initialization (top row), our model can adaptively
estimate the pose, fit a dense model and produce the 2D landmarks as
a byproduct (Color figure online)
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Fig. 17 The result of the proposed method across stages, with the extracted features (1st and 3rd rows) and alignment results (2nd and 4th rows).
Note the changes of the landmark position and visibility (the blue arrow) over stages

we see the consistent improvement of our proposed method
(with both architectures) over the baseline methods.
Comparison of two CNN toolboxes We utilize two tool-
boxes for our implementations. We use the MatConvNet
toolbox (Vedaldi and Lenc 2015) to implement the C-CNN
architecture (Fig. 4). However, the MatConvNet toolbox has
limited ability in defining different branches for CNN, which
is required to train a siamese network. Therefore, we use
the Caffe toolbox (Jia et al. 2014) to implement the M-CNN
architecture (Fig. 5). Based on our experiments on theAFLW
test set, there are noticeable difference between the testing
results of these two toolboxes.

Table 7 shows the detailed comparison of the C-CNN and
M-CNN architectures with different settings. The Settings 1
and 2 compare the implementations of the C-CNN architec-
ture on the AFLW training set, using the MatConvNet and
Caffe toolboxes respectively. It shows the superior accuracy
of the MatConvNet implementation in all stages, even when
the extended training set is provided in the Setting 4. These
different testing results of two toolboxes might be due to
two reasons. One is that, the implementation of the basic
building blocks, the optimization, and the default parameters
could be different on the two toolboxes. The other is the ran-
dom initialization of network parameters. The comparison
of the Settings 2 and 3 shows the superiority of the M-CNN

architecture. The Setting 5 includes our final result with the
M-CNN architecture and the extended training set.
Landmark visibility estimation For evaluating the accuracy
of our visibility prediction, we utilize the ground truth 3D
shape of the test images and compute the visibility label of
landmarks due to the self occlusion. We define the “visibility
error” as themetric,which is the average of the ratios between
the number of incorrectly estimated visibility labels and the
total number of landmarks per image. The proposed method
achieves a visibility error of 4.1%. If we break down the
visibility error for each landmark, their distribution is shown
in Fig. 15.
Qualitative results Some examples of alignment results for
the proposedmethod onAFLWandAFWdatasets are shown
in Fig. 16. The result of the proposed method at each stage
is shown in Fig. 17.
Time complexity The speeds of proposed method with PAWF
and D3PF are 0.6 and 0.26 FPS respectively, with theMatlab
implementation. The most time consuming part in the pro-
posed method is feature extraction which consumes 80% of
the total time. We believe this can be substantially improved
with C coding and parallel feature extraction. Note that the
speed of C-CNN and M-CNN architectures are the same
because we only compute response of the top branch of M-
CNN in the testing phase.
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5 Conclusions and Future Directions

We propose a method to fit a 3D dense shape to a face image
with large poses by combining cascade CNN regressors and
the 3D Morphable Model (3DMM). We propose two types
of pose invariant features and one new CNN architecture for
boosting the accuracy of face alignment. Also, we estimate
the location of landmarks on the cheek, which also drives the
3D face model fitting. Finally, we achieve the state-of-the-art
performance on two challenging face alignment with large
poses.

There are many interesting directions to further improve
pose-invariant face alignment. The first direction is to inves-
tigate the importance of each landmark for correct pose
estimation, and find the best landmarks for estimating pro-
jection matrix parameters and the best ones for estimating
3D shape parameters. The second direction is to investigate
combining the cascaded CNN regressors to a single deep
CNN regressor. Currently, the CNNs are trained sequentially
for each stage. Combining CNNs and incorporating results
of previous CNNs, which lead to extraction of deeper fea-
tures, are promising directions to improve pose-invariant face
alignment.
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