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Abstract

Large-pose face alignment is a very challenging prob-
lem in computer vision, which is used as a prerequisite
for many important vision tasks, e.g, face recognition and
3D face reconstruction. Recently, there have been a few
attempts to solve this problem, but still more research is
needed to achieve highly accurate results. In this paper, we
propose a face alignment method for large-pose face im-
ages, by combining the powerful cascaded CNN regressor
method and 3DMM. We formulate the face alignment as a
3DMM fitting problem, where the camera projection ma-
trix and 3D shape parameters are estimated by a cascade
of CNN-based regressors. The dense 3D shape allows us
to design pose-invariant appearance features for effective
CNN learning. Extensive experiments are conducted on the
challenging databases (AFLW and AFW), with comparison
to the state of the art.

1. Introduction
Face alignment is the process of aligning a face image

and detecting specific fiducial points, such as eye corners,
nose tip, etc. Improving the face alignment accuracy is ben-
eficial for many computer vision tasks related to facial anal-
ysis, because it is used as a prerequisite for these tasks, e.g.,
face recognition [28], 3D face reconstruction [20, 21] and
face de-identification [10].

Given its importance, face alignment has been an ac-
tive research topic since 1990s [29], with the well-known
Active Shape Model [5] and Active Appearance Model
(AAM) [15, 13]. Recently, face alignment works are
very popular in top vision venues, as demonstrated by the
progress in Constrained Local Model based approaches [5,
22], AAM-based approaches [15, 13, 14] and regression-
based approaches [27, 4, 33]. Despite the fruitful prior work
and continuous progress of face alignment (e.g., the latest
impressive iBUG results [26]), face alignment for large-
pose faces is still very challenging and there is only a few
published work in this direction, as summarized in Table 1.

Figure 1. The proposed method estimates landmarks for large-pose
faces by fitting a dense 3D shape. From left to right: initial land-
marks, fitted 3D dense shape, estimated landmarks with visibil-
ity. The green/red/yellow dots in the right column show the visi-
ble/invisible/cheek landmarks, respectively.

Therefore, this is a clear research gap that needs to be ad-
dressed, which is exactly the focus of this work.

To tackle large-pose face alignment, our technical ap-
proach is driven by the inherent challenges associated with
this problem. First of all, faces have different numbers of
visible landmarks under pose variation, and the spatial dis-
tribution of the landmarks is highly pose dependent. This
presents challenges for existing face alignment approaches
since most are based on 2D shape models, which inherently
have difficulty in modeling the 3D out-of-plane deforma-
tion. In contrast, given the fact that a face image is a pro-
jection of a 3D face, we propose to use a dense 3D Mor-
phable Model (3DMM) and the projection matrix as the rep-
resentation of a 2D face image. Therefore, face alignment
amounts to estimating this representation, i.e., performing
the 3DMM fitting to a face image with arbitrary poses.

Second, the typical analysis-by-synthesis-based opti-
mization approach for 3DMM fitting is inefficient and also
assumes the 2D landmarks are provided either manually or
with a separate face alignment method, which conflicts with
the goal of our work. This motivates us to employ the pow-
erful cascaded regressor approach to learn the mapping be-
tween a 2D face image and its representation. Since the
representation is composed of 3D parameters, the mapping



Table 1. The comparison of large-pose face alignment methods.

Method Dense 3D Visibility Database Pose Training Testing Landmarks Estimation
model fitting range face # face # # errors

RCPR [1] No Yes COFW frontal w. occlu. 1, 345 507 19 8.5
TSPM [37] No No AFW all poses 2, 118 468 6 11.1
CDM [31] No No AFW all poses 1, 300 468 6 9.1
TCDCN [34] No No AFLW, AFW [−60◦, 60◦] 10, 000 3, 000;∼313 5 8.0; 8.2
PIFA [9] No Yes AFLW, AFW all poses 3, 901 1, 299; 468 21, 6 6.5; 8.6
Proposed method Yes Yes AFLW, AFW all poses 3, 901 1, 299; 468 34, 6 4.7; 7.4

Table 2. The comparison of most recent 3D face model fitting methods.

Method Integrated # of 2D Testing database Pose 3D bases Method
2D landmark landmarks range

BMVC 2015 [19] No 68 Basel [−30◦, 30◦] Basel bases Adaptive contour fitting
FG 2015 [8] No 77 to 1024 BU-4DFE; BP-4DS; videos [−60◦, 60◦] Bases from BU-4DFE & BP-4DS Cascaded regressor; EM
FG 2015 [38] Yes - FRGC Frontal Basel bases Cascaded regressor
Proposed method Yes - AFW; AFLW All poses Basel bases 3D cascaded regressor

is likely to be more complicated than the cascaded regres-
sor in 2D face alignment [4]. As a result, we propose to use
Convolutional Neural Networks (CNN) as the regressor in
the cascaded framework, to learn the mapping. While prior
work on CNN for face alignment estimate no more than 6
2D landmarks per image, our cascaded CNN can estimate a
substantially larger number (34) of 2D and 3D landmarks.
Further, using landmark marching [36], our algorithm can
adaptively adjust the 3D landmarks during the fitting, so that
the cheek landmarks can contribute to the fitting.

Third, conventional 2D face alignment approaches are
often driven by the local feature patch around each esti-
mated 2D landmark. Even at the ground truth landmark,
such as the outer eye corner, it is hard to make sure that
the local patches from faces at various poses cover the ex-
actly the same part of facial skin anatomically, which poses
additional challenge for the learning algorithm to associate
a unified pattern with the ground truth landmark. Fortu-
nately, in our work, we can use the dense 3D face model as
an oracle to build enhanced feature correspondence across
various poses and expressions. Therefore, we propose two
novel pose-invariant local features, as the input layer for
CNN learning. We also utilize person-specific surface nor-
mals to estimate the visibility of each landmark.

These algorithm designs collectively lead to the pro-
posed large-pose face alignment algorithm. We conduct ex-
tensive experiments to demonstrate its capability in aligning
faces across poses, in comparison with the state of the art.

We summarize the main contributions of this work as:
⋄ Large-pose face alignment by fitting a dense 3DMM.
⋄ The cascaded CNN-based 3D face model fitting algo-

rithm that is applicable to all poses, with integrated land-
mark marching.
⋄ Dense 3D face-enabled pose-invariant local features.

2. Prior Work
We review papers in three areas related to the proposed

method: large-pose face alignment, face alignment via deep

learning, and 3D face model fitting to a single image.

Large-pose face alignment The methods of [31, 37, 7]
combines face detection, pose estimation and face align-
ment. By using a 3D shape model with optimized mixture
of parts, [31] can be applied to faces with a large range
of poses. In [30], a face alignment method based on cas-
cade regressors is proposed to handle invisible landmarks.
Each stage is composed of two regressors for estimating
the probability of landmark visibility and the location of
landmarks. This method is applied to profile view faces of
FERET database [18]. As a 2D landmark-based approach,
it cannot estimate 3D face poses. Occlusion-invariant face
alignment, such as RCPR [1], may also be applied to han-
dle large poses since non-frontal faces are one type of oc-
clusions. [25] is a very recent work that performs 3D land-
mark estimation via regressors. However, it only tests on
synthesized face images up to ∼50◦ yaw. The most rele-
vant prior work is [9], which aligns faces of arbitrary poses
with the assistant of a sparse 3D point distribution model.
The model parameter and projection matrix are estimated
by the cascade of linear or non-linear regressors. We ex-
tend [9] in a number of aspects, including fitting a dense
3D morphable model, employing the powerful CNN as the
regressor, using 3D-enabled features, and estimating cheek
landmarks. Table 1 compares the large-pose face alignment
methods.

Face alignment via deep learning With the continuous
success of deep learning in vision, researchers start to apply
deep learning to face alignment. Sun et al. [24] proposed
a three-stage face alignment algorithm with CNN. At the
first stage, three CNNs are applied to different face parts
to estimate positions of different landmarks, whose aver-
ages are regarded as the first stage results. At the next two
stages, by using local patches with different sizes around
each landmark, the landmark positions are refined. Simi-
lar face alignment algorithms based on multi-stage CNNs
are further developed by Zhou et al. [35] and CFAN [32].
TCDCN [34] uses one-stage CNN to estimates positions
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Figure 2. The overall process of the proposed method.

of five landmarks given a face image. The commonality
among all these prior works is that they only estimate 2D
landmark locations and the number of landmarks is limited
to 6. In comparison, our proposed method employs CNN
to estimate 3D landmarks, as part of the 3D surface recon-
struction. As a result, the number of estimated landmarks is
bounded by the number of 3D vertexes, although the evalu-
ation is conducted for 34 landmarks.
3D face model fitting Table 2 shows the comparison of
most recent 3D face model fitting methods to a single im-
age. Almost all prior works assume that the 2D landmarks
of the input face image is either manually labeled or esti-
mated via a face alignment method. The authors in [19]
aim to make sure that the location of 2D contour landmarks
is consistent with 3D face shape. In [38], a 3D face model
fitting method based on the similarity of frontal view face
images is proposed. In contrast, our proposed method is the
first approach to integrate 2D landmark estimation as part
of the 3D face model fitting for large poses. Furthermore,
all prior 3D face model fitting works process face images
with up to 60◦ yaw while our method can handle all view
angles.

3. Unconstrained 3D Face Alignment
The core of our proposed 3D face alignment method is

the ability to fit a dense 3D Morphable Model to a 2D face
image with arbitrary poses. The unknown parameters of
fitting, the 3D shape parameters and the projection matrix
parameters, are sequentially estimated through a cascade of
CNN-based regressors. By employing the dense 3D shape
model, we enjoy the benefits of being able to estimate the
locations of cheek landmarks, to use person-specific 3D sur-
face normals, and extract pose-invariant local feature repre-
sentation. Figure 2 shows the overall process of the pro-
posed method.

3.1. 3D Morphable Model
To represent a dense 3D shape of an individual’s face,

we use 3D Morphable Model (3DMM),

A = A0 +

Nid∑
i=1

piidA
i
id +

Nexp∑
i=1

piexpA
i
exp, (1)

where A is the 3D shape matrix, A0 is the mean shape, Ai
id

is the ith identity basis, Ai
exp is the ith expression basis, piid

is the ith identity coefficient, and piexp is the ith expression
coefficient. The collection of both coefficients is denoted as
the shape parameter of a 3D face, p = (p⊺id,p

⊺
exp)

⊺. We use
the Basel 3D face model as the identity bases [16] and the
face wearhouse as the expression bases [3]. The 3D shape
A, along with A0, Ai

id, and Ai
exp, is a 3×Q matrix which

contains x, y and z coordinates of Q vertexes on the 3D face
surface,

A =

x1 x2 · · · xQ

y1 y2 · · · yQ
z1 z2 · · · zQ

 . (2)

Any 3D face model will be projected onto a 2D image
where the face shape may be represented as a sparse set of
N landmarks, on the facial fiducial points. We denote x and
y coordinates of these 2D landmarks as a matrix U,

U =

(
u1 u2 · · · uN

v1 v2 · · · vN

)
. (3)

The relationship between the 3D shape A and 2D land-
marks U can be described by using the weak perspective
projection, i.e.,

U = sRA(:,d) + t, (4)

where s is a scale parameter, R is the first two rows of a 3×3
rotation matrix controlled by three rotation angles α, β, and
γ, t is a translation parameter composed of tx and ty , d is a
N -dim index vector indicating the indexes of semantically
meaningful 3D vertexes that correspond to 2D landmarks.
By collecting all parameters related to this projection, we
form a projection vector m = (s, α, β, γ, tx, ty)

⊺.



Algorithm 1: Landmark marching g(A,m).
Data: Estimated 3D face A and projection parameter m
Result: Index vector d
/* Rotate A by the estimated α, β */

1 Â = R(α, β, 0)A
2 if 0◦< β < 70◦ then
3 foreach i = 1, · · · , 4 do
4 Vcheek(i) = argmaxid(Â(1, Pathcheek(i)))

5 if −70◦< β < 0◦ then
6 foreach i = 5, · · · , 8 do
7 Vcheek(i) = argminid(Â(1, Pathcheek(i)))

8 Update 8 elements of d with Vcheek.

At this point, we can represent any 2D face shape as the
projection of a 3D face shape. In other words, the projection
parameter m and shape parameter p can uniquely represent
a 2D face shape. Therefore, the face alignment problem
amounts to estimating m and p, given a face image.
Cheek landmarks correspondence The projection rela-
tionship in Eqn. 4 is correct for frontal-view faces, given a
constant index vector d. However, as soon as a face turns
to the side view, the original 3D landmarks on the cheek
become invisible on the 2D image. Yet most 2D face align-
ment algorithms still detect 2D landmarks on the contour of
the cheek, termed “cheek landmarks”. Therefore, in order
to still maintain the correspondences as Eqn. 4, it is best
to estimate the 3D vertexes that match with these cheek
landmarks. A few prior works have proposed various ap-
proaches to handle this [19, 36, 2]. We leverage the land-
mark marching method proposed in [36].

Specifically, we define a set of paths each storing the in-
dexes of vertexes that are not only the most closest ones to
the original 3D cheek landmarks, but also on the contour of
the 3D face as it turns. Given a non-frontal 3D face A, we
rotate A by using the α and β angles (pitch and yaw angles),
and search for a vertex in each defined path which has the
maximum (minimum) x coordinate, i.e., the boundary ver-
tex on the right (left) cheek. These searched vertexes will
be the new 3D landmarks that correspond to the 2D cheek
landmarks. We will then update relevant elements of d to
make sure these vertexes are selected in the projection of
Eqn. 4. This landmark marching process is summarized in
Algorithm 1 as a function d ← g(A,m). Note that when
the face is almost of profile view (|β| > 70◦), we do not ap-
ply landmark marching since the marched landmarks would
overlap with the existing 2D landmarks on the middle of
nose and mouth.

3.2. Data Augmentation
Given that the projection parameter m and shape param-

eter p are the representation of a face image, we should
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Figure 3. Architecture of CNN used in each stage of the proposed
method.

have a collection of face images with ground truth m and p
so that the learning algorithm can be applied. However, for
most existing face alignment databases, only 2D landmark
locations and sometimes the visibilities of landmarks are
manually labeled, with no associated 3D information such
as m and p. In order to make the learning possible, we pro-
pose a data augmentation process for 2D face images, with
the goal of estimating its m and p representation.

Specifically, given the labeled visible 2D landmarks U
and the landmark visibilities V, we use the following ob-
jective function to estimate m and p,

J(m,p) = ||(sRA(:, g(A,m)) + t−U)⊙V||2F , (5)

which basically minimizes the difference between the pro-
jection of 3D landmarks and the 2D labeled landmarks.
Note that although the landmark marching g(:, :) can make
cheek landmarks “visible” for non-profile views, the visi-
bility V is useful to avoid invisible landmarks such as outer
eye corners and half of the face at the profile view being
part of the optimization.

To minimize this objective function, we alternate the
minimization w.r.t. m and p at each iteration. We initial-
ize the 3D shape parameter p = 0 and estimate m first. At
each iteration, the g(A,m) is a constant computed using
the currently estimated m and p.

3.3. Cascaded CNN Coupled­Regressor

Given a set of Nd training face images and their aug-
mented (a.k.a. ground truth in this context) m and p repre-
sentation, we are interested in learning a mapping function
that is able to predict m and p from the appearance of a face
image. Clearly this is a complicated non-linear mapping
function. Given the success of CNN in vision tasks such
as pose estimation [17], face detection [12], and face align-
ment [34], we decide to marry the CNN with the cascade
regressor framework by learning a series of CNN-based re-
gressors to alternate the estimation of m and p. To the best
of our knowledge, this is the first time CNN is used in 3D
face alignment, with the estimation of over 10 landmarks.

In addition to the ground truth m and p, we also assume
each training image has the initial values of these two pa-
rameters, denoted as m0 and p0. Thus, at the stage k of the
cascaded CNN, we can learn a CNN to estimate the desired



update of the projection parameter,

Θk
m = argmin

Θk
m

Nd∑
i=1

||∆mk
i −CNNk

m(Ii,Ui,v
k−1
i ; Θk

m)||2,

(6)
where the true projection update is the difference between
the current projection parameter and the ground truth, i.e.,
∆mk

i = mi − mk−1
i , Ui is current estimated 2D land-

marks, computed via Eqn. 4 based on mk−1
i and dk−1

i , and
vk−1
i is estimated landmark visibility at stage k − 1.

Similarly another CNN regressor can be learned to esti-
mate the updates of the shape parameter,

Θk
p = argmin

Θk
p

Nd∑
i=1

||∆pk
i −CNNk

p(Ii,Ui,v
k
i ; Θ

k
p)||2. (7)

Note that Ui will be re-computed via Eqn. 4, based on the
updated mk

i and dk
i by CNNm.

We use a six-stage cascaded CNN, including CNN1
m,

CNN2
m, CNN3

p, CNN4
m, CNN5

p, and CNN6
m. At the first

stage, the input layer of CNN1
m is the entire face region

cropped by the initial bounding box, with the goal of
roughly estimating the pose of the face. The input for the
second to sixth stages is a 114 × 114 image that contains
an array of 19×19 pose-invariant feature patches, extracted
from the current estimated 2D landmarks Ui. In our imple-
mentation, since we have N = 34 landmarks, the last two
patches of 114 × 114 image are filled with zero. Similarly,
for invisible 2D landmarks, their corresponding patches will
be filled with zeros as well. These concatenated feature
patches encode sufficient information about the local ap-
pearance around the current 2D landmarks, which drives the
CNN to optimize the parameters Θk

m or Θk
p . This method

can be extended to use a larger number of landmarks and
hence a more accurate dense 3D model can be estimated.

Note that since landmark marching is used, the estimated
2D landmarks Ui include the projection of marched 3D
landmarks, i.e., 2D cheek landmarks. As a result, the ap-
pearance features around these cheek landmarks are part of
the input to CNN as well. This is in sharp contrast to [9]
where no cheek landmarks participate the regressor learn-
ing. Effectively, these additional cheek landmarks serve
as constraints to affect how the facial silhouettes at various
poses should look like, which is basically the shape of the
3D face surface.

We used rectified linear unit (ReLU) [6] as the activa-
tion function which enables CNN to achieve the best perfor-
mance without unsupervised pre-training. We use the same
CNN architecture (Fig. 3) for all six stages.

3.4. Visibility and 2D Appearance Features

One notable advantage of employing a dense 3D shape
model is that more advanced 2D features, which might be

Figure 4. The person-specific 3D surface normal as the average of
normals around a 3D landmark (black arrow). Notice the relatively
noisy surface normal of the 3D “left eye corner” landmark (blue
arrow).

only possible because of the 3D model, can be extracted
and contribute to the cascaded CNN learning. In this work,
these 2D features refer to the 2D landmark visibility and the
appearance patch around each 2D landmark.

In order to compute the visibility of each 2D landmark,
we leverage the basic idea of examining whether the 3D sur-
face normal of the corresponding 3D landmark is pointing
to the camera or not, under the current camera projection
matrix [9]. Instead of using the average 3D surface normal
for all humans, we extend it by using person-specific 3D
surface normal. Specifically, given the current estimated
3D shape A, we compute the 3D surface normals for a set
of sparse vertexes around the 3D landmark of interest, and
the average of these 3D normals is denoted as N⃗. Figure 4
shows the advantage of using the average 3D surface nor-
mal. Given N⃗, we compute v = N⃗⊺ · (R1 ×R2), where
R1 and R2 are the first two rows of R. If v is positive, the
2D landmark is considered as visible and its 2D appearance
feature will be part of the input for CNN. Otherwise, it is in-
visible and the corresponding feature will be zero for CNN.
Note that this method does not estimate occlusion due to
other objects such as hairs.

In addition to visibility estimation, a 3D shape model can
also contribute in generating advanced appearance features
as the input layer for CNN. Specifically, we aim to extract a
pose-invariant appearance patch around each estimated 2D
landmark, and the array of these patches will form the input
layer. We now describe two proposed approaches to extract
an appearance feature, i.e., a 19 × 19 patch, for the nth 2D
landmark.
Piecewise affine-warped feature (PAWF): Feature corre-
spondence is always very important for any visual learning,
as evident by the importance of eye-based rectification to
face recognition [23]. Yet, due to the fact that a 2D face is
a projection of 3D surface with an arbitrary view angle, it
is hard to make sure that a local patch extracted from this
2D image corresponds to the patch from another 2D image,
even both patches are centered at the ground truth locations
of the same nth 2D landmark. Here, “correspond” means
that the patches cover the exactly same local region of faces
anatomically. However, with a dense 3D shape model in



Figure 5. Examples of extracting PAWF feature. When one of the
four neighborhood points (red point in the bottom-right) is invis-
ible, it connects to the 2D landmark, extends the same distance
further, and generate a new neighborhood point. This helps to in-
clude the background context around the nose.

hand, we may extract local patches across different subjects
and poses with anatomical correspondence.

In the offline learning stage, we first search for T ver-
texes on the mean 3D shape A0 that are the most closest to
the nth landmark. Second, we rotate the T vertexes such
that the 3D surface normal of the nth landmark points to-
ward the camera. Third, among the T vertexes we find
four “neighborhood vertexes”, which have the minimum
and maximum x and y coordinates, and denote the four ver-
tex IDs as a 4-dim vector d(n)

p .
During the CNN learning, for the nth landmark of ith

image, we project the four neighborhood vertexes onto the
ith image and obtain four neighborhood points, U

(n)
i =

sRA(:,d
(n)
p )+t, based on the current estimated projection

parameter m. Across all 2D face images, U(n)
i correspond

to the same face vertexes anatomically. Therefore, we warp
the imagery content within these neighborhood points to a
19× 19 patch by using the piecewise affine transformation.

This novel feature representation can be well extracted
in most cases, except for cases such as the nose tip at the
profile view, where one of the two scenarios could happen.
One is the projection of the nth landmark is outside the re-
gion specified by the neighborhood points. The other is that
one of neighborhood points is invisible. When these hap-
pen, we change the location of the invisible point by using
its relative distance to the projected landmark location, as
shown in Fig. 5.
Direct 3D projected feature (D3PF): Both D3PF and
PAWF start with the T vertexes surrounding the nth 3D
landmark. Instead of finding four neighborhood vertexes
as in PAWF, D3PF put a 19 × 19 grid covering the T ver-
texes, and store the vertexes of the grid points in d

(n)
d . Sim-

ilar to PAWF, we can now project the set of 3D vertexes
A(:,d

(n)
d ) to the 2D image and extract a 19 × 19 patch via

bilinear-interpolation, as shown in Fig. 6. We also estimate

Figure 6. Example of extracting D3PF feature.

(a) (b)
Figure 7. (a) AFLW original (yellow) and added landmarks
(green), (b) Comparison of mean NME of each landmark for
RCPR (blue) and proposed method (green). The radius of circles
is determined by the mean NME multipled with the face box size.

the visibility of these 3D vertexes via their surface normals,
and zero will be placed in the patch for invisible vertexes.
For D3PF, every pixel in the patch will be corresponding
to the same pixel in the patches of other images, while for
PAWF, this is true only for the four neighborhood points.

4. Experimental Results
Databases Given that this work focus on large-pose face
alignment, we choose two publicly available face datasets
with labeled landmarks and a large range of poses.

AFLW database [11] is a large face dataset of 25K face
images. Each image is manually labeled with up to 21 land-
marks, with a visibility label for each landmark. In [9],
a subset of AFLW is selected to have a balanced distribu-
tion of yaw angles, including 3, 901 images for training and
1, 299 images for testing. We use the same subset and man-
ually label 13 additional landmarks for all 5, 200 images.
The definition of original landmarks and added landmarks
is shown in Fig. 7(a). Using ground truth landmarks of each
image, we find the tightest bounding box, expand it by 10%
of its size, and add 10% noise to the top-left corner, width
and height of the bounding box. These randomly generated
bounding boxes mimic the imprecise face detection window
and will be used for both training and testing.

AFW dataset [37] contains 468 faces in 205 images.
Each face image is manually labeled with up to 6 landmarks
and has a visibility label for each landmark. For each face
image a detected bounding box is provided. Given the small
number of images, we only use this dataset for testing.

We use the Nid = 199 bases of Basel Face Model [16]
for representing identity variation and the Nexp = 29 bases
of face wearhouse [3] for representing expression variation.
In total, there are 228 bases representing 3D face shapes



Table 3. NME (%) of the proposed method with different features.
PAWF + Cheek D3PF + Cheek

PAWF
Extracted

Landmarks Landmarks Patch
4.72 5.02 5.19 5.51

with 53, 215 vertexes.
Baseline selection We select the most recent large-pose
face alignment methods for comparing with the proposed
method, according to Table 1. We compare the proposed
method with PIFA [9] and RCPR [1] on AFLW, and with
PIFA [9], CDM [31] and TSPM [37] on AFW.
Parameter setting For the proposed method, the learning
rate of CNN is constant at 0.0001 during training. We use
ten epochs for training each CNN. For RCPR, we use the
parameters reported in its paper, with 100 iterations and 15
boosted regressors. For PIFA, we use 200 iterations and
5 boosted regressors. For PAWF and D3PF, at the second
stage T is 5, 000, and 3, 000 for the other stages. According
to our empirical evaluation, six stages of CNN are sufficient
for convergence of fitting process.
Evaluation metrics We use two conventional metrics for
measuring the error of up to 34 landmarks. For AFLW
dataset, we use the mean error of visible landmarks normal-
ized by the bounding box size (NME) [9]. The eye-to-eye
distance is not used in NME since it is not well defined in
large poses such as profile. For AFW dataset, we use the
Mean Average Pixel Error (MAPE) [31].
Feature extraction methods To show the advantages of
the proposed features, Table 3 compares the accuracy of the
proposed method on AFLW, with various feature presenta-
tion (i.e., the input layer for CNN2 to CNN6). The “Ex-
tracted Patch” refers to extracting a constant size (19× 19)
patch from a face image normalized using the bounding
box, which serves as a baseline feature. For the feature
“+Cheek Landmarks”, additional up to four 19×19 patches
of the contour landmarks, which are invisible for non-
frontal faces, will be replaced with patches of the cheek
landmarks, and used in the input layer of CNN learning.
The PAWF feature can achieve a higher accuracy than the
D3PF. By comparing Column 1 and 3 of Table 3, it shows
that extracting features from cheek landmarks are very ef-
fective in acting as additional visual cues for the cascaded
CNN regressors. The combination of using the cheek land-
marks and extracting PAWE feature achieves the highest ac-
curacy, which will be used in the remaining experiments.

CNN is known for requiring a large training set, while
the AFLW training set is certainly small from CNN’s per-
spective. However, our CNN-based regressor is still able to
learn and align well on unseen images. We attribute this fact
to the effective appearance features proposed in this work,
i.e., we hypothesize that the good feature correspondence
reduces CNN’s demand for massive training data.
Experiments on AFLW dataset We compare the proposed

Table 4. The NME (%) of three methods on AFLW.
Proposed method PIFA RCPR

4.72 8.04 6.26
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Figure 8. Comparison of NME for each pose.
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Figure 9. The comparison of CED for different methods.
Table 5. The MAPE of four methods on AFW.

Proposed method Proposed method
PIFA CDM TSPM

(PAWF) (D3PF)
7.43 7.83 8.61 9.13 11.09

method with the two most related methods for aligning
faces with arbitrary poses. We use the source code of RCPR
for performing training and testing. Similarly for PIFA, we
use the source code to train on the AFLW train set with 13
more landmarks. The accuracy of the three methods are
shown in Table 4. The proposed method can achieve bet-
ter results than the two baselines. The error comparison for
each landmark is shown in Fig. 7(b). As expected, the con-
tour landmarks have higher errors and the proposed method
has lower errors than RCPR across all of the landmarks.

By using the ground truth landmark locations of the test
images, we divide the test set images to six subsets ac-
cording to the estimated yaw angle of each image. Fig. 8
compares the proposed method with RCPR. The proposed
method can achieve better results across different poses, and
more importantly, is more robust or has less variation across
poses. For the detailed comparison on the NME distribu-
tion, the cumulative errors distribution (CED) diagrams of
various methods are shown in Fig. 9. The improvement
seems to be over all NME values, and is especially larger
around lower NMEs (≤ 8%).
Expriments on AFW dataset The AFW dataset contains
faces of all pose ranges with 6 landmarks. We report the
MAPE for five methods in Table 5. For PIFA, CDM and
TSPM, we use the reported errors in their papers. Again
we see the consistent improvement of our proposed method
(with two feature types) over the baseline methods.
Qualitative results Some examples of alignment results



Figure 10. The results of the proposed method on AFLW and AFW. The green/red/yellow dots show the visible/invisible/cheek landmarks,
respectively. First row: initial landmarks for AFLW, Second: estimated 3D dense shapes, Third: estimated landmarks, Forth and Fifth:
estimated landmarks for AFLW, Sixth: estimated landmarks for AFW.

Figure 11. The result of the proposed method across stages, with the extracted features (1st row) and alignment results (2nd row).

for the proposed method on AFLW and AFW datasets are
shown in Fig. 10. The result of the proposed method at each
stage is shown in Fig. 11. Note the changes of the landmark
position and visibility (the top-right patch) over stages.

Time complexity The speeds of PAWF and D3PF methods
are 0.6 and 0.26 FPS respectively, with unoptimized Mat-
lab implementation. We believe this can be substantially
improved with C coding and parallel feature extraction.

5. Conclusions
We proposed a method to fit a 3D dense shape to a face

image with large poses by combining cascade CNN regres-
sors and the 3D Morphable Model (3DMM). We proposed
two types of pose invariant features for boosting the ac-
curacy of face alignment. Also, we estimate the location
of landmarks on the cheek, which also drives the 3D face
model fitting. Finally, we achieve the state-of-the-art perfor-
mance on two challenging face databases with larger poses.
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