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Abstract— We propose a shape model fitting algorithm that
uses linear programming optimization. Most shape model fitting
approaches (such as ASM, AAM) are based on gradient-
descent-like local search optimization and usually suffer from
local minima. In contrast, linear programming (LP) techniques
achieve globally optimal solution for linear problems. In [1], a
linear programming scheme based on successive convexification
was proposed for matching static object shape in images among
cluttered background and achieved very good performance. In
this paper, we rigorously derive the linear formulation of the
shape model fitting problem in the LP scheme and propose an
LP shape model fitting algorithm (LPSM). In the experiments,
we compared the performance of our LPSM with the LP graph
matching algorithm(LPGM), ASM, and a CONDENSATION
based ASM algorithm on a test set of PUT database. The
experiments show that LPSM can achieve higher shape fitting
accuracy. We also evaluated its performance on the fitting of
some real world face images collected from internet . The
results show that LPSM can handle various appearance outliers
and can avoid local minima problem very well, as the fitting
is carried out by LP optimization with l1 norm robust cost
function.

I. INTRODUCTION

Given pictures of objects of the same category (i.e., human
faces) with manually labeled landmarks as training data,
Cootes proposed to learn the intrinsic shape and appear-
ance variations as statistics and proposed the Active Shape
Model (ASM) [2] and Active Appearance Model(AAM) [3].
The ASM/AAM approaches received wide attention in the
computer vision community and were extended in many
ways for different applications.In brief summary, the shape
model has been extended from PCA [2] to Kernel PCA [4],
and to a hierarchical bayesian model [5]. The appearance
likelihood model of ASM has been extended from the
simple Gaussian distribution of normalized pixel values
[2] to Mixture of Gaussians with discriminative features
computed from image patch centering at the landmarks (
Gabor wavelet [6],Ranking-Boost [7], Fisher-boost [8], etc.).

The fitting algorithm of the ASM models to the object in
the image was extended from coarse-to-fine iterative opti-
mization process constrained by PCA shape subspace [2] to
Expectation-Maximization (EM) optimization [9] and sam-
pling based approaches [5][8][10] in a Bayesian inference
framework. These approaches are based on gradient descent
optimization in essence and suffer from problems with local
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minima. Due to the high dimensionality of the image space
and the highly cluttered image background, these approaches
depend heavily on good initialization.

On the other hand, if we assume the object of interest
do not have large intrinsic shape variation, or the shape
variations can be characterized by some heuristic constraints,
we can characterize the object shape by a graph template,
and graph matching techniques can be employed to localize
the object in a testing image. Graph matching has a rich
history in computer vision and pattern recognition appli-
cations, dating back to the 1970’s [11]. Recently, in [12],
Jiang and Yu formulated the graph matching problem as
a linear programming (LP) framework. The optimization
was carried out in a successive convexification scheme. By
successively convexifying the matching cost surface in a
coarse to fine manner, the fitting of the template to the
target image can be solved after it is formulated as a linear
programming problem. As linear programming can achieve
globally optimal solutions to linear objective functions sub-
ject to linear constraints, Jiang and Yu demonstrated that
their graph matching algorithm can achieve good localization
performance in images with a large search range and with
cluttered background.

In this paper, we extend the LP graph matching (LPGM)
technique in [12] to the object shape model fitting problem,
and propose an LP shape model (LPSM) fitting algorithm. By
incorporating a shape subspace model that spans the object
shape variations, LPSM can achieve better shape fitting
accuracy for the objects of a category with non-rigid shape
deformations (i.e., human faces). By doing the optimization
in an LP framework, LPSM can find globally optimal solu-
tion without relying on a good model initialization.

More specifically, we summarize the novelties of our paper
as follows:
1) We rigorously derive the linear formulation of the shape
model fitting problem, and propose to replace the gradient
descent or other local optimization techniques) in ASM
with a globally optimal linear programming (LP) technique,
after the shape fitting problem is formulated in the LP
framework. The proposed algorithm therefore does not rely
on good model parameter initialization. 2) In order to get
more accurate estimation of the scale and orientation of the
shape model, we propose a refined unit circle linearization
procedure by extending the LP framework in [12]. 3) For
implementation, we also proposed to approximate the joint
distribution of the allowable shape instances from real world
by convex hulls in a number of 3 dimensional most correlated



subspaces to refine the search space in the LP formulation. 4)
We propose to model the landmark appearance likelihood in
Maximal Rejection Classifier[13] subspace that captures the
discriminability between the appearances at the landmarks
and its surrounding areas.

In section 2, we briefly summarizes the shape fitting
problem in ASM literatures, and the graph matching problem
in LP framework. Based on the analysis in section 2, we
formulate the shape model fitting problem in LP framework
in section 3, and provide linearization solutions for the re-
fined estimation of the scale and rotation parameters. We then
describe our MRC appearance likelihood model and provide
some implementation details. We show the experimental
results in section 4, and finally provide a discussion on the
strengths of our work and some future works in section 5.

II. MATHEMATICAL FORMULATION

A. Shape model fitting

As shown in [2], a set of corresponding points on object
shapes in the form ~S = [x1, y1, x2, y2, ..., xN , yN ]′ can be
captured by a PCA model after Procrustes analysis, i.e., ~S =
~̄S + U~c. where ~S is the intrinsic shape, ~̄S is the mean of
the shapes, U is the shape basis matrix that characterizes
the intrinsic shape variations, and ~c is the intrinsic shape
parameter.

In [14], the extrinsic transformation of the object shape
(in terms of scaling factor s, rotation angle θ and trans-
lation t = [tx, ty]′) is modeled as a global similarity
transformation. Consider the landmark Si = [xi, yi]

′ on
the intrinsic shape ~S, the similarity transform is Simgi =[

1 + a −b
b 1 + a

]
Si+t, i = 1, ..., N, where a = s cos θ−1

and b = s sin θ. By rearranging this equation, the 2D
similarity transformation for the object shape ~S can be
formulated in a linear form: ~Simg = ~S + [~g1, ~g2, ~g3, ~g4]~d =
~S + G(~S)~d, where ~g1 = [x1, y1, x2, y2, ..., xN , yN ]′ = ~S,
~g2 = [−y1, x1,−y2, x2, ...,−yN , xN ]′ = R~S(R is a diag-

onal block matrix with diagonal block being
[

0 −1
1 0

]
),

~g3 = [1, 0, 1, 0, ..., 1, 0]′, ~g4 = [0, 1, 0, 1, ..., 0, 1]′ and d =
[a, b, tx, ty]′. Here we denote G(~S) = [~S,R~S,~g3, ~g4]. And
further derivation yields

~Simg = ~̄S + G( ~̄S)~d+ U~c(1 + a) + RU~cb. (1)

According to [15][14], G( ~̄S)′U = 0 because the training
shape data is normalized by generalized Procrustes analysis.
Given the properties of R, G( ~̄S), and G( ~̄S)′U = 0, it is
straight forward to prove that G( ~̄S)′RU = 0.

Therefore, by defining V as the gram-schmidt orthogonal-
ization of [U,RU] (in practice, we can let V ≈ U as we
observe most of the shape variations represented in RU can

be captured by U), we have ~Simg = ~̄S + [G( ~̄S),V]

[
~d
~w

]
where G( ~̄S) ⊥ V, ~d defines the global affine transformation
and ~w defines the generalized intrinsic shape parameter
associated with V.

Given an object of interest in an image, fitting the ASM
model to the object involves minimizing the following cost
function

Cshape = ‖~Simg − ~̄S − [G( ~̄S),V]

[
~d
~w

]
‖. (2)

To ensure that the similarity transformation is Euclidean,
we optimize the cost function with the constraint (a+ 1)2 +
b2 = s2, (s > 0).

B. Graph matching by linear programming

In [1], the matching of two sets of points is formulated as
a linear programming problem. Given a point set M = {p},
we can pre-define a set of pair-wise neighboring model points
N = {p, q|p, q ∈M}. Let f(p) be the target point in a query
image matched to the model point p, the objective function
for minimizing the matching cost is defined as follows

min
f
{
∑
p∈M

c(p, f(p)) + λ
∑

{p,q}∈N

g(p, q, f(p), f(q))}, (3)

where c() is the feature matching cost, which is minimized
when p and f(p) match correctly, and g() is the spatial
matching cost that can be minimized when the pairwise
spatial connection (p, q) in the model is similar to that of
(f(p), f(q)) in the target image. In particular, we can define
g(p, q, f(p), f(q)) = ‖sR(p− q)− (f(p)− f(q))‖ where s
and R define the scaling and rotation respectively.

In [12], the rotation and scaling parameters are utilized
in two separate terms applied to the model points and the
target points respectively, and a matrix formulation is derived
as follows

min ε(X, s,R) = tr(C ′X) + λ|EMR− sEXT |, (4)

subject to X1nt
= 1nm

, X ∈ {0, 1}nm×nt , s > 0 and
R′R = I , where the following terms are defined:
· Xnm×nt is a binary assignment matrix. X(i, j) = 1

defines a match between the i-th model point and the j-
th target point. X1nt

= 1nm
indicates each model point

matches to only one target point.
· s is the global scaling parameter.
· R is the 2D rotation parameter.
· Mnm×2 is the matrix for the 2D model points.
· Tnt×2 is the matrix for the candidate 2D target points.
· Cnm×nt

is the feature matching cost matrix, where
C(i, j) is the matching cost between the i-th model point
and the j-th target point.
· Ene×nm defines the graph edges of the neighboring

model points. For edge e which connects the model
point i to the point j, we have E(e, i) = 1 and
E(e, j) = −1. 1 ≤ e ≤ ne = |N |.

To remove the l1 norm in Eq. 4, the cost function can be
further linearized [12] as

min ε(X, s,R, Y, Z) = tr(C ′X) + λ1′ne
(Y + Z)12 (5)

subject to Y − Z = EMR− sEXT , Y ≥ 0,Z ≥ 0.
As illustrated in Figure 1-(a), the rotation matrix R =

[u,−v; v, u] is linearized by approximating the unit normal
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Fig. 1. The approximation of rotation on a unit circle. (a) The four line
segments approximation in [1] ; (b) The finer line segment approximation
of the unit circle at iteration 1.

constraint u2 + v2 = 1 with four line segment u± v = ±1,
|u| ≤ 1, |v| ≤ 1.

The scaling parameter s is quantized into ns variables, i.e.,
0 < s1 < s2 < ... < sns

, so that the assignment matrices
{Xl} are introduced, one for each scale nl, X =

∑
lXl.

Since the binary assignment matrix is relaxed to permit real
values in [0, 1], the formulation is able to approximate any
s ∈ [s1, sns ].

In [1] and [12], the linearization of the problem makes
it possible to find the globally optimal model fit (for the
re-formulated linear system) amid the clutter in the image.

III. SHAPE MODEL FITTING BY LINEAR PROGRAMMING

Based on Eq. 2 and Eq. 4, we can formulate shape model
fitting in an LP framework by minimizing

ε(X, ~d, ~w) = tr(C ′X) +

λ|EΩ( ~̄S + [G,V]

[
~d
~w

]
)− EXT | (6)

subject to X1nt
= 1nm

, X ∈ {0, 1}nm×nt , and (~d1 + 1)2 +
~d22 = s2(s > 0), where X ,C,E, T , have been defined
in Eq. 4; ~̄S, G, V, ~d and ~w defines the shape model
in Eq. 2, and Ω(·) is a matrix operator that reshapes the

vector [x1, y1, ...xn, yn]′ into
[
x1 x2 . . . xn
y1 y2 . . . yn

]′
. As the

constraint on the scaling and rotation parameters is nonlinear,
we propose our linearization procedure as follows.

A. Linearization

Noticing that the task of object shape fitting is usually
carried out after object detection, and the input image can
be normalized based on an approximate estimation of the
object location, scale and orientation, we therefore do not put
efforts in making LPSM scale and rotation invariant. Given
the assumption, we simply assume the scaling factor is in
a range of [0.7 1.3]. We also assume the object orientation
angle is in a range of [−30o + 30o].

In [12], the rotation matrix is modeled by variable u,v
satisfying u ± v = ±1, |u| ≤ 1, |v| ≤ 1. Four programs
for Eq. 5 are carried out, one for each line segment as the
constraint in the uv space. The optimal solution is obtained
by the one that achieves the lowest matching cost at the
converging stage.

Approximating the unit circle by four line segment intro-
duces inaccuracy. For example, the magnitude of the rotation
matrix represented uv in the line segment may be biased to
cos(π4 ) = 0.707 < 1 in the worst situation. This causes an
unnecessary bias to the estimation of the rotation and scaling
factor. We propose to refine the approximation of the unit
circle as the successive convexification is moving toward
finer resolution. We define the rotation and scaling by the
circle u2 + v2 = s2 in the uv space, as shown in Fig. 1-(b).
Assuming the optimal solution is found at (û1, v̂1) on the line
segment u + v = s in iteration 1, the rotation angle can be
computed as θ̂1 = tan−1 v̂1

û1
. Assuming the angle estimation

error is within the range of ∆θ , two line segments that
approximate the arc within θ̂1 ± ∆θ on the circle can be
defined by the ending points (uo1, v

o
1) and (u±1 , v

±
1 ) with

uo1 = s cos(θ̂1), u±1 = s cos(θ̂1 ±∆θ),

vo1 = s sin(θ̂1), v±1 = s sin(θ̂1 ±∆θ). (7)

As successive convexfication is moving toward finer reso-
lution, we can assume the error range for the angle estimation
∆θ is gradually decreasing. The resulting line segments
a±i u + b±i v = c±i provide finer approximation to the circle
u2 +v2 = s2 in the uv space, which can be beneficial to the
linear programming defined in Eq. 6.

B. The algorithm

We summarize the linear programming formulation of the
shape model fitting problem at iteration i as follows:

min ε(X, ~d, ~w) = tr(C ′X) + λe1
′
ne

(Y + Z)12 (8)

subject to

· Y − Z = EΩ( ~̄S + [G,V]

[
d
w

]
)− EXT , Y,Z ≥ 0;

· X1nt
= 1nm

, X ∈ {0, 1}nm×nt .
· u = d1 − 1, v = d2, a±i u+ b±i v = c±i , 0.7 < s < 1.3;
· u ∈ [uoi , u

±
i ], v ∈ [voi , v

±
i ], |w| ≤ 3σw;

where σw is the standard deviation of the intrinsic shape
parameters. As the translation of the model does not affect
the cost, we set the exterior parameter d3 = d4 = 0.
At each iteration, two linear programs are generated with
line segment parameter a±i , b±i , c±i computed according to
Eq. 7, given the estimation of rotation angle θ̂ and assumed
estimation error range ∆θ at the previous iteration.

Therefore, taking advantage of the successive convex-
ification technique in [1], the LPSM fitting algorithm is
summarized in Algorithm 1.

IV. IMPLEMENTATION

The LPSM is implemented with a successive convexifica-
tion scheme described in detail in [1]. In the first iteration,
we let θ̂ = 0 and ∆θ = 30o. As the trust regions are
getting smaller, we reduce the angle estimation range ∆θ
by π

M ,(M > 6), with M gradually increasing.



Algorithm 1: LPSM fitting algorithm

Data: Input image I, local appearance model pj(Γ), mean shape S̄,
and shape basis matrix [G,V]

Result: the assignment matrix Xnm×nt and the shape parameter
[~d, ~w]′

1 Compute the appearance log-likelihood matrix C between the ASM
landmark appearance model and the candidate target features points.

2 Initialize the trust region for each landmark to be the entire target
image.

3 Compute the lower convex hull vertices of matching costs for each
landmark within its trust region.

4 Let θ̂ = 0 and ∆θ = 30o, and solve two linear programming in
Eq. 8.

5 Update the trust regions.
6 repeat
7 find the linear program that has the lowest matching cost.
8 Update the trust regions.
9 Solve two programs defined by Eq. 8 given the previous

estimation of the rotation angle θ̂ and ∆θ.
10 until The trust region is small enough.
11 return X ,~d, ~w.

A. Convex hull constraints in the intrinsic shape space

In Eq. 8, the constraints |w| ≤ 3σw limits the search of
the intrinsic shape parameter in a hypercube in the parameter
space. The hypercube however is not compact enough to de-
scribe the distribution of the allowable shape instances from
real world. In [16], Li and Ito proposed to adding additional
shape constraints by quantizing the shape space and mod-
eling the allowable intrinsic shape parameter distributions
by histograms in the top k most correlated dimensions in
the parameter space. While the computation may become
intractable if k > 3, the paper proposed an approximation
solution. For each element of the shape parameters, it is
tractable to build histogram to model the joint distribution
between itself and the elements in two most correlated
dimensions. The top two most correlated dimensions can be
found by computing the correlation coefficient between the
elements from the training data instances. Therefore, the joint
distribution of the allowable shape instances in the shape
space can be approximated by a number of 3-dimensional
histogram tables.

Following similar intuition, we propose the region of
the allowable shape instances in the shape space can be
approximated by convex hulls in a number of 3 dimensional
most correlated subspaces. We identify the 3-dimensional
most correlated subspaces using a similar procedure in [16],
and we then generate simplified convex hull based on the
shape instances from the training set. We then add the
hyperplane constraints defined by the convex hulls to the LP
formulation so that the LP output is allowable shape instance
in real world. Fig. 2 shows one typical convex hull in a 3
dimensional correlated space.

B. Model appearance likelihood in Maximal Rejection Clas-
sifier(MRC) subspace

Given a testing face image, we generate the candidate
feature points by canny edge detection. The feature match-
ing cost matrix C is then evaluated for each landmark
using a landmark appearance likelihood model. We train
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Fig. 3. Training of MRC appearance likelihood model

the landmark appearance likelihood model as a Gaussian
model to capture the landmark appearance statistics in the
subspace learned by Maximal Rejection Classifier [13]. In
order to reduce the illumination variations, the face images
are preprocessed using DoG filtering similar to [17].

As shown in Fig. 3-(a), given a set of face images with
landmark labels as the training set, we crop the image
patches centering at each landmark (the green dot) as the
Target class data. To acquire the Clutter class data, we
first carry out canny edge detection (the blue dots) at the
neighboring area of the landmark in each image; We evaluate
the normalized correlation between the image patch on the
landmark and the image patches centering on the canny edge
points that are 4-10 pixels away from the landmark. We
then acquire eight image patches centering on the edges (as
indicated by the red dots) that have the maximal normalized
correlation in the surrounding eight sub-regions. Fig. 3-(b)
shows the intuition of Maximal Rejection Classifier. The
MRC subspace minimizes the within class covariance for the
Target data, and spreads out the Clutter data as much as
possible. This intuition fits well with the landmark detection
scenario.

C. Getting the fitted landmarks

LPSM solves Eq. 8 and obtains the solution X , ~d and
~w. The fitted landmarks can be computed either as XT or

as S = S̄ + [U, V ]

[
~d
~w

]
. XT is the landmark locations

based on the actual feature assignment for each landmark
according to the assignment matrix X . S is the intrinsic
active shape model obtained through the linear programming
optimization. In general, XT latches onto the actual image
features (i.e., edges or corners), which can be noisy in the
presence of outliers, but could be preferable when the shape
space can not fully capture the observed shape variations
and the canny edge detection is free of outliers; S is usually
smoother since it is regularized by the shape subspace. In
this paper, we utilize the landmark estimation S for LPSM.



PCA FDA MRC
PE 0.348 0.141 0.138

D̄gt(pixels) 8.25 8.11 4.37

TABLE I
COMPARISON OF THE PCA, FDA AND MRC LIKELIHOOD MODEL.

V. EXPERIMENTS

We prepare our experimental evaluations on the PUT
database[18]. The PUT database contains 2193 face images
of 100 people with ground truth contour labels. For each
person, 22 images are captured in different head poses and
some scale variations and facial expression changes, in par-
tially controlled illumination conditions over an uniformed
background. Among the 22 face images for each person,
we pick six images that sample across the range of the
head poses, and obtain in total 600 face images with ground
truth. While the original image data are of high resolution,
we reduced the size of the image so that the distance
between the eyes in the face is about 50-80 pixels, and we
picked 68 landmarks from the ground truth contour model
to characterize the facial shape in the data. We utilize the
first 500 face images (∼ 80 subjects) as the training set
and we evaluate the fitting performance of the algorithms
on the rest 100 face images (∼ 20 subjects). The fitting
accuracy is computed as average distances in pixels between
the fitted landmarks and the ground truth shape contour.
We implemented LPSM in Matlab environment, and we
observe the computation takes about 1-2 minutes per image
depending on how much Canny edge points are detected in
the image.

A. Evaluation of the MRC likelihood model

We first evaluate the performance of the MRC appearance
likelihood model. We train the likelihood models in PCA,
FDA and MRC subspaces, respectively, for the image patches
(of size 25× 25) at the landmarks on the training data. Fig.
4 shows the negative log-likelihood surfaces of the PCA,
FDA, and MRC model centering at the left eye corner of
a subject. It shows that the peak of the MRC surface is
more discriminative than PCA surface, and is smoother and
contain less minima outliers than FDA surface. We then
compute the minimal classification error based on testing
image patches cropped at the landmarks in the testing set,
and we also compute the average distances from the local
minima of the cost surfaces to the ground truth landmark
locations over all the landmarks for the testing data. Table I
shows that, MRC produces similar performance as FDA in
terms of classification error, but generate the minimal average
localization error in terms of distance from the ground truth
locations. Considering the fact that LPSM depends on the
evaluation of appearance likelihood on canny edges, which
are typically a few pixels away from the likelihood surface
local minima, we consider the properties of MRC fits well
to the design requirement for our LPSM algorithm.

B. Evaluation of LPSM

As a comparison, we compare the performance of our
proposed LPSM against the following algorithms:
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Fig. 5. Performance comparison between ASM, ASM0, CONDSM,
CONDSM0, LPGM, LPGM+, LPSM− and LPSM. The fitting error is
computed as average distances in pixels from the fitted landmarks to the
ground truth shape contour with eye-to-eye distance normalized to 65 pixels.

LPSM−: LPSM without the rotation parameter refinement.
LPGM: LPSM reduced to graph matching by degenerating
the shape subspace of LPSM to the mean face. The fitting
result is retrieved as XT .
LPGM+: After fitting LPGM and obtain XT , we project
XT into the PCA shape space and do reconstruction, so that
the outliers in XT can be subdued.
ASM: The standard ASM shape fitting algorithm initialized
with model centroid shifted away from the ground truth by
15% of the distance between the eyes. The ASM adopted
a local search based optimization strategy closely related to
the Iterative Closest Point (ICP) approach[19].
ASM0: ASM initialized with ground truth landmark labeling.
CONDSM: A CONDENSATION based ASM fitting
algorithm[8], initialized with initial guess of the face centroid
shifted by 15% of the between-eye distance from the ground
truth. 100 samples were employed for the evaluation of
distributions in the parameter space.
CONDSM0: CONDSM initialized with initial guess of face
location centering at the ground truth.

Fig. 5 shows the cumulative distribution of the average
landmark localization errors for ASM, ASM0, CONDSM,
CONDSM0, LPGM, LPGM+, LPSM−, and LPSM. It
shows that LPSM achieves the highest accuracy, as about



(a)

(b)

(c)

(d)
Fig. 6. Comparison of some fitting results on PUT database. (a) shows ASM results and (b) shows CONDSM results. The initial face shapes are in red,
and the fitted face shapes are in green. (c) shows LPGM result and (d) shows our proposed LPSM result. In the first row, the feature points (canny edges)
are shown in green, and the feature assignment are marked in red dots; The second rows show the fitted shape models.

60% LPSM landmarks are within 1.25 pixels from the
ground truth landmarks, while this percentage for the rest
algorithms are less than 20%. A paired t-test on the results
shows that the improvement is statistically significant(with
p < 0.0005). Without the rotation parameter refinement, the
performance of LPSM− drops significantly due to inaccurate
estimation of rotation parameters. LPGM and LPGM+ can
achieve pretty good localization with the mean face shape
as graph template but can not reach as high fitting accuracy
as LPSM because the fitting of the shape deformation is not
constrained by a shape model. We also observe ASM0 and
CONDSM0 achieves pretty high accuracy as their parameters
are initialized properly, and that CONDSM can avoid local
minima problem much better than ASM through sampling
technique. However they can not achieve as high localization
accuracy as LPSM.

In Fig. 6, we show some typical fitting results from the
PUT database. Fig. 6-(a),(b) shows the initialized and fitted
shape models in red and green for ASM and CONDSM,
respectively. And Fig. 6-(c) and (d) shows the feature assign-
ment XT for LPGM and the intrinsic shape S for LPSM.
Comparison on the fitting details can be found in Fig. 5.
LPSM produces fitting results that latch onto the canny
edges along the facial feature contour, thus are more visually
satisfactory.

We then applied LPSM fitting to random real world
face images collected from CMU expression face database
and MBGC database. With the same Canny edge detection
parameters, we find LPSM achieves very promising fitting
performance given the presence of strong variations of illu-
mination, facial expression, skin color, gender of the faces
in the images. Some of the results are shown in Fig. 8.

VI. CONCLUSIONS

In this paper, we proposed to do shape model fitting in
images by finding the optimal solution using LP techniques
(LPSM). LPSM conveniently integrates the top-down (sub-
space based shape and appearance models) and bottom-up
(Canny edge detection) image analysis techniques based on
the LP optimization framework with l1 norm cost formula-
tion, and can achieve very promising and robust shape fitting
performance. The advantages of LPSM can be summarized
as follows: 1) LPSM can fit object in images of strong back-
ground clutters and do not rely heavily on the initial guess of
the model parameters. 2) By fitting the shape model to canny
edges, LPSM can produce fitting contours that latches on
the object contour edges and look visually satisfactory. The
resulting fitting consistency on the object edge boundaries
makes the fitting result promising for applications, such as
subtle facial expression analysis.



(a) ASM (b) CONSM (c)LPGM (d) LPSM
Fig. 7. Comparison on the fitting details. LPSM fits the shape model to
the canny edges and thus usually can produce results that are more visually
satisfactory. Though the mean shape template for LPGM can not capture the
facial shape variations, LPGM can do reasonably good feature assignment
XT when the deformation is not substantial and the feature detection is
free of outliers.
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Fig. 8. Some LPSM fitting results for images from various face databases.

While LPGM can do reasonable shape fitting through fea-
ture assignment XT guided by a static shape model, LPSM
incorporates a shape subspace model that explains away
much of the intrinsic shape variations in the shape matching
error, and thus guides the linear programming optimization
toward more accurate feature assignment solution. LPSM
can produce shape fitting results by feature assignment XT
and by the intrinsic shape model S. Both may be useful
depending on the different applications. For applications
where the object in the images deforms in predictable ways,
but may yield candidate features with strong outliers, shape
fitting by S may be the better choice as it is regularized by
the shape space in l1 norm. For applications where the object
in testing images deforms in ways that may not be captured
in the training data, but produces good candidate features in
the images, shape fitting by XT could be more desirable.

In this paper, we also proposed to model the landmark

appearance likelihood in the Maximal Rejection Classifier
(MRC) subspace trained on raw image patches for LPSM,
considering the fact that the design of MRC matches nicely
to the purpose of discriminating the landmark appearances
against its surrounding regions in this scenario. We showed
that modeling the landmark appearance likelihood in MRC
subspace can achieve better performance than in PCA, and
LDA subspaces. Due to its linear formulation, it can be evalu-
ated efficiently. In the mean time, we believe the performance
of our proposed model can be further improved by employing
more powerful feature extraction methods (such as SIFT or
HOG), and by utilizing more advanced learning techniques
(such as Adaboosting). Finally, it is still an open question on
how to make LPSM real-time. We believe parallel computing
and coarse-to-fine image pyramid analysis techniques can be
considered for improving the computational efficiency.
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