
Learning Implicit Functions for Topology-Varying
Dense 3D Shape Correspondence

— Supplementary Material

Feng Liu Xiaoming Liu
Department of Computer Science and Engineering
Michigan State University, East Lansing MI 48824

{liufeng6, liuxm}@msu.edu

In this supplementary material, we provide:

� Implementation details, including network structures and training details.

� Additional experimental results, including expressiveness of the inverse implicit function and
visualization of the correspondence confidence score.

1 Implementation Details

1.1 Network Structures

PointNet Encoder E. To extract the shape code, we adopt PointNet [3] like architecture as our
encoder. The detailed architecture of E is depicted in Fig. 1(a). The Encoder takes a point set as
input and generates a 256-dim shape latent code z.

Implicit Function f . The implicit function network follows the work of [1] (unsupervised case).
The implicit function takes the shape code z and a spatial point (x, y, z) as inputs and predicts the
part embedding vector (PEV) o. As shown in Fig. 1(b), it is composed of 3 fully connected (FC)
layers each of which is applied with Leaky ReLU , except the final output is applied a Sigmoid
activation.

Inverse Implicit Function g. The inverse implicit function is also implemented as an MLP, which
is composed of 8 FC layers each of which is applied with Leaky ReLU , except the final output is
applied a Tanh activation. As shown in Fig 1(c), the inverse implicit function network inputs the
PEVs and shape latent code, and recover the corresponding 3D points.

1.2 Training Details

Sampling Point-Value Pairs. The training of implicit function network needs point-value pairs.
Following the sampling strategy of [2], we obtain the paired data {xj , Õj}Kj=1 offline. xj , Õj are the
spatial point and the corresponding occupancy label. We sample points from the voxel models in
different resolutions: 163 (K = 4, 096), 323 (K = 8, 192) and 643 (K = 32, 768) in order to train
the implicit function progressively.

Training Process We summarize the training process in Tab. 1. In Stage 1, we adopt a progres-
sive training technique [2] to train our implicit function on gradually increasing resolution data
(163→323→643), which stabilizes and significantly speeds up the training process.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



n
×

3
shared

MLP(64,64,64,128,1024)

n
×

1
0

2
4

FC

512

1024

256
FC

(a) PointNet-based encoder

x

FC

3072

384
k

1FC FC

y
z

(b) Implicit function

3
x 
y
z

256+k

FC

512

FC

512

FC

512

FC FC

512

FC

512

FC

512

FC

768+k

(c) Inverse implicit function

Figure 1: Network Architectures. (a) The PointNet-based encoder network. A shape code z ∈ R256 is
predicted from the input point set. MP denotes the max-pooling operator. (b) The implicit function network is
composed of 3 fully connected layers, denotes as “FC”. The shape code is concatenated, denoted as “+”, with
the xyz query, making a 259-dim vector, and is provided as input to the first layer. The Leaky ReLU activation
is applied to the first 2 FC layers while the part embedding vector o is obtained with a Sigmoid activation.
Finally, a max-pooling operator gives the final occupancy value O. (c) The inverse implicit function network is
also implemented as a MLP, which is composed of 8 FC layers. Specifically, it takes PEV o and the shape code
z as inputs, and recover the corresponding 3D location.

Table 1: Stages of the training process.

Network Loss

Stage 1 E, f Locc

Stage 2 E, f , g Locc and LSR

Stage 3 E, f , g Lall

2 Additional Experimental Results

A supplementary video is provided to visualize additional results, explained as follows.

2.1 Expressiveness of Inverse Implicit Function

Given our inverse implicit function, we are able to cross-reconstruct each other between two paired
shapes by swapping their part embedding vectors. Further, we can interpolate shapes both in shape
latent space and 3D space and maintain the point-level correspondence consistently.

Cross-Reconstruction Performance. We first show the cross-reconstruction performances in the
supplementary video. From a shape collection, we can randomly select two shapes SA and SB .
Their shape codes zA and zB can be predicted by the PointNet encoder. With their respectively
generated PEVs oA and oB , we can swap their PEVs and send the concatenated vectors to the
inverse function and obtain S′

A = g(oB , zA),S′
B = g(oA, zB). As shown in the video, the cross

reconstructions closely resemble each other, even with different part constitutions. Here, we also
provide the cross-reconstruction performance of two additional object categories: car and table.

Interpolation in Latent Space. An alternative way to explore the correspondence ability of the
inverse implicit function, is to evaluate the interpolation capability of the inverse implicit function. In
this experiment, we first interpolate shapes in the latent space z̃ = αzA + (1−α)zB (α ∈ [0, 1]), and
send the concatenated vectors (z̃ and oA) to the inverse function. As observed in the video, our inverse
implicit function generalizes well the different shape deformations. Moreover, the correspondences
are point-to-point consistent across all the deformations. It also demonstrates that the learned part
embedding is discriminative among different parts of shape and point-wise consistent among different
shapes.

Latent Interpolation Comparison. We compare the latent interpolate capability with conventional
implicit function. For the conventional implicit function, we sample a grid of points and pass them
to the implicit function to obtain its value. With the threshold of 0.5, we obtain the surface points.
As can be observed in the video, the interpolation performance of our inverse implicit function is

2



better than conventional implicit function in shape generation and deformation. Furthermore, our
interpolations are point-to-point correspondence across all the deformations.

Interpolation in 3D Space. We also show the interpolation capability of the corresponding points
in the 3D space in the video. Given the estimated dense correspondence, we can compute the
correspondence offset vectors ∆SAB = S′

B − SA for all corresponding pairs of points. Assuming
we interpolate the correspondence in N video frames, for each frame we move all points of SA by
the amount of 1

N ∆SAB and show the moved points. It can be observed that our deformed shape is
meaningful and a semantic blending of two shapes. In addition, the correspondence offsets are locally
smooth in the 3D space.

2.2 Visualization of the Correspondence Confidence Score

To further visualize the correspondence confidence score, we provide the confidence score maps for
some examples in Figure 4 of the paper. As shown in the video, the confidence score can show the
probability around corresponded points between the target shape (red box) and its pair-wise source
shapes. For example, for the source shapes with arms, we can clearly see the confidence scores of the
arm part is significantly lower than other parts.

References

[1] Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha Chaudhuri, and Hao Zhang. BAE-NET:
branched autoencoder for shape co-segmentation. In ICCV, 2019.

[2] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In CVPR,
2019.

[3] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3D classification and segmentation. In CVPR, 2017.

3


	Implementation Details
	Network Structures
	Training Details

	Additional Experimental Results
	Expressiveness of Inverse Implicit Function
	Visualization of the Correspondence Confidence Score


