
MemNet: A Persistent Memory Network for Image Restoration

Ying Tai∗ 1, Jian Yang1, Xiaoming Liu2, and Chunyan Xu1

1Department of Computer Science and Engineering, Nanjing University of Science and Technology
2Department of Computer Science and Engineering, Michigan State University

{taiying, csjyang, cyx}@njust.edu.cn, liuxm@cse.msu.edu

Abstract

Recently, very deep convolutional neural networks
(CNNs) have been attracting considerable attention in im-
age restoration. However, as the depth grows, the long-
term dependency problem is rarely realized for these very
deep models, which results in the prior states/layers hav-
ing little influence on the subsequent ones. Motivated by
the fact that human thoughts have persistency, we pro-
pose a very deep persistent memory network (MemNet)
that introduces a memory block, consisting of a recur-
sive unit and a gate unit, to explicitly mine persistent
memory through an adaptive learning process. The re-
cursive unit learns multi-level representations of the cur-
rent state under different receptive fields. The represen-
tations and the outputs from the previous memory blocks
are concatenated and sent to the gate unit, which adap-
tively controls how much of the previous states should be
reserved, and decides how much of the current state should
be stored. We apply MemNet to three image restoration
tasks, i.e., image denosing, super-resolution and JPEG de-
blocking. Comprehensive experiments demonstrate the ne-
cessity of the MemNet and its unanimous superiority on all
three tasks over the state of the arts. Code is available
at https://github.com/tyshiwo/MemNet.

1. Introduction
Image restoration [29] is a classical problem in low-level

computer vision, which estimates an uncorrupted image
from a noisy or blurry one. A corrupted low-quality image
x can be represented as: x = D(x̃) + n, where x̃ is a high-
quality version of x, D is the degradation function and n is

∗This work was supported by the National Science Fund of China un-
der Grant Nos. 91420201, 61472187, 61502235, 61233011, 61373063
and 61602244, the 973 Program No. 2014CB349303, Program for
Changjiang Scholars, and partially sponsored by CCF-Tencent Open Re-
search Fund. Jian Yang and Xiaoming Liu are corresponding authors.

(a) Plain structure

(b) Skip connections

(c) Proposed memory block

Recursive Unit

Gate Unit

Figure 1. Prior network structures (a,b) and our memory block (c).
The blue circles denote a recursive unit with an unfolded structure
which generates the short-term memory. The green arrow denotes
the long-term memory from the previous memory blocks that is
directly passed to the gate unit.

the additive noise. With this mathematical model, extensive
studies are conducted on many image restoration tasks, e.g.,
image denoising [2, 5, 9, 37], single-image super-resolution
(SISR) [15, 38] and JPEG deblocking [18, 26].

As three classical image restoration tasks, image de-
noising aims to recover a clean image from a noisy ob-
servation, which commonly assumes additive white Gaus-
sian noise with a standard deviation σ; single-image super-
resolution recovers a high-resolution (HR) image from a
low-resolution (LR) image; and JPEG deblocking removes
the blocking artifact caused by JPEG compression [7].

Recently, due to the powerful learning ability, very deep
convolutional neural network (CNN) is widely used to
tackle the image restoration tasks. Kim et al. construct a
20-layer CNN structure named VDSR for SISR [20], and
adopts residual learning to ease training difficulty. To con-
trol the parameter number of very deep models, the authors
further introduce a recursive layer and propose a Deeply-
Recursive Convolutional Network (DRCN) [21]. To mite-
gate training difficulty, Mao et al. [27] introduce symmetric
skip connections into a 30-layer convolutional auto-encoder



network named RED for image denoising and SISR. More-
over, Zhang et al. [40] propose a denoising convolutional
neural network (DnCNN) to tackle image denoising, SISR
and JPEG deblocking simultaneously.

The conventional plain CNNs, e.g., VDSR [20],
DRCN [21] and DnCNN [40] (Fig. 1(a)), adopt the single-
path feed-forward architecture, where one state is mainly in-
fluenced by its direct former state, namely short-term mem-
ory. Some variants of CNNs, RED [27] and ResNet [12]
(Fig. 1(b)), have skip connections to pass information
across several layers. In these networks, apart from the
short-term memory, one state is also influenced by a spe-
cific prior state, namely restricted long-term memory. In
essence, recent evidence suggests that mammalian brain
may protect previously-acquired knowledge in neocortical
circuits [4]. However, none of above CNN models has such
mechanism to achieve persistent memory. As the depth
grows, they face the issue of lacking long-term memory.

To address this issue, we propose a very deep persis-
tent memory network (MemNet), which introduces a mem-
ory block to explicitly mine persistent memory through an
adaptive learning process. In MemNet, a Feature Extrac-
tion Net (FENet) first extracts features from the low-quality
image. Then, several memory blocks are stacked with a
densely connected structure to solve the image restoration
task. Finally, a Reconstruction Net (ReconNet) is adopted
to learn the residual, rather than the direct mapping, to ease
the training difficulty.

As the key component of MemNet, a memory block con-
tains a recursive unit and a gate unit. Inspired by neuro-
science [6, 25] that recursive connections ubiquitously ex-
ist in the neocortex, the recursive unit learns multi-level
representations of the current state under different recep-
tive fields (blue circles in Fig. 1(c)), which can be seen as
the short-term memory. The short-term memory generated
from the recursive unit, and the long-term memory gener-
ated from the previous memory blocks 1 (green arrow in
Fig. 1(c)) are concatenated and sent to the gate unit, which
is a non-linear function to maintain persistent memory. Fur-
ther, we present an extended multi-supervised MemNet,
which fuses all intermediate predictions of memory blocks
to boost the performance.

In summary, the main contributions of this work include:
⋄ A memory block to accomplish the gating mechanism

to help bridge the long-term dependencies. In each memory
block, the gate unit adaptively learns different weights for
different memories, which controls how much of the long-
term memory should be reserved, and decides how much of
the short-term memory should be stored.

⋄ A very deep end-to-end persistent memory network (80
convolutional layers) for image restoration. The densely

1For the first memory block, its long-term memory comes from the
output of FENet.

connected structure helps compensate mid/high-frequency
signals, and ensures maximum information flow between
memory blocks as well. To the best of our knowledge, it is
by far the deepest network for image restoration.

⋄ The same MemNet structure achieves the state-of-the-
art performance in image denoising, super-resolution and
JPEG deblocking. Due to the strong learning ability, our
MemNet can be trained to handle different levels of corrup-
tion even using a single model.

2. Related Work
The success of AlexNet [22] in ImageNet [31] starts the

era of deep learning for vision, and the popular networks,
GoogleNet [33], Highway network [32], ResNet [12], re-
veal that the network depth is of crucial importance.

As the early attempt, Jain et al. [17] proposed a simple
CNN to recover a clean natural image from a noisy observa-
tion and achieved comparable performance with the wavelet
methods. As the pioneer CNN model for SISR, super-
resolution convolutional neural network (SRCNN) [8] pre-
dicts the nonlinear LR-HR mapping via a fully deep con-
volutional network, which significantly outperforms classi-
cal shallow methods. The authors further proposed an ex-
tended CNN model, named Artifacts Reduction Convolu-
tional Neural Networks (ARCNN) [7], to effectively handle
JPEG compression artifacts.

To incorporate task-specific priors, Wang et al. adopted
a cascaded sparse coding network to fully exploit the nat-
ural sparsity of images [36]. In [35], a deep dual-domain
approach is proposed to combine both the prior knowl-
edge in the JPEG compression scheme and the practice of
dual-domain sparse coding. Guo et al. [10] also proposed
a dual-domain convolutional network that jointly learns a
very deep network in both DCT and pixel domains.

Recently, very deep CNNs become popular for image
restoration. Kim et al. [20] stacked 20 convolutional lay-
ers to exploit large contextual information. Residual learn-
ing and adjustable gradient clipping are used to speed up
the training. Zhang et al. [40] introduced batch normal-
ization into a DnCNN model to jointly handle several im-
age restoration tasks. To reduce the model complexity, the
DRCN model introduced recursive-supervision and skip-
connection to mitigate the training difficulty [21]. Using
symmetric skip connections, Mao et al. [27] proposed a
very deep convolutional auto-encoder network for image
denoising and SISR. Very Recently, Lai et al. [23] pro-
posed LapSRN to address the problems of speed and ac-
curacy for SISR, which operates on LR images directly and
progressively reconstruct the sub-band residuals of HR im-
ages. Tai et al. [34] proposed deep recursive residual net-
work (DRRN) to address the problems of model parameters
and accuracy, which recursively learns the residual unit in a
multi-path model.



... Memory block m Memory block M...

Short path transmission
Long path transmission to 

the gate unit

Skip connection from input 

to the ReconNet

FENet ReconNetMemory block 1
B0 B1 Bm BM

fext frec

x y

Figure 2. Basic MemNet architecture. The red dashed box represents multiple stacked memory blocks.

3. MemNet for Image Restoration
3.1. Basic Network Architecture

Our MemNet consists of three parts: a feature extraction
net FENet, multiple stacked memory blocks and finally a
reconstruction net ReconNet (Fig. 2). Let’s denote x and y
as the input and output of MemNet. Specifically, a convo-
lutional layer is used in FENet to extract the features from
the noisy or blurry input image,

B0 = fext(x), (1)

where fext denotes the feature extraction function and B0

is the extracted feature to be sent to the first memory block.
Supposing M memory blocks are stacked to act as the fea-
ture mapping, we have

Bm = Mm(Bm−1) = Mm(Mm−1(...(M1(B0))...)),
(2)

where Mm denotes the m-th memory block function and
Bm−1 and Bm are the input and output of the m-th mem-
ory block respectively. Finally, instead of learning the direct
mapping from the low-quality image to the high-quality im-
age, our model uses a convolutional layer in ReconNet to
reconstruct the residual image [20, 21, 40]. Therefore, our
basic MemNet can be formulated as,

y = D(x)

= frec(MM (MM−1(...(M1(fext(x)))...))) + x,
(3)

where frec denotes the reconstruction function and D de-
notes the function of our basic MemNet.

Given a training set {x(i), x̃(i)}Ni=1, where N is the num-
ber of training patches and x̃(i) is the ground truth high-
quality patch of the low-quality patch x(i), the loss function
of our basic MemNet with the parameter set Θ, is

L(Θ) =
1

2N

N∑
i=1

∥x̃(i) −D(x(i))∥2, (4)

3.2. Memory Block
We now present the details of our memory block. The

memory block contains a recursive unit and a gate unit.
Recursive Unit is used to model a non-linear function that
acts like a recursive synapse in the brain [6, 25]. Here,

we use a residual building block, which is introduced in
ResNet [12] and shows powerful learning ability for object
recognition, as a recursion in the recursive unit. A residual
building block in the m-th memory block is formulated as,

Hr
m = Rm(Hr−1

m ) = F(Hr−1
m ,Wm) +Hr−1

m , (5)

where Hr−1
m , Hr

m are the input and output of the r-th resid-
ual building block respectively. When r = 1, H0

m = Bm−1.
F denotes the residual function, Wm is the weight set to
be learned and R denotes the function of residual build-
ing block. Specifically, each residual function contains two
convolutional layers with the pre-activation structure [13],

F(Hr−1
m ,Wm) = W 2

mτ(W 1
mτ(Hr−1

m )), (6)

where τ denotes the activation function, including batch
normalization [16] followed by ReLU [30], and W i

m, i =
1, 2 are the weights of the i-th convolutional layer. The bias
terms are omitted for simplicity.

Then, several recursions are recursively learned to gen-
erate multi-level representations under different receptive
fields. We call these representations as the short-term mem-
ory. Supposing there are R recursions in the recursive unit,
the r-th recursion in recursive unit can be formulated as,

Hr
m = R(r)

m (Bm−1) = Rm(Rm(...(Rm︸ ︷︷ ︸
r

(Bm−1))...)), (7)

where r-fold operations of Rm are performed and
{Hr

m}Rr=1 are the multi-level representations of the re-
cursive unit. These representations are concatenated as
the short-term memory: Bshort

m = [H1
m,H2

m, ..., HR
m].

In addition, the long-term memory coming from the pre-
vious memory blocks can be constructed as: Blong

m =
[B0, B1, ..., Bm−1]. The two types of memories are then
concatenated as the input to the gate unit,

Bgate
m = [Bshort

m , Blong
m ]. (8)

Gate Unit is used to achieve persistent memory through
an adaptive learning process. In this paper, we adopt a 1 ×
1 convolutional layer to accomplish the gating mechanism
that can learn adaptive weights for different memories,

Bm = fgate
m (Bgate

m ) = W gate
m τ(Bgate

m ), (9)



Short path transmission
Long path transmission to 

the gate unit

Skip connection from input 

to the ReconNet

Transmission from memory 

block to ReconNet

R
e
co

n
N

et

...

Output 1

Output m

Output M

...

...

...

w1

Memory block 1 ... Memory block m Memory block M...

wm

wM

Final 

Output

Input FENet

Figure 3. Multi-supervised MemNet architecture. The outputs with purple color are supervised.

where fgate
m and Bm denote the function of the 1 × 1 con-

volutional layer (parameterized by W gate
m ) and the output

of the m-th memory block, respectively. As a result, the
weights for the long-term memory controls how much of
the previous states should be reserved, and the weights for
the short-term memory decides how much of the current
state should be stored. Therefore, the formulation of the
m-th memory block can be written as,

Bm = Mm(Bm−1)

= fgate([Rm(Bm−1), ...,R(R)
m (Bm−1), B0, ..., Bm−1]).

(10)

3.3. MultiSupervised MemNet
To further explore the features at different states, inspired

by [21], we send the output of each memory block to the
same reconstruction net f̂rec to generate

ym = f̂rec(x, Bm) = x+ frec(Bm), (11)

where {ym}Mm=1 are the intermediate predictions. All of
the predictions are supervised during training, and used
to compute the final output via weighted averaging: y =∑M

m=1 wm · ym (Fig. 3). The optimal weights {wm}Mm=1

are automatically learned during training and the final out-
put from the ensemble is also supervised. The loss function
of our multi-supervised MemNet can be formulated as,

L(Θ) =
α

2N

N∑
i=1

∥x̃(i) −
M∑

m=1

wm · y(i)
m ∥2

+
1− α

2MN

M∑
m=1

N∑
i=1

∥x̃(i) − y(i)
m ∥2,

(12)

where α denotes the loss weight.

3.4. Dense Connections for Image Restoration
Now we analyze why the long-term dense connections

in MemNet may benefit the image restoration. In very
deep networks, some of the mid/high-frequency informa-
tion can get lost at latter layers during a typical feedfor-
ward CNN process, and dense connections from previ-
ous layers can compensate such loss and further enhance

MemNet_4 MemNet_6MemNet_NL_6MemNet_NL_4

27.29/0.9070 27.71/0.914227.45/0.910127.31/0.9078

(a)

(b)

MemNet_4-MemNet_NL_4 MemNet_6-MemNet_NL_6MemNet_4-MemNet_6MemNet_NL_4-MemNet_NL_6

(c)

Low frequency High frequency

Figure 4. (a) ×4 super-resolved images and PSNR/SSIMs of dif-
ferent networks. (b) We convert 2-D power spectrums to 1-D spec-
tral densities by integrating the spectrums along each concentric
circle. (c) Differences of spectral densities of two networks.

high-frequency signals. To verify our intuition, we train
a 80-layer MemNet without long-term connections, which
is denoted as MemNet NL, and compare with the original
MemNet. Both networks have 6 memory blocks leading to
6 intermediate outputs, and each memory block contains 6
recursions. Fig. 4(a) shows the 4th and 6th outputs of both
networks. We compute their power spectrums, center them,
estimate spectral densities for a continuous set of frequency
ranges from low to high by placing concentric circles, and
plot the densities of four outputs in Fig. 4(b).

We further plot differences of these densities in Fig. 4(c).
From left to right, the first case indicates the earlier layer
does contain some mid-frequency information that the latter
layers lose. The 2nd case verifies that with dense connec-
tions, the latter layer absorbs the information carried from
the previous layers, and even generate more mid-frequency
information. The 3rd case suggests in earlier layers, the
frequencies are similar between two models. The last case
demonstrates the MemNet recovers more high frequency
than the version without long-term connections.



4. Discussions
Difference to Highway Network First, we discuss how
the memory block accomplishes the gating mechanism and
present the difference between MemNet and Highway Net-
work – a very deep CNN model using a gate unit to regulate
information flow [32].

To avoid information attenuation in very deep plain net-
works, inspired by LSTM, Highway Network introduced
the bypassing layers along with gate units, i.e.,

b = A(a) · T (a) + a · (1− T (a)), (13)

where a and b are the input and output, A and T are two
non-linear transform functions. T is the transform gate to
control how much information produced by A should be
stored to the output; and 1 − T is the carry gate to decide
how much of the input should be reserved to the output.

In MemNet, the short-term and long-term memories are
concatenated. The 1 × 1 convolutional layer adaptively
learns the weights for different memories. Compared to
Highway Network that learns specific weight for each pixel,
our gate unit learns specific weight for each feature map,
which has two advantages: (1) to reduce model parameters
and complexity; (2) to be less prone to overfitting.
Difference to DRCN There are three main differences be-
tween MemNet and DRCN [21]. The first is the design of
the basic module in network. In DRCN, the basic module
is a convolutional layer; while in MemNet, the basic mod-
ule is a memory block to achieve persistent memory. The
second is in DRCN, the weights of the basic modules (i.e.,
the convolutional layers) are shared; while in MemNet,
the weights of the memory blocks are different. The third
is there are no dense connections among the basic mod-
ules in DRCN, which results in a chain structure; while in
MemNet, there are long-term dense connections among the
memory blocks leading to the multi-path structure, which
not only helps information flow across the network, but
also encourages gradient backpropagation during training.
Benefited from the good information flow ability, MemNet
could be easily trained without the multi-supervision strat-
egy, which is imperative for training DRCN [21].
Difference to DenseNet Another related work to MemNet
is DenseNet [14], which also builds upon a densely con-
nected principle. In general, DenseNet deals with object
recognition, while MemNet is proposed for image restora-
tion. In addition, DenseNet adopts the densely connected
structure in a local way (i.e., inside a dense block), while
MemNet adopts the densely connected structure in a global
way (i.e., across the memory blocks). In Secs. 3.4 and 5.2,
we analyze and demonstrate the long-term dense connec-
tions in MemNet indeed play an important role in image
restoration tasks.

Methods MemNet NL MemNet NS MemNet
×2 37.68/0.9591 37.71/0.9592 37.78/0.9597
×3 33.96/0.9235 34.00/0.9239 34.09/0.9248
×4 31.60/0.8878 31.65/0.8880 31.74/0.8893

Table 1. Ablation study on effects of long-term and short-term con-
nections. Average PSNR/SSIMs for the scale factor ×2, ×3 and
×4 on dataset Set5. Red indicates the best performance.

(a) Image denoising

(b) Super-resolution

(c) JPEG deblocking

Figure 5. The norm of filter weights vlm vs. feature map index l.
For the curve of the mth block, the left (m× 64) elements denote
the long-term memories and the rest (Lm − m × 64) elements
denote the short-term memories. The bar diagrams illustrate the
average norm of long-term memories, short-term memories from
the first R− 1 recursions and from the last recursion, respectively.
E.g., each yellow bar is the average norm of the short-term mem-
ories from the last recursion in the recursive unit (i.e., the last 64
elements in each curve).

5. Experiments
5.1. Implementation Details
Datasets For image denoising, we follow [27] to use
300 images from the Berkeley Segmentation Dataset
(BSD) [28], known as the train and val sets, to generate
image patches as the training set. Two popular benchmarks,
a dataset with 14 common images and the BSD test set with
200 images, are used for evaluation. We generate the input
noisy patch by adding Gaussian noise with one of the three
noise levels (σ = 30, 50 and 70) to the clean patch.

For SISR, by following the experimental setting in [20],
we use a training set of 291 images where 91 images are
from Yang et al. [38] and other 200 are from BSD train set.
For testing, four benchmark datasets, Set5 [1], Set14 [39],



Dataset VDSR [20] DRCN [21] RED [27] MemNet
Depth 20 20 30 80
Filters 64 256 128 64

Parameters 665K 1, 774K 4, 131K 677K
Traing images 291 91 300 91 91 291

Multi-supervision No Yes No No Yes Yes
PSNR 33.66 33.82 33.82 33.92 33.98 34.09

Table 2. SISR comparisons with start-of-the-art networks for scale factor ×3 on Set5. Red
indicates the fewest number or best performance.

MemNet_M6

MemNet_M5

MemNet_M4

MemNet_M3

VDSR

DRCN

(sec.)

Figure 6. PSNR, complexity vs. speed.

BSD100 [28] and Urban100 [15] are used. Three scale fac-
tors are evaluated, including ×2, ×3 and ×4. The input LR
image is generated by first bicubic downsampling and then
bicubic upsampling the HR image with a certain scale.

For JPEG deblocking, the same training set for image de-
noising is used. As in [7], Classic5 and LIVE1 are adopted
as the test datasets. Two JPEG quality factors are used, i.e.,
10 and 20, and the JPEG deblocking input is generated by
compressing the image with a certain quality factor using
the MATLAB JPEG encoder.
Training Setting Following the method [27], for image
denoising, the grayscale image is used; while for SISR and
JPEG deblocking, the luminance component is fed into the
model. The input image size can be arbitrary due to the
fully convolution architecture. Considering both the train-
ing time and storage complexities, training images are split
into 31 × 31 patches with a stride of 21. The output of
MemNet is the estimated high-quality patch with the same
resolution as the input low-quality patch. We follow [34]
to do data augmentation. For each task, we train a single
model for all different levels of corruption. E.g., for image
denoising, noise augmentation is used. Images with differ-
ent noise levels are all included in the training set. Similarly,
for super-resolution and JPEG deblocking, scale and quality
augmentation are used, respectively.

We use Caffe [19] to implement two 80-layer MemNet
networks, the basic and the multi-supervised versions. In
both architectures, 6 memory blocks, each contains 6 recur-
sions, are constructed (i.e., M6R6). Specifically, in multi-
supervised MemNet, 6 predictions are generated and used
to compute the final output. α balances different regulariza-
tions, and is empirically set as α = 1/(M + 1).

The objective functions in Eqn. 4 and Eqn. 12 are opti-
mized via the mini-batch stochastic gradient descent (SGD)
with backpropagation [24]. We set the mini-batch size of
SGD to 64, momentum parameter to 0.9, and weight decay
to 10−4. All convolutional layer has 64 filters. Except the
1 × 1 convolutional layers in the gate units, the kernel size
of other convolutional layers is 3 × 3. We use the method
in [11] for weight initialization. The initial learning rate is
set to 0.1 and then divided 10 every 20 epochs. Training a
80-layer basic MemNet by 91 images [38] for SISR roughly
takes 5 days using 1 Tesla P40 GPU. Due to space constraint
and more recent baselines, we focus on SISR in Sec. 5.2,
5.4 and 5.6, while all three tasks in Sec. 5.3 and 5.5.

5.2. Ablation Study
Tab. 1 presents the ablation study on the effects of long-

term and short-term connections. Compared to MemNet,
MemNet NL removes the long-term connections (green
curves in Fig. 3) and MemNet NS removes the short-term
connections (black curves from the first R− 1 recursions to
the gate unit in Fig. 1. Connection from the last recursion
to the gate unit is reserved to avoid a broken interaction
between recursive unit and gate unit). The three networks
have the same depth (80) and filter number (64). We see
that, long-term dense connections are very important since
MemNet significantly outperforms MemNet NL. Further,
MemNet achieves better performance than MemNet NS,
which reveals the short-term connections are also useful for
image restoration but less powerful than the long-term con-
nections. The reason is that the long-term connections skip
much more layers than the short-term ones, which can carry
some mid/high frequency signals from very early layers to
latter layers as described in Sec. 3.4.

5.3. Gate Unit Analysis
We now illustrate how our gate unit affects different

kinds of memories. Inspired by [14], we adopt a weight
norm as an approximate for the dependency of the current
layer on its preceding layers, which is calculated by the cor-
responding weights from all filters w.r.t. each feature map:

vlm =
√∑64

i=1(W
gate
m (1, 1, l, i))2, l = 1, 2, ..., Lm, where

Lm is the number of the input feature maps for the m-th
gate unit, l denotes the feature map index, W gate

m stores the
weights with the size of 1 × 1 × Lm × 64, and vlm is the
weight norm of the l-th feature map for the m-th gate unit.
Basically, the larger the norm is, the stronger dependency
it has on this particular feature map. For better visualiza-
tion, we normalize the norms to the range of 0 to 1. Fig. 5
presents the norm of the filter weights {vlm}6m=1 vs. fea-
ture map index l. We have three observations: (1) Different
tasks have different norm distributions. (2) The average and
variance of the weight norms become smaller as the mem-
ory block number increases. (3) In general, the short-term
memories from the last recursion in recursive unit (the last
64 elements in each curve) contribute most than the other
two memories, and the long-term memories seem to play a
more important role in late memory blocks to recover useful
signals than the short-term memories from the first R − 1
recursions.



Dataset Noise BM3D [5] EPLL [41] PCLR [2] PGPD [37] WNNM [9] RED [27] MemNet

14 images
30 28.49/0.8204 28.35/0.8200 28.68/0.8263 28.55/0.8199 28.74/0.8273 29.17/0.8423 29.22/0.8444
50 26.08/0.7427 25.97/0.7354 26.29/0.7538 26.19/0.7442 26.32/0.7517 26.81/0.7733 26.91/0.7775
70 24.65/0.6882 24.47/0.6712 24.79/0.6997 24.71/0.6913 24.80/0.6975 25.31/0.7206 25.43/0.7260

BSD200
30 27.31/0.7755 27.38/0.7825 27.54/0.7827 27.33/0.7717 27.48/0.7807 27.95/0.8019 28.04/0.8053
50 25.06/0.6831 25.17/0.6870 25.30/0.6947 25.18/0.6841 25.26/0.6928 25.75/0.7167 25.86/0.7202
70 23.82/0.6240 23.81/0.6168 23.94/0.6336 23.89/0.6245 23.95/0.6346 24.37/0.6551 24.53/0.6608

Table 3. Benchmark image denoising results. Average PSNR/SSIMs for noise level 30, 50 and 70 on 14 images and BSD200. Red color
indicates the best performance and blue color indicates the second best performance.

Dataset Scale Bicubic SRCNN [8] VDSR [20] DRCN [21] DnCNN [40] LapSRN [23] DRRN [34] MemNet

Set5
×2 33.66/0.9299 36.66/0.9542 37.53/0.9587 37.63/0.9588 37.58/0.9590 37.52/0.959 37.74/0.9591 37.78/0.9597
×3 30.39/0.8682 32.75/0.9090 33.66/0.9213 33.82/0.9226 33.75/0.9222 −/− 34.03/0.9244 34.09/0.9248
×4 28.42/0.8104 30.48/0.8628 31.35/0.8838 31.53/0.8854 31.40/0.8845 31.54/0.885 31.68/0.8888 31.74/0.8893

Set14
×2 30.24/0.8688 32.45/0.9067 33.03/0.9124 33.04/0.9118 33.03/0.9128 33.08/0.913 33.23/0.9136 33.28/0.9142
×3 27.55/0.7742 29.30/0.8215 29.77/0.8314 29.76/0.8311 29.81/0.8321 −/− 29.96/0.8349 30.00/0.8350
×4 26.00/0.7027 27.50/0.7513 28.01/0.7674 28.02/0.7670 28.04/0.7672 28.19/0.772 28.21/0.7721 28.26/0.7723

BSD100
×2 29.56/0.8431 31.36/0.8879 31.90/0.8960 31.85/0.8942 31.90/0.8961 31.80/0.895 32.05/0.8973 32.08/0.8978
×3 27.21/0.7385 28.41/0.7863 28.82/0.7976 28.80/0.7963 28.85/0.7981 −/− 28.95/0.8004 28.96/0.8001
×4 25.96/0.6675 26.90/0.7101 27.29/0.7251 27.23/0.7233 27.29/0.7253 27.32/0.728 27.38/0.7284 27.40/0.7281

Urban100
×2 26.88/0.8403 29.50/0.8946 30.76/0.9140 30.75/0.9133 30.74/0.9139 30.41/0.910 31.23/0.9188 31.31/0.9195
×3 24.46/0.7349 26.24/0.7989 27.14/0.8279 27.15/0.8276 27.15/0.8276 −/− 27.53/0.8378 27.56/0.8376
×4 23.14/0.6577 24.52/0.7221 25.18/0.7524 25.14/0.7510 25.20/0.7521 25.21/0.756 25.44/0.7638 25.50/0.7630

Table 4. Benchmark SISR results. Average PSNR/SSIMs for scale factor ×2, ×3 and ×4 on datasets Set5, Set14, BSD100 and Urban100.

Dataset Quality JPEG ARCNN [7] TNRD [3] DnCNN [40] MemNet

Classic5 10 27.82/0.7595 29.03/0.7929 29.28/0.7992 29.40/0.8026 29.69/0.8107
20 30.12/0.8344 31.15/0.8517 31.47/0.8576 31.63/0.8610 31.90/0.8658

LIVE1 10 27.77/0.7730 28.96/0.8076 29.15/0.8111 29.19/0.8123 29.45/0.8193
20 30.07/0.8512 31.29/0.8733 31.46/0.8769 31.59/0.8802 31.83/0.8846

Table 5. Benchmark JPEG deblocking results. Average PSNR/SSIMs for quality factor 10 and 20 on datasets Classic5 and LIVE1.

5.4. Comparision with NonPersistent CNN Models
In this subsection, we compare MemNet with three

existing non-persistent CNN models, i.e., VDSR [20],
DRCN [21] and RED [27], to demonstrate the superior-
ity of our persistent memory structure. VDSR and DRCN
are two representative networks with the plain structure
and RED is representative for skip connections. Tab. 2
presents the published results of these models along with
their training details. Since the training details are differ-
ent among different work, we choose DRCN as a baseline,
which achieves good performance using the least training
images. But, unlike DRCN that widens its network to in-
crease the parameters (filter number: 256 vs. 64), we deepen
our MemNet by stacking more memory blocks (depth: 20
vs. 80). It can be seen that, using the fewest training images
(91), filter number (64) and relatively few model parameters
(667K), our basic MemNet already achieves higher PSNR
than the prior networks. Keeping the setting unchanged,
our multi-supervised MemNet further improves the perfor-
mance. With more training images (291), our MemNet sig-
nificantly outperforms the state of the arts.

Since we aim to address the long-term dependency prob-
lem in networks, we intend to make our MemNet very deep.
However, MemNet is also able to balance the model com-
plexity and accuracy. Fig. 6 presents the PSNR of different
intermediate predictions in MemNet (e.g., MemNet M3 de-
notes the prediction of the 3rd memory block) for scale ×3
on Set5, in which the colorbar indicates the inference time

(sec.) when processing a 288 × 288 image on GPU P40.
Results of VDSR [20] and DRCN [21] are cited from their
papers. RED [27] is skipped here since its high number of
parameters may reduce the contrast among other methods.
We see that our MemNet already achieve comparable re-
sult at the 3rd prediction using much fewer parameters, and
significantly outperforms the state of the arts by slightly in-
creasing model complexity.

5.5. Comparisons with StateoftheArt Models
We compare multi-supervised 80-layer MemNet with the

state of the arts in three restoration tasks, respectively.
Image Denoising Tab. 3 presents quantitative results on
two benchmarks, with results cited from [27]. For BSD200
dataset, by following the setting in RED [27], the origi-
nal image is resized to its half size. As we can see, our
MemNet achieves the best performance on all cases. It
should be noted that, for each test image, RED rotates and
mirror flips the kernels, and performs inference multiple
times. The outputs are then averaged to obtain the final
result. They claimed this strategy can lead to better perfor-
mance. However, in our MemNet, we do not perform any
post-processing. For qualitative comparisons, we use public
codes of PCLR [2], PGPD [37] and WNNM [9]. The results
are shown in Fig. 7. As we can see, our MemNet handles
Gaussian noise better than the previous state of the arts.
Super-Resolution Tab. 4 summarizes quantitative results
on four benchmarks, by citing the results of prior methods.
MemNet outperforms prior methods in almost all cases.



(PSNR/SSIM) (18.56/0.2953) (29.89/0.8678) (29.80/0.8652) (29.93/0.8702) (30.48/0.8791)

Ground Truth Noisy PCLR PGPD WNNM MemNet (ours)

(PSNR/SSIM) (11.19/0.1082) (24.67/0.6691) (24.49/0.6559) (24.50/0.6632) (25.37/0.6964)

Figure 7. Qualitative comparisons of image denoising. The first
row shows image “10” from 14-image dataset with noise level 30.
Only MemNet recovers the fold. The second row shows image
“206062” from BSD200 with noise level 70. Only MemNet cor-
rectly recovers the pillar. Please zoom in to see the details.

(PSNR/SSIM) (26.43/0.7606) (27.74/0.8194) (28.18/0.8341) (28.19/0.8349) (28.35/0.8388)

Ground Truth Bicubic SRCNN VDSR DnCNN MemNet (ours)

(PSNR/SSIM) (21.68/0.6491) (22.85/0.7249) (23.91/0.7859) (23.89/0.7838) (24.62/0.8167)

Figure 8. Qualitative comparisons of SISR. The first row shows
image “108005” from BSD100 with scale factor ×3. Only
MemNet correctly recovers the pattern. The second row shows
image “img 002” from Urban100 with scale factor ×4. MemNet
recovers sharper lines.

Since LapSRN doesn’t report the results on scale ×3, we
use the symbol ’−’ instead. Fig. 8 shows the visual compar-
isons for SISR. SRCNN [8], VDSR [20] and DnCNN [40]
are compared using their public codes. MemNet recovers
relatively sharper edges, while others have blurry results.
JPEG Deblocking Tab. 5 shows the JPEG deblocking re-
sults on Classic5 and LIVE1, by citing the results from [40].
Our network significantly outperforms the other methods,
and deeper networks do improve the performance compared
to the shallow one, e.g., ARCNN. Fig. 9 shows the JPEG
deblocking results of these three methods, which are gen-
erated by their corresponding public codes. As it can be
seen, MemNet effectively removes the blocking artifact and
recovers higher quality images than the previous methods.

(PSNR/SSIM) (25.79/0.7621) (26.92/0.7971) (27.24/0.8104) (27.59/0.8161) (28.15/0.8353)

Ground Truth JPEG ARCNN TNRD DnCNN MemNet (ours)

(PSNR/SSIM) (28.29/0.7636) (29.63/0.7977) (29.76/0.8018) (29.82/0.8008) (30.13/0.8088)

Figure 9. Qualitative comparisons of JPEG deblocking. The first
row shows image “barbara” from Classic5 with quality factor 10.
MemNet recovers the lines, while others give blurry results. The
second row shows image “lighthouse” from LIVE1 with quality
factor 10. MemNet accurately removes the blocking artifact.

Network M4R6 M6R6 M6R8 M10R10
Depth 54 80 104 212

PSNR (dB) 34.05 34.09 34.16 34.23
Table 6. Comparison on different network depths.

5.6. Comparison on Different Network Depths
Finally, we present the comparison on different network

depths, which is caused by stacking different numbers of
memory blocks or recursions. Specifically, we test four net-
work structures: M4R6, M6R6, M6R8 and M10R10, which
have the depth 54, 80, 104 and 212, respectively. Tab. 6
shows the SISR performance of these networks on Set5 with
scale factor ×3. It verifies deeper is still better and the pro-
posed deepest network M10R10 achieves 34.23 dB, with
the improvement of 0.14 dB compared to M6R6.

6. Conclusions

In this paper, a very deep end-to-end persistent mem-
ory network (MemNet) is proposed for image restoration,
where a memory block accomplishes the gating mechanism
for tackling the long-term dependency problem in the previ-
ous CNN architectures. In each memory block, a recursive
unit is adopted to learn multi-level representations as the
short-term memory. Both the short-term memory from the
recursive unit and the long-term memories from the previ-
ous memory blocks are sent to a gate unit, which adaptively
learns different weights for different memories. We use the
same MemNet structure to handle image denoising, super-
resolution and JPEG deblocking simultaneously. Compre-
hensive benchmark evaluations well demonstrate the supe-
riority of our MemNet over the state of the arts.



References
[1] C. M. Bevilacqua, A. Roumy, and M. Morel. Low-

complexity single-image super-resolution based on nonneg-
ative neighbor embedding. In BMVC, 2012.

[2] F. Chen, L. Zhang, and H. Yu. External patch prior guided
internal clustering for image denoising. In ICCV, 2015.

[3] Y. Chen and T. Pock. Trainable nonlinear reaction diffusion:
A flexible framework for fast and effective image restoration.
IEEE Trans. on PAMI, 2016.

[4] J. Cichon and W. Gan. Branch-specific dendritic ca2+ spikes
cause persistent synaptic plasticity. Nature, 520(7546):180–
185, 2015.

[5] K. Dabov, A. Foi, V. Katkovnik, and K. O. Egiazarian. Im-
age denoising by sparse 3-D transform-domain collaborative
filtering. IEEE Trans. on IP, 16(8):2080–2095, 2007.

[6] P. Dayan and L. F. Abbott. Theoretical neuroscience. Cam-
bridge, MA: MIT Press, 2001.

[7] C. Dong, Y. Deng, C. C. Loy, and X. Tang. Compression ar-
tifacts reduction by a deep convolutional network. In ICCV,
2015.

[8] C. Dong, C. Loy, K. He, and X. Tang. Image super-resolution
using deep convolutional networks. IEEE Trans. on PAMI,
38(2):295–307, 2016.

[9] S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear
norm minimization with application to image denoising. In
CVPR, 2014.

[10] J. Guo and H. Chao. Building dual-domain representations
for compression artifacts reduction. In ECCV, 2016.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In ICCV, 2015.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. In ECCV, 2016.

[14] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

[15] J.-B. Huang, A. Singh, and N. Ahuja. Single image super-
resolution from transformed self-exemplars. In CVPR, 2015.

[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015.

[17] V. Jain and H. S. Seung. Natural image denoising with con-
volutional networks. In NIPS, 2008.

[18] J. Jancsary, S. Nowozin, and C. Rother. Loss-specific train-
ing of non-parametric image restoration models: A new state
of the art. In ECCV, 2012.

[19] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. In ACM MM, 2014.

[20] J. Kim, J. K. Lee, and K. M. Lee. Accurate image super-
resolution using very deep convolutional networks. In CVPR,
2016.

[21] J. Kim, J. K. Lee, and K. M. Lee. Deeply-recursive convolu-
tional network for image super-resolution. In CVPR, 2016.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012.

[23] W. Lai, J. Huang, N. Ahuja, and M. Yang. Deep laplacian
pyramid networks for fast and accurate super-resolution. In
CVPR, 2017.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. In Proceed-
ings of the IEEE, 1998.

[25] M. Liang and X. Hu. Recurrent convolutional neural network
for object recognition. In CVPR, 2015.

[26] X. Liu, X. Wu, J. Zhou, and D. Zhao. Data-driven
sparsity-based restoration of jpeg-compressed images in dual
transform-pixel domain. In CVPR, 2015.

[27] X. Mao, C. Shen, and Y. Yang. Image restoration using very
deep convolutional encoder-decoder networks with symmet-
ric skip connections. In NIPS, 2016.

[28] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In ICCV, 2001.

[29] P. Milanfar. A tour of modern image filtering: new insights
and methods, both practical and theoretical. IEEE Signal
Processing Magazine, 30(1):106–128, 2013.

[30] V. Nair and G. Hinton. Rectified linear units improve re-
stricted boltzmann machines. In ICML, 2010.

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
and et al. Imagenet large scale visual recognition challenge.
IJCV, 115(3):211–252, 2015.

[32] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway
networks. In NIPS, 2015.

[33] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, and S. Reed. Going
deeper with convolutions. In CVPR, 2015.

[34] Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep
recursive residual network. In CVPR, 2017.

[35] Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S.
Huang. D3: Deep dual-domain based fast restoration of jpeg-
compressed images. In CVPR, 2016.

[36] Z. Wang, D. Liu, J. Yang, W. Han, and T. S. Huang. Deep
networks for image super-resolution with sparse prior. In
ICCV, 2015.

[37] J. Xu, L. Zhang, W. Zuo, D. Zhang, and X. Feng. Patch
group based nonlocal self-similarity prior learning for image
denoising. In ICCV, 2015.

[38] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-
resolution via sparse representation. IEEE Trans. on IP,
19(11):2861–2873, 2010.

[39] R. Zeyde, M. Elad, and M. Protter. On single image scale-
up using sparse-representations. Curves and Surfaces, pages
711–730, 2012.

[40] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Be-
yond a gaussian denoiser: Residual learning of deep CNN
for image denoising. IEEE Trans. on IP, 2017.

[41] D. Zoran and Y. Weiss. From learning models of natural
image patches to whole image restoration. In ICCV, 2011.


