Session 3:

Digital Face Manipulation Detection

Yaojie Liu and Xiaoming Liu

Outline

- Introduction of digital attacks
 - -- Problem, Facial manipulation types, Challenges
- Benchmark databases
- Face manipulation detection methods
 - -- Dynamic methods, Static methods
- Future Direction

Outline

- Introduction of digital attacks
 - -- Problem, Facial manipulation types, Challenges
- Benchmark databases
- Face manipulation detection methods
 - -- Dynamic methods, Static methods
- Future Direction

Problem

- Manipulation of faces has become ubiquitous, and raise concerns especially in social media content.
 - -- Advances in deep learning enable a rapid dissemination of "fake news".

Deepfake (by Facebook)

Fake News (by The Telegraph)

Face Attacks

Physical spoof attack

Genuine face

Adversarial attack

New Software

Apps are released to public to create their own fake images and videos, e.g., FaceApp and ZAO.

FaceAPP

FaceAPP: <u>https://faceapp.com/app</u>

MICHIGAN STATE UNIVERSITY

ZAO: https://apps.apple.com/cn/app/zao/id1465199127

ZAO

Facial Manipulation Types

(b) Expression swap

Dang et al. On the Detection of Digital Face Manipulation. In CVPR, 2020.

Facial Manipulation Types

(c) Attribute manipulation

(d) Entire Face synthesis*

* <u>https://www.thispersondoesnotexist.com/</u>

Dang et al. On the Detection of Digital Face Manipulation. In CVPR, 2020.

Facial Manipulation Types

Subject #1

Subject #2

(f) Morphed faces

(e) Photoshopped faces

Wang et al. Detecting Photoshopped Faces by Scripting Photoshop. In ICCV, 2019. Raja et al. Morphing Attack Detection - Database, Evaluation Platform and Benchmarking. Arxiv, 2020.

Human Study on Face Forgery Detection

- 204 participants.
- On different video qualities.

Andreas et al. Faceforensics++: Learning to detect manipulated facial images. In ICCV, 2019.

Human Study on Face Forgery Detection

- 10 participants.
- Forgery detection and localization of the manipulated regions.

				Image	GT	Network	Human #1	Human #2
	Human	Network	Deal	63				
ACC	68.18%	97.27%	Keal	13/				
AUC	81.71%	99.29%						
EER	30.00%	3.75%	Entire	PC				
TDR (0.01%)	42.50%	85.00%	Гаке	-				
Localization Accuracy	58.20%	90.93%	Partial Fake	E.E	3.5			
					ê . 🍎 🐂	*		

Dang et al. On the Detection of Digital Face Manipulation. In CVPR, 2020.

Challenges

- The lack of **diverse** training data is a bottleneck for training deep networks for manipulation detection.
- Most works are trained for known face manipulation techniques. How to capture more intrinsic forgery evidence to improve the generalizability?
- Less attention has been paid to the identification of manipulated faces in video by taking advantage of the **temporal** information.
- Besides manipulation detection, there are few methods focusing on **localizing** the manipulated region.

Outline

- Introduction of digital attacks
 - -- Problem, Facial manipulation types, Challenges
- Benchmark databases
- Face manipulation detection methods
 - -- Dynamic methods, Static methods
- Future Direction

Databases

Database	Number of real samples (videos)	Number of fake samples (videos)	Fake generation method	Source of real data	Year
UADFV	49	49	FaceSwap	Youtube	2019
FaceForensics++	1,000	6,000	FaceSwap, Face2Face, Neural textures, Deepfakes	Youtube, actors	2019
Deepfake Detection Challenge (DFDC)	19,154	100,000	FaceSwap, autoencoder, GAN, Neural talking heads	Actors	2019
Deepfake TIMIT	430	640	FaceSwap GAN	VidTIMIT	2019
Diverse Fake Face Dataset (DFFD)	58,703 images	240,336 images	FaceSwap, Deepfake, GANs	FFHQ, CelebA	2019
Celeb-DF	890	5,639	Deepfake	Youtube	2020
Deepforensics 1.0	50,000	10,000	FaceSwap	Actors	2020
Deep Fakes Dataset (http://cs.binghamton.edu/~ncilsal2/ DeepFakesDataset/)	14	2	Deepfake	various sources	2020

Outline

- Introduction of digital attacks
 - -- Problem, Facial manipulation types, Challenges
- Benchmark databases
- Face manipulation detection methods
 - -- Dynamic methods, Static methods
- Future Direction

Dynamic Methods

- Inconsistent motion (head or lip movement detection, optical flow)
 - Exposing deep fakes using inconsistent head poses
 - Speaker inconsistency detection in tampered video
 - Deepfake video detection through optical flow-based CNN
- Feature aggregation
 - Deepfake video detection using recurrent neural networks
 - Recurrent strategies for face manipulation detection in videos
 - Deepfake detection with automatic face weighting

Dynamic Methods ---- Inconsistent Motion

Pro:

• Tracing the inconsistent motion (e.g., eye, lips and head) makes the detection explainable.

Con:

May fail when dealing with extremely realistic synthetic images and videos.

Exposing Deep Fakes Using Inconsistent Head Poses

- Splicing synthetic face regions in Deepfake introduce errors, which can be revealed when 3D head poses are estimated.
- One SVM classifier is developed based on this inconsistent cue.

Xin et al. Exposing deep fakes using inconsistent head poses. In ICASSP, 2019.

Exposing Deep Fakes Using Inconsistent Head Poses

Distribution of the cosine distance between head orientation vectors for fake and real face images.

ROC of the SVM classification on DeepFake and DARPA datasets.

Xin et al. Exposing deep fakes using inconsistent head poses. In ICASSP, 2019.

Speaker Inconsistency Detection in Tampered Video

- Audio-visual tampering in a video of talking person.
- Combining mel-frequency cepstral coefficients (audio features) and distances between mouth landmarks (visual features) for detecting the inconsistencies between video and audio tracks.

Korshunov et al. Speaker inconsistency detection in tampered video. In EUSIPCO, 2018.

Deepfake Video Detection via Optical Flow based CNN

• Using inter-frame dissimilarities as clue for forgery detection.

Irene et al. Deepfake video detection through optical flow based CNN. In ICCVW, 2019.

Dynamic Methods

- Inconsistent motion (head or lip movement detection, optical flow)
 - Exposing deep fakes using inconsistent head poses
 - Speaker inconsistency detection in tampered video
 - Deepfake video detection through optical flow-based CNN
- Feature aggregation
 - Deepfake video detection using recurrent neural networks
 - Recurrent strategies for face manipulation detection in videos
 - Deepfake detection with automatic face weighting

Dynamic Methods ---- Feature Aggregation

- Use CNN to extract frame-level features
- Use RNN to check the consistency among all frame-level features

Pro:

• Spatial-aware and temporal-aware

Con:

• Fake feature can be immersed during long aggregation

Deepfake Video Detection Using Recurrent Neural Networks

• What makes deepfakes possible is finding a way to force both latent faces to be encoded in the same space.

 When we want to do a new faceswapp, we encode the input face and decode it using the target face decoder.

David et al. Deepfake video detection using recurrent neural networks. In AVSS, 2018. MICHIGAN STATE UNIVERSITY 25

Deepfake Video Detection Using Recurrent Neural Networks

- CNN obtains a set of features for each frame.
- Concatenate the features of consecutive frames and pass them to LSTM for analysis.

David et al. Deepfake video detection using recurrent neural networks. In AVSS, 2018.

Deepfake Video Detection Using Recurrent Neural Networks

• Deepfake manipulation detection results

Model	Training acc. (%)	Validation acc. (%)	Test acc. (%)
Conv-LSTM, 20 frames	99.5	96.9	96.7
Conv-LSTM, 40 frames	99.3	97.1	97.1
Conv-LSTM, 80 frames	99.7	97.2	97.1

David et al. Deepfake video detection using recurrent neural networks. In AVSS, 2018.

Recurrent Strategies for Face Manipulation Detection in Videos

- **Temporal discrepancies** are expected to occur in images, since manipulations are performed on a frame-by-frame basis.
- Low-level artifacts caused by manipulations on faces are expected to further \bullet manifest themselves as temporal artifacts with inconsistent features across frames.

Sabir et al. Recurrent convolutional strategies for face manipulation detection in videos. In CVPRW, 2019. MICHIGAN STATE UNIVERSITY 28

Recurrent Strategies for Face Manipulation Detection in Videos

Accuracy for manipulation detection on all manipulation types. The FF++ is the baseline and DenseNet with alignment and bidirectional recurrent network performs the best.

Manipulation	Frames	FF++	ResNet50	DenseNet	ResNet50 + Alignment	DenseNet + Alignment	ResNet50 + Alignment + BiDir	DenseNet + Alignment + BiDir
Deepfake	1	93.46	94.8	94.5	96.1	96.4	-	-
Deeplake	5	-	94.6	94.7	96.0	96.7	94.9	96.9
Eace2Eace	1	89.8	90.25	90.65	89.31	87.18	-	-
Face2Face	5	-	90.25	89.8	92.4	93.21	93.05	94.35
E c c C	1	92.72	91.34	91.04	93.85	96.1	-	-
FaceSwap	5	-	90.95	93.11	95.07	95.8	95.4	96.3

Sabir et al. Recurrent convolutional strategies for face manipulation detection in videos. In CVPRW, 2019. MICHIGAN STATE UNIVERSITY

Deepfakes Detection with Automatic Face Weighting

The network automatically selects the most reliable frames to detect these manipulations with a weighting mechanism combined with a Gated Recurrent Unit that provides a probability of a video being real or fake.

Montserrat et al. Deepfakes detection with automatic face weighting. In CVPRW, 2020.

Deepfakes Detection with Automatic Face Weighting

Add a boosting network for more robust predictions.

Montserrat et al. Deepfakes detection with automatic face weighting. In CVPRW, 2020.

Deepfakes Detection with Automatic Face Weighting

• Accuracy of the presented method and previous works.

Method	Validation	Test
Conv-LSTM	66.05%	70.78%
EfficientNet-b5	79.25%	80.62%
Xception	78.42%	80.14%
Ours	92.61%	91.88%

• The log-likelihood error of our method with and without boosting network and test augmentation.

Method	Log-likelihood
Baseline	0.364
+ Boosting Network	0.341
+ Test Augmentation	0.321

Montserrat et al. Deepfakes detection with automatic face weighting. In CVPRW, 2020.

Outline

- Introduction of digital attacks
 - -- Problem, Facial manipulation types, Challenges
- Benchmark databases
- Face manipulation detection methods
 - -- Dynamic methods, Static methods
- Future Direction

Static Methods

- CNN binary classification only
 - Two-stream neural networks for tampered face detection
 - Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints
- Joint binary classification and manipulated region localization
 - Multi-task Learning For Detecting and Segmenting Manipulated Facial Images and Videos (segmentation)
 - Face X-ray for more general face forgery detection (face X-ray)
 - On the Detection of Digital Face Manipulation (attention)

Two-Stream Neural Networks for Tampered Face Detection

- The classification stream is trained on tampered and authentic images and serves as a tampered face classifier.
- The patch triplet stream captures low-level camera characteristics and local noise \bullet residuals.

Zhou et al. Two-stream neural networks for tampered face detection. In CVPRW, 2017. MICHIGAN STATE UNIVERSITY

Two-Stream Neural Networks for Tampered Face Detection

- The triplet network is designed to determine whether two patches come from the same image.
- Leveraging clues hidden in the in-camera processing for tampered face detection.

Zhou et al. Two-stream neural networks for tampered face detection. In CVPRW, 2017.

Two-Stream Neural Networks for Tampered Face Detection

- ROC comparison between two-stream network and baselines.
- AUC for different methods.

Methods	AUC
IDC	0.543
CFA Pattern	0.618
Steganalysis features+SVM	0.794
Face classification stream	0.854
Patch triplet stream	0.875
Two-stream network	0.927

Zhou et al. Two-stream neural networks for tampered face detection. In CVPRW, 2017.

Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints

- Learning GAN fingerprints towards image attribution and using them to classify an image as real or GAN-generated.
- For GAN-generated images, we further identify their sources. \bullet

Yu et al. Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints. In ICCV, 2019. MICHIGAN STATE UNIVERSITY

Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints

- We train an attribution classifier that can predict the source of an image: real or from a GAN model.
- We implicitly represent image fingerprints as the final classifier features and represent GAN model fingerprints as the corresponding classifier parameters.
- Fingerprint visualization module by an AutoEncoder reconstruction network. •

Yu et al. Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints. In ICCV, 2019. MICHIGAN STATE UNIVERSITY

Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints

- Classification results on real, ProGAN, SNGAN, GramerGAN, and MMDGAN data.
- Visualization of model and image fingerprint samples.

Metric	Method	CalebA	LSUN	
	kNN	28.00	36.30	
Accuracy	Eigenface	53.28	-	
Accuracy	PRNU	86.61	67.84	
	Fingerprint	99.43	98.58	
ED ratio	Inception	2.36	5.27	
	Fingerprint	CalebA 28.00 53.28 86.61 99.43 2.36 454.76	226.59	

CelebA

Model fingerprints

ProGAN1 ProGAN2 ProGAN3 ProGAN4

Yu et al. Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints. In ICCV, 2019.

Static Methods

- CNN binary classification only
 - Two-stream neural networks for tampered face detection
 - Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints
- Joint binary classification and manipulated region localization
 - Multi-task Learning For Detecting and Segmenting Manipulated Facial Images and Videos (segmentation)
 - Face X-ray for more general face forgery detection (face X-ray)
 - On the Detection of Digital Face Manipulation (attention)

Multi-task Learning For Detecting and Segmenting Manipulated Facial Images and Videos

- A multi-task learning approach for simultaneously performing classification and segmentation of manipulated facial images.
- The information gained from classification, segmentation and reconstruction is shared among them, thereby improving the overall performance.

Neguyen et al. Multi-task Learning For Detecting and Segmenting Manipulated Facial Images and Videos. In BTAS, 2019.

Multi-task Learning For Detecting and Segmenting Manipulated Facial Images and Videos

- Classification and segmentation on FaceForensics++ datasets.
- Proposed method without segmentation branch (No seg), without reconstruction branch (No recon), complete proposed method (Proposed all).

Method	Classif	Segmentation		
	Accuracy (%) EER (%)		Accuracy (%)	
FT_Res	82.30	14.53	-	
FT	88.43	11.60	-	
No_seg	93.63	7.20	-	
No_recon	93.40	7.07	89.21	
Proposed_all	92.77	8.18	90.27	

Neguyen et al. Multi-task Learning For Detecting and Segmenting Manipulated Facial Images and Videos. In BTAS, 2019. MICHIGAN STATE UNIVERSITY

- Most existing manipulation methods share a common step: blending the altered face into a background image.
- Face X-ray reveals whether the input image can be decomposed into the blending of two images from different sources.

Li et al. Face X-ray for more general face forgery detection. In CVPR, 2020.

• Training data generation from real images.

B: face X-ray

 $I_M = M \odot I_F + (1 - M) \odot I_B$

 $B_{i,j} = 4 \cdot M_{i,j} \cdot (1 - M_{i,j})$

MICHIGAN STATE UNIVERSITY

(1)

(2)

- HRNet predicts Face X-rays which is then used to classify the image as fake or real.
- Loss functions:

$$L = \lambda L_b + L_c$$

• Cross-entropy loss measures the accuracy of the predicted X-rays.

$$L_b = -\sum_{\{I,B\}\in D} (B_{i,j}\log(\hat{B}_{i,j} + (1 - B_{i,j})\log(1 - \hat{B}_{i,j}))$$

• For classification, the loss is

$$L_c = -\sum_{\{I,c\}\in D} (clog(\hat{c}) + (1-c) \mathrm{log}(1-\hat{c})$$

Li et al. Face X-ray for more general face forgery detection. In CVPR, 2020.

- Results on unseen datasets.
- Without using images from facial manipulation methods, already outperforms the baseline (Xception)

Model	Training dataset	Test dataset									
Widdei			DFD			DFDC		(Celeb-DF	7	
		AUC	AP	EER	AUC	AP	EER	AUC	AP	EER	
Xception	FF++	87.86	78.82	21.49	48.98	50.83	50.45	36.19	50.07	59.64	
Face X-ray	BI	93.47	87.89	12.72	71.15	73.52	32.62	74.76	68.99	31.16	
Face X-ray	FF++ and BI	95.40	93.34	8.37	80.92	72.65	27.54	80.58	73.33	26.70	

Li et al. Face X-ray for more general face forgery detection. In CVPR, 2020.

Visual results on various facial manipulation samples. \bullet

Li et al. Face X-ray for more general face forgery detection. In CVPR, 2020. MICHIGAN STATE UNIVERSITY

On the Detection of Digital Face Manipulation

Dang et al. On the Detection of Digital Face Manipulation. In CVPR, 2020.

Proposed Method

Dang et al. On the Detection of Digital Face Manipulation. In CVPR, 2020. MICHIGAN STATE UNIVERSITY

Loss Functions

• Supervised learning

 $\mathcal{L}_{map} = ||\mathbf{M}_{att} - \mathbf{M}_{gt}||_1$

• Weakly supervised learning

$$\mathcal{L}_{\text{map}} = \begin{cases} |\text{Sigmoid}(\mathbf{M}_{att}) - 0|, & \text{if real} \\ |\max(\text{Sigmoid}(\mathbf{M}_{att})) - 0.75|. & \text{if fake} \end{cases}$$

• Unsupervised learning

Without any map supervision when λ set to 0.

Dang et al. On the Detection of Digital Face Manipulation. In CVPR, 2020.

DFFD ---- comparison

Diverse Fake Face Dataset (DFFD)

Datasat	Voor	# Still images		# Video clips		# Fake types				Pose
Dataset	Teal	Real	Fake	Real	Fake	Id. swap	Exp. swap	Attr. mani.	Entire syn.	variation
Zhou <i>et al.</i> [1]	2018	2,010	2,010	-	-	2	-	-	-	Unknown
Yang <i>et al.</i> [2]	2018	241	252	49	49	1	-	-	-	Unknown
Deepfake [3]	2018	-	-	-	620	1	-	-	-	Unknown
FaceForensics++ [4]	2019	-	-	1,000	3,000	2	1	-	-	$[-30^{\circ}, 30^{\circ}]$
FakeSpotter [5]	2019	6,000	5,000	-	-	-	-	-	2	Unknown
DFFD (our)	2019	58,703	240,336	1,000	3,000	2	1	28 + 40	2	$[-90^\circ,90^\circ]$

[1] Peng Zhou, Xintong Han, Vlad I Morariu, and Larry S Davis. Two-stream neural networks for tampered face detection. CVPRW 2017

[2] Xin Yang, Yuezun Li, and Siwei Lyu. Exposing deep fakesusing inconsistent head poses. ICASSP 2019

[3] Pavel Korshunov and S ebastien Marcel. DeepFakes: a newthreat to face recognition? assessment and detection. arXiv:1812.08685

[4] Andreas R'ossler, Davide Cozzolino, Luisa Verdoliva, Chris-tian Riess, Justus Thies, and Matthias Nießner. FaceForen-sics++:

Learning to detect manipulated facial images. ICCV 2019

[5] Run Wang, Lei Ma, Felix Juefei-Xu, Xiaofei Xie, Jian Wang, and Yang Liu. FakeSpotter: A simple baseline for spottingAI-synthesized fake faces. arXiv:1909.06122

Experimental Results ---- ablation study

Map Supervision	AUC	EER	$TDR_{0.01\%}$	TDR _{0.1%}	PBCA
Xception	99.61	2.88	77.42	85.26	_
+ Reg., unsup.	99.76	2.16	77.07	89.70	12.89
+ Reg., weak sup.	99.66	2.57	46.57	75.20	30.99
+ Reg., <i>sup</i> .	99.64	2.23	83.83	90.78	88.44
+ Reg., <i>sup.</i> - map	99.69	2.73	48.54	72.94	88.44
+ MAM, unsup.	99.55	3.01	58.55	77.95	36.66
+ MAM, weak sup.	99.68	2.64	72.47	82.74	69.49
+ MAM, sup.	99.26	3.80	77.72	86.43	85.93
+ MAM, sup map	98.75	6.24	58.25	70.34	85.93

Network	AUC	EER	TDR _{0.01%}	$TDR_{0.1\%}$	PBCA
Xception	99.61	2.88	77.42	85.26	-
Xception + Reg.	99.64	2.23	83.83	90.78	88.44
Xception + MAM	99.26	3.80	77.72	86.43	85.93
VGG16	96.95	8.43	0.00	51.14	-
VGG16 + Reg.	99.46	3.40	44.16	61.97	91.29
VGG16 + MAM	99.67	2.66	75.89	87.25	86.74

Our attention layer in two backbone networks

Ablation for benefit of the attention map, with various combinations of map generation methods and supervisions.

Experimental Results ---- forgery detection

Forgery detection ROCs of the XceptionNet

Binary classification accuracy for different fake types

Experimental Results ---- forgery detection

Methods	Training data	UADFV [3]	Celeb-DF [8]		
Two-stream [1]	Private data	85.1	55.7		
Meso4 [2]	Private data	84.3	53.6		
MesoInception4 [2]	I IIvate data	82.1	49.6		
HeadPose [3]	UADFV	89.0	54.8		
FWA [4]	UADFV	97.4	53.8		
VA-MLP [5]	Private data	70.2	48.8		
VA-LogReg [5]	I IIvate data	54.0	46.9		
Multi-task [6]	FF	65.8	36.5		
Xception-FF++ [7]	FF++	80.4	38.7		
Xception	DFFD	75.6	63.9		
Xception	UADFV	96.8	52.2		
Xception	UADFV, DFFD	97.5	67.6		
Xception+Reg.	DFFD	84.2	64.4		
Xception+Reg.	UADFV	98.4	57.1		
Xception+Reg.	UADFV, DFFD	98.4	71.2		

AUC (%) on UADFV and Celeb-DF

[1] Zhou et al. Two-stream neural networks for tampered face detection. CVPRW 2017 [2] Afchar et al. MesoNet: a compact facial video forgery detection network. WIFS 2018 [3] Yang et al. Exposing deep fakes using inconsistent head poses. ICASSP 2019 [4] Li et al. Exposing deepfake videos by detecting face warping artifacts. CVPRW 2019 [5] Matern et al. Exploiting visual artifacts to expose deepfakes and face manipulations. WACVW 2019 [6] Nguyen et al. Multi-task learning for detecting and segmenting manipulated facial images and videos. **BTAS 2019**

[7] R'össler et al. FaceForen-sics++: Learning to detect manipulated facial images. ICCV 2019
[8] Li et al. Celeb-DF: A new dataset for deepfake forensics. CVPR 2020

Experimental Results ---- manipulation localization

Gro

Metrics for evaluating the attention maps: IoU, Cosine Similarity, Pixel-wise Binary Classification Accuracy (PBCA) and proposed Intersection Non-Containment (IINC).

$$IINC = \frac{1}{3 - |\mathbf{U}|} * \begin{cases} 0 & \text{if } \overline{\mathbf{M}_{gt}} = 0 \text{ and } \overline{\mathbf{M}_{att}} = 0\\ 1 & \text{if } \overline{\mathbf{M}_{gt}} = 0 \text{ xor } \overline{\mathbf{M}_{att}} = 0\\ (2 - \frac{|\mathbf{I}|}{|\mathbf{M}_{att}|} - \frac{|\mathbf{I}|}{|\mathbf{M}_{gt}|}) & \text{otherwise,} \end{cases}$$

I and U are the intersection and union between M_{gt} and M_{att} .

	а	b	c	d	e	f	g
stimated Map							
ound Truth Map							
Cosine	-	-	-	1	0.43	0.33	0.29
IOU	-	0.00	0.00	0.00	0.33	0.25	0.50
PBCA	1.00	0.75	0.50	0.25	0.50	0.50	0.50
IINC	0.00	0.36	0.40	0.89	0.30	0.33	0.25

Data	IINC \downarrow	IoU↑	Cosine Similarity \downarrow	PBCA↑
All Real	0.015	—	—	0.998
All Fake	0.147	0.715	0.192	0.828
Partial	0.311	0.401	0.429	0.786
Complete	0.077	0.847	0.095	0.847
All	0.126	-	_	0.855

Evaluating manipulation localization with 4 metrics

Experimental Results ---- manipulation localization

Source image			631				63	25)	0.00	91	CO	6.0	0:0	20	00
Manipulated image				E,	E	RE	Z	(ES)	10	6.8	CE)	(35)	1.0	P	20
Ground-truth manipulated mask								50		5		tur i	165 F.	()={()	(j. j.)
Estimated attention map							-	3	à	\$					
IINC score	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.34	0.25	0.36	0.61	0.40	0.44	0.37	0.40
PBCA score	1.00	1.00 (a) Real	1.00	1.00 (b) 1	1.00 Entire synt	1.00 hesis	0.96 (c) Attr	0.66 ibute manij	0.73 pulation	0.86 (d)	0.66 Expression	0.47 i swap	0.84 (e)	0.68 Identity sv	0.22 wap

Outline

- Introduction of digital attacks
 - -- Problem, Facial manipulation types, Challenges
- Benchmark databases
- Face manipulation detection methods
 - -- Dynamic methods, Static methods
- Future Directions

Future Directions

- Facial manipulation techniques are continuously improving. More research on generalization ability of forgery detection against **unseen** manipulation types.
- Challenging when performed in uncontrolled scenarios. Fake imagery on social network are usually suffering from large variations in compression, resizing, noise, etc.
- Fusion of other **modalities** such as text or audio can be valuable to improve the detectors.

