Session II Face Anti-Spoofing Generalization

Host: Yaojie Liu

Training-Testing Difference

The testing scenarios are different with the training phase.

- Environment (Lighting, Indoor/outdoor, etc.)
- Camera/Image quality
- Subjects (Age, Race, etc.)
- Spoof types

Training-Testing Difference

The testing scenarios are different with the training phase.

- Environment (Lighting, Indoor/outdoor, etc.)
- Camera/Image quality
- Subjects (Age, Race, etc.)

Cross-database Domain Adaption

• Spoof types

Training-Testing Difference

The testing scenarios are different with the training phase.

- Environment (Lighting, Indoor/outdoor, etc.)
- Camera/Image quality
- Subjects (Age, Race, etc.)
- Spoof types Unknown Spoof Detection

Outline

- Cross-database domain adaption
- Unknown attack detection
- Testing protocols & evaluation metrics

Cross-database Domain Adaption

• Enforce features to be domain-invariant

- Domain adaption [1,2]
- Metric learning [3,5,6]
- Meta learning [7,8]

- 1. Learning Generalizable and Identity-Discriminative Representations for Face Anti-Spoofing, TIFS, 2018
- 2. Unsupervised Domain Adaptation for Face Anti-Spoofing, TIFS 2018
- 3. Multi-adversarial Discriminative Deep Domain Generalization, CVPR, 2019
- 4. Domain Adaptation in Multi-Channel Autoencoder based Features for Robust Face Anti-Spoofing, ICB 2019
- 5. Improving Cross-database Face Presentation Attack Detection via Adversarial Domain Adaptation, ICB 2019
- 6. Single-Side Domain Generalization for Face Anti-Spoofing, CVPR 2020
- 7. Regularized Fine-grained Meta Face Anti-spoofing, AAAI 2020
- 8. Learning Meta Model for Zero- and Few-shot Face Anti-spoofing, AAAI 2020

Learning Generalizable and Identity-Discriminative Representations for Face Anti-Spoofing

- Learn face anti-spoofing and face recognition at the same time
- Apply a Fast Domain Adaption (FDA) to remove the bias of different domain
- Share the weights of face anti-spoofing and face recognition

1. Li et. al., Learning Generalizable and Identity-Discriminative Representations for Face Anti-Spoofing, TIFS, 2018

MICHIGAN STATE UNIVERSITY

Learning Generalizable and Identity-Discriminative Representations for Face Anti-Spoofing

- Fast Domain Adaption (FDA)
 - Style transfer network

MICHIGAN STATE UNIVERSITY

• Content loss + Style (domain) loss

$$\mathcal{L}_{ ext{content}} = rac{1}{C_j H_j W_j} || arphi_j(y) - arphi_j(x) ||_2^2$$

$$\mathcal{L}_{\text{domain}} = \frac{1}{C_j H_j W_j} ||G_j(y) - G_j(y_d)||_F^2$$

$$\hat{y} = \operatorname*{arg\,min}_{P} (\lambda_c \mathcal{L}_{ ext{content}}(y, x) + \lambda_s \mathcal{L}_{ ext{domain}}(y, y_d))$$

1. Li et. al., Learning Generalizable and Identity-Discriminative Representations for Face Anti-Spoofing, TIFS, 2018

Metric learning

- Adversarial learning
 - learn target features such that discriminator cannot correctly predict the domain
 - remove unrelated features
- Triplet loss
 - learn target features such that live samples from different domains are similar
 - find shared features

- 2. Improving Cross-database Face Presentation Attack Detection via Adversarial Domain Adaptation, ICB 2019
- 3. Single-Side Domain Generalization for Face Anti-Spoofing, CVPR 2020

^{1.} Multi-adversarial Discriminative Deep Domain Generalization, CVPR, 2019

Improving Cross-database Face Presentation Attack Detection via Adversarial Domain Adaptation

- Pretrain a source encoder/decoder
- Classify with k-NN classifier

MICHIGAN STATE UNIVERSITY

1. Wang et. al., Improving Cross-database Face Presentation Attack Detection via Adversarial Domain Adaptation, ICB, 2019

Multi-adversarial Deep Domain Generalization for Face Presentation Attack Detection

- Feature generator
 - extract features for face anti-spoofing
 - adversarial-trained to remove domain information
- Depth estimation
 - improve the discriminativeness
- Dual-force triplet mining
 - enforce a smaller intra-class distance
 - enforce a larger inter-class distance
 - cross domain

MICHIGAN STATE UNIVERSITY

1. Shao et. al., Multi-adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection, CVPR, 2019

Multi-adversarial Deep Domain Generalization for Face Presentation Attack Detection

- M1, M2, M3: domain specified features
- G: generalized features

MICHIGAN STATE UNIVERSITY

• G and D1, D2, D3 compete

1. Shao et. al., Multi-adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection, CVPR, 2019

Single-Side Domain Generalization for Face Anti-Spoofing

 The parameter sharing feature generator is trained to make the feature distributions of different domains undistinguishable for the real faces but not for the fake ones under the single-side adversarial learning.

1. Single-Side Domain Generalization for Face Anti-Spoofing, CVPR 2020

Dual-force Triplet Mining

- In one domain
 - Minimize live-to-live distance between different subjects
 - Maximize live-to-spoof distance between different subjects
- Cross domains
 - Minimize live-to-live distance between different subjects
 - Maximize live-to-spoof distance between different subjects
- Anchor as live

MICHIGAN STATE UNIVERSITY

1. Shao et. al., Multi-adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection, CVPR, 2019

Dual-force Triplet Mining

- In one domain
 - Minimize live-to-live distance between different subjects
 - Maximize live-to-spoof distance between different subjects

Cross domains

- Minimize live-to-live / spoof-to-spoof distance between different subjects only
- Maximize live-to-spoof / spoof-to-spoof distance between different domains
- Triplet with live (d1,d2,d3), spoof (d1), spoof (d2), spoof(d3)

1. Single-Side Domain Generalization for Face Anti-Spoofing, CVPR 2020

Domain 1

Domain 2

Domain 3

Domain Adaptation in Multi-Channel Autoencoder based Features for Robust Face Anti-Spoofing

- Use multi-modality data (RGB, NIR, and Depth) instead of RGB only
- Domain Adaption: fine-tuning (RGB → NIR-Depth)

1. George et. al., Biometric Face Presentation Attack Detection with Multi-Channel Convolutional Neural Network, TIFS 2019

MICHIGAN STATE UNIVERSITY

Domain Adaptation in Multi-Channel Autoencoder based Features for Robust Face Anti-Spoofing

Bona-fide samples 6 different sessions			PA	I samples			
					Method	dev	(%)
			9-	-		APCER	ACER
					Color (IQM-LR)	76.58	38.79
	S VILLA TEL CAR				Depth (LBP-LR)	57.71	29.35
					Infrared (LBP-LR)	32.79	16.9
	Classes	Drivet	Depley E	also hand	Thermal (LBP-LR)	11.79	6.4
	Glasses	Print	Replay F	аке пеац	Score fusion (IQM-LBP-LR Mean fusion)	10.52	5.76
				and the	Color (RDWT-Haralick-SVM)	36.02	18.51
	****	-		e //	Depth (RDWT-Haralick-SVM)	34.71	17.85
00 00 00			2.5	1	Infrared (RDWT-Haralick-SVM)	14.03	7.51
		E.	3		Thermal (RDWT-Haralick-SVM)	21.51	11.26
					Score fusion (RDWT-Haralick-SVM Mean fusion)	6.2	3.6
					FASNet	18.89	9.94
and the second second		1 12	Kanner Kal				
	Rigid masks	I	Flexible mask Pa	aper mask			

1. George et. al., Biometric Face Presentation Attack Detection with Multi-Channel Convolutional Neural Network, TIFS 2019

test (%)

BPCER

0

0.03 1.18

0.5

1.17

1.67

0.57

0.05

0.85

0.49

5.65

ACER

43.74

32.74

15.28

8.47

7.54

21.82

6.26

12.48

3.44

11.44

APCER

87.49

65.45

29.39 16.43

13.92

35.34

43.07

12.47

24.11

6.39

17.22

• Meta-learning, also known as "learning to learn", intends to design models that can learn new skills or adapt to new environments rapidly with a few training examples.

Regularized Fine-grained Meta Face Anti-spoofing, AAAI 2020 1.

MICHIGAN STATE UNIVERSITY

2. Learning Meta Model for Zero- and Few-shot Face Anti-spoofing, AAAI 2020

Meta Learning for FAS

• Tackle cross-database testing: Train on multiple domains, test on one domain

1. Regularized Fine-grained Meta Face Anti-spoofing, AAAI 2020

2. Learning Meta Model for Zero- and Few-shot Face Anti-spoofing, AAAI 2020

- A learner to handle all meta learning tasks
- Training set (meta-train set +meta-test set), testing set
 - E.g., domain 1,2,3 \rightarrow train, domain 4 \rightarrow test
 - Meta-task 1: domain 1,2 \rightarrow meta-train, domain 3 \rightarrow meta-test
 - Meta-task 2: domain 1,3 \rightarrow meta-train, domain 2 \rightarrow meta-test
 - Meta-task 3: domain 2,3 \rightarrow meta-train, domain 1 \rightarrow meta-test

Algorithm 1 AIM-FAS in training stage input: K-shot (K >= 0) FAS training tasks Ψ_t , learning rate β , number of inner-update steps u, initial value of AIU parameters α and γ . output: Meta-learner's weight θ , AIU parameters α and γ . **1** : initialize θ and AIU parameters α and γ . 2 : pre-train the meta-learner on the train set. 3 : while not done do sample batch tasks $\tau_i \in \Psi_t$ 5 : for each of τ_i do $\theta_i^{(0)} = \theta$ 6 : 7: for j < u do $\mathcal{L}_{s(\tau_i)}(\theta_i^{(j)}) \leftarrow \frac{1}{\|s(\tau_i)\|} \sum_{x,y \in s(\tau_i)} l(f_{\theta_i^{(j)}}(x), y)$ 8: $\theta_i^{(j+1)} \leftarrow \theta_i^{(j)} - \alpha \cdot \gamma^j \cdot \nabla_{\theta_i^{(j)}} \mathcal{L}_{s(\tau_i)}(\theta_i^{(j)})$ 9: $\mathcal{L}_{q(\tau_{i})}(\theta_{i}^{(j+1)}) \leftarrow \frac{1}{\|q(\tau_{i})\|} \sum_{x,y \in q(\tau_{i})} l(f_{\theta_{i}^{(j+1)}}(x), y)$ 10: 11: j = i + 112: end 13: end $(\theta, \alpha, \gamma) \leftarrow (\theta, \alpha, \gamma) - \beta \cdot \nabla_{(\theta, \alpha, \gamma)} \sum_{\tau_i} \mathcal{L}_{q(\tau_i)}(\theta_i^{(u)})$ 14: 15: end Meta Learner for task1 Meta Learner for task2 Learner

Meta Learner for task3

Meta Learner for task4

- A learner to handle all meta learning tasks
- Training set (meta-train set +meta-test set), testing set
- Choose meta tasks
- Update meta learner (inner update) ← meta-train losses
- Compute meta-test losses
- Update learner with meta-test losses

Algorithm 1 AIM-FAS in training stage input: K-shot (K >= 0) FAS training tasks Ψ_t , learning rate β , number of inner-update steps u, initial value of AIU parameters α and γ . output: Meta-learner's weight θ , AIU parameters α and γ . **1** : initialize θ and AIU parameters α and γ . 2 : pre-train the meta-learner on the train set. 3 : while not done do sample batch tasks $\tau_i \in \Psi_t$ 5 : for each of τ_i do $\theta_i^{(0)} = \theta$ 6 : 7: for j < u do $\mathcal{L}_{s(\tau_i)}(\theta_i^{(j)}) \leftarrow \frac{1}{\|s(\tau_i)\|} \sum_{x,y \in s(\tau_i)} l(f_{\theta_i^{(j)}}(x), y)$ 8: $\theta_i^{(j+1)} \leftarrow \theta_i^{(j)} - \alpha \cdot \gamma^j \cdot \nabla_{\theta_i^{(j)}} \mathcal{L}_{s(\tau_i)}(\theta_i^{(j)})$ 9: $\mathcal{L}_{q(\tau_i)}(\theta_i^{(j+1)}) \leftarrow \frac{1}{\|q(\tau_i)\|} \sum_{x,y \in q(\tau_i)} l(f_{\theta_i^{(j+1)}}(x), y)$ 10: 11: i = i + 112: end 13: end $(\theta, \alpha, \gamma) \leftarrow (\theta, \alpha, \gamma) - \beta \cdot \nabla_{(\theta, \alpha, \gamma)} \sum_{\tau_i} \mathcal{L}_{q(\tau_i)}(\theta_i^{(u)})$ 14: 15: end Meta Learner for task1 Meta Learner for task2 Learner Meta Learner for task3 Meta Learner for task4

- A learner to handle all meta learning tasks
- Training set (meta-train set +meta-test set), testing set
- Choose meta tasks
- Update meta learner (inner update) ← meta-train losses
- Compute meta-test losses
- Update learner with meta-test losses + meta-train losses

1. Regularized Fine-grained Meta Face Anti-spoofing, AAAI 2020

MICHIGAN STATE UNIVERSITY

Alg	gorithm 1 Regularized Fine-grained Meta Face Anti-spoofing
Rec	juire:
	Input: N source domains $D = [D_1, D_2,, D_N]$,
	Initialization: Model parameters θ_F , θ_D , θ_M . Hyperparameters
	ters α, β
1:	while not done do
2:	Randomly select $(N-1)$ source domains in D as D_{trr} and the remaining one as D_{ual}
3.	Meta-train: Sampling batch in each domain in D_{i} as \hat{T}
2.	(i = 1 N - 1)
4.	for each $\hat{\mathcal{T}}$ do
5.	$\int d\sigma = \sum u \log M(F(\tau)) + (1 - \tau)$
2.	$\mathcal{L}_{Cls(\mathcal{T}_i)}(\sigma_F,\sigma_M) = \sum_{(x,y)\sim \hat{\mathcal{T}}_i} giogin(1(x)) + (1-x)$
	y)log(1 - M(F(x)))
6:	$\theta_{M_i}' = \theta_M - \alpha \nabla_{\theta_M} \mathcal{L}_{Cl_s(\widehat{\mathcal{T}}_i)}(\theta_F, \theta_M)$
7:	$\mathcal{L}_{D_{res}(\widehat{x})}(\theta_F, \theta_D) = \sum_{(a,b) \in \widehat{x}} D(F(x)) - I ^2$
8:	end for $\Sigma(x,t) \sim T_i$ in $C \subset T_i$
9:	Meta-test : Sampling batch in D_{val} as $\tilde{\mathcal{T}}$
10	N-1
10:	$\sum_{i=1}^{\infty} \mathcal{L}_{Cls(\tilde{\mathcal{T}})}(\theta_F, \theta_{M_i}) = \sum_{i=1}^{\infty} \sum_{(x,y)\sim\tilde{\mathcal{T}}} ylogM_i(F(x)) -$
	$(1-y)log(1-M_i'(F(x)))$
11:	$\mathcal{L}_{Dep(\tilde{T})}(\theta_F, \theta_D) = \sum_{(x,I)\sim\tilde{T}} \ D(F(x)) - I\ ^2$
12:	Meta-optimization:
13.	$\theta_{N} \leftarrow \theta_{N} = \beta \nabla e \left(\sum_{i=1}^{N-1} (f_{i} - e_{i}) \theta_{N} \right) e^{i \theta_{N}}$
15.	$v_M \leftarrow v_M = \beta v_{\theta_M} (\sum_{i=1}^{L} (\mathcal{L}_{Cls}(\mathcal{T}_i)(v_F, v_M)))$
	$\mathcal{L}_{Cls(\tilde{\mathcal{T}})}(\theta_F, \theta_{M_i}')))$
14:	$\theta_F \leftarrow \theta_F - \beta \nabla_{\theta_F} (\mathcal{L}_{Dep(\tilde{\mathcal{T}})}(\theta_F, \theta_D) -$
	N-1
	$= \sum_{i=1}^{N} \left(\mathcal{L}_{Cls(\widehat{\tau}_i)}(\theta_F, \theta_M) + \mathcal{L}_{Dep(\widehat{\tau}_i)}(\theta_F, \theta_D) \right) = -$
	$\mathcal{L}_{Cls(\tilde{\mathcal{T}})}^{i=1}(\theta_F, \theta_{M_i}')))$
15:	$\theta_D \leftarrow \theta_D - \beta \nabla_{\theta_D} (\mathcal{L}_{Dep(\tilde{\mathcal{T}})}(\theta_F, \theta_D) - \theta_D)$
	N-1
	$\sum_{i=1} \left(\mathcal{L}_{Dep(\widehat{\mathcal{T}}_i)}(\theta_F, \theta_D) \right) \right)$
16:	end while
17.	return Model parameters $\theta_{F}, \theta_{D}, \theta_{M}$

Cross-database Domain Adaption

• Enforce features to be domain-invariant

- Domain adaption [1,2]
- Metric learning [3,5,6]
- Meta learning [7,8]

- 1. Learning Generalizable and Identity-Discriminative Representations for Face Anti-Spoofing, TIFS, 2018
- 2. Unsupervised Domain Adaptation for Face Anti-Spoofing, TIFS 2018
- 3. Multi-adversarial Discriminative Deep Domain Generalization, CVPR, 2019
- 4. Domain Adaptation in Multi-Channel Autoencoder based Features for Robust Face Anti-Spoofing, ICB 2019
- 5. Improving Cross-database Face Presentation Attack Detection via Adversarial Domain Adaptation, ICB 2019
- 6. Single-Side Domain Generalization for Face Anti-Spoofing, CVPR 2020
- 7. Regularized Fine-grained Meta Face Anti-spoofing, AAAI 2020
- 8. Learning Meta Model for Zero- and Few-shot Face Anti-spoofing, AAAI 2020

UCB 2020

Unknown Attack Detection

- One-class classifier
 - One-class SVM
 - Gaussian Mixture Model
 - AutoEncoder
- Zero-shot learning

1. An Anomaly Detection Approach to Face Spoofing Detection: A New Formulation and Evaluation Protocol, IEEE Access, 2017

2. Unknown Presentation Attack Detection with Face RGB Images, ICB, 2018

3. Deep Anomaly Detection for Generalized Face Anti-Spoofing, CVPRW, 2019

4. Deep Tree Learning for Zero-shot Face Anti-Spoofing, CVPR 2019

An Anomaly Detection Approach to Face Spoofing Detection: A New Formulation and Evaluation Protocol

A very comprehensive study on various hand-crafted feature and classifiers.

- Feature: LBP-TOP, LPQ-TOP, BSIF-TOP, Image quality measures
- Classifier: SVM1, SVM2, LDA2, Sparse representation classifier (SRC)1, SRC 2
- Dataset: CASIA-FASD, Replay-attack, MSU-MFSD

1. Arashlool et. al., An Anomaly Detection Approach to Face Spoofing Detection: A New Formulation and Evaluation Protocol, 2017

LICH 2020

An Anomaly Detection Approach to Face Spoofing Detection: A New Formulation and Evaluation Protocol

A very comprehensive study on various hand-crafted feature and classifiers.

- Feature: LBP-TOP, LPQ-TOP, BSIF-TOP, Image quality measures
- Classifier: SVM1, SVM2, LDA2, Sparse representation classifier (SRC)1, SRC 2
- Dataset: CASIA-FASD, Replay-attack, MSU-MFSD

 Conclusion: neither the two-class systems nor the one-class approaches perform well enough

1. Arashlool et. al., An Anomaly Detection Approach to Face Spoofing Detection: A New Formulation and Evaluation Protocol, 2017

UCH 2020

Unknown Presentation Attack Detection with Face RGB Images

A very comprehensive study on various hand-crafted feature and classifiers.

- Feature: Color LBP
- Classifier: SVM1, Auto Encoder, GMM
- Dataset: CASIA-FASD, Replay-attack, MSU-MFSD

1. Xiong et. al., Unknown Presentation Attack Detection with Face RGB Images, ICB, 2018

Unknown Presentation Attack Detection with Face RGB Images

		CASL	A		Replay-Atta	ack		MSU		A	11
	Video	Cut Photo	Warped Photo	Video	Digital Photo	Printed Photo	Printed Photo	HR Video	Mobile Video	Mean	Std
$OC-SVM_{RBF} + IMQ[1]$	68.89	61.95	74.80	98.24	90.82	53.23	63.94	63.00	76.38	72.80	14.48
$OC-SVM_{RBF} + BSIF[1]$	70.74	60.73	95.90	84.03	88.14	73.66	64.81	87.44	74.69	78.68	11.74
$SVM_{RBF} + LBP[5]$	91.49	91.70	84.47	99.08	98.17	87.28	47.68	99.50	97.61	88.55	16.25
NN + LBP	94.16	88.39	79.85	99.75	95.17	78.86	50.57	99.93	93.54	86.69	15.56
GMM + LBP	90.91	77.52	62.61	93.20	87.80	89.19	68.18	91.21	94.04	83.85	11.60
$OC-SVM_{RBF} + LBP$	91.21	82.32	65.58	91.55	84.97	87.19	71.46	96.89	93.57	84.97	10.42
AE + LBP	87.00	80.48	65.84	88.62	84.67	85.09	71.25	96.00	95.64	83.84	10.10

• Dataset: CASIA-FASD, Replay-attack, MSU-MFSD

- Conclusion: improve the performance
 - NN+LBP works best on C+R+M protocols
 - AE+LBP works best on Oulu protocols

Deep Anomaly Detection for Generalized Face Anti-Spoofing

- Deep metric learning
- Triplet Focal loss
 - Focus on the harder cases

IJCB 2020

1. Perez-Cabo et. al., Deep Anomaly Detection for Generalized Face Anti-Spoofing, CVPRW, 2019

Literature and Issues

- Limited Spoof Types^{1,2}
- Only model the live distribution^{1,2}

- 1. S. R. Arashloo et. al. An anomaly detection approach to face spoofing detection: a new formulation and evaluation protocol.
- 2. F. Xiong and W. Abdalmageed. Unknown presentation attack detection with face RGB images. BTAS 2018

What if More Spoof Types?

Print

Obfuscation Imperson. Makeup Attacks

Cosmetic Funny Eye

Partial Paper

Partial Attacks

Deep Tree Learning for Zero-shot Face Anti-Spoofing

- Previous methods only model the live
- Learning semantic spoof attributes

1. Liu et. al., Deep Tree Learning for Zero-shot Face Anti-Spoofing, CVPR 2019

Supervised Feature Learning

MICHIGAN STATE UNIVERSITY

BTAS 2 19

Supervised Feature Learning

MICHIGAN STATE UNIVERSITY

Training TRU

Tree Routing Unit (TRU)

• Routing Function

MICHIGAN STATE UNIVERSITY

• Based on eigen-analysis of visiting set

• We optimize
$$(\mathbf{x} - \boldsymbol{\mu})^T \cdot \boldsymbol{v}, \quad \|\boldsymbol{v}\| = 1$$

$$ar{m{X}}_{\mathcal{S}}^T ar{m{X}}_{\mathcal{S}} m{v} = \lambda m{v}$$

$$\underset{\boldsymbol{\nu},\theta}{\operatorname{arg\,max}} \lambda = \underset{\boldsymbol{\nu},\theta}{\operatorname{arg\,max}} \boldsymbol{\nu}^T \bar{\boldsymbol{X}}_{\mathcal{S}}^T \bar{\boldsymbol{X}}_{\mathcal{S}} \boldsymbol{\nu}$$

53

Databases and testing protocols

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
Replay-Attack	RGB	Х			3	50	1200	2012
CASIA-FASD	RGB	Х			3	50	600	2012
3DMAD	RGB, Depth		х		1	17	510	2014
MSU-MFSD	RGB	Х			3	55	280	2015
MSU-USSA	RGB	Х			8	1000	9,000 (I)	2016
HKBU MAR	RGB		х		2	35	1008	2016
MiW	RGB			х	3	434	1604	2017
OULU-NPU	RGB	Х			4	55	4950	2017
SiW	RGB	Х			6	165	4478	2018
SiW-M	RGB	Х	х	х	13	493	1630	2019
CASIA-SURF	RGB, NIR, Depth	Х				1000	21000	2019
WMCA	RGB, NIR, Depth, Thermal	Х	Х		7	72	1679	2019
CelebA-Spoof	RGB	Х	Х		4	10,177	625,537 (I)	2020

MICHIGAN STATE UNIVERSITY

Replay Attack Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
Replay-Attack	RGB	Х			3	50	1200	2012

• Controlled/adverse sessions

CASIA-FASD Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
CASIA-FASD	RGB	Х			3	50	600	2012

- Three different image quality
- Eye cut to counter the eye-blinking methods
- Warp paper to counter the motion methods

MSU-MFSD Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
MSU-MFSD	RGB	Х			3	55	280	2015

- Two capture devices
 - Build-camera in MacBook Air 13 (640*480)
 - Front camera in Google Nexus 5 Android phone (72
- Mostly used with CASIA and Replay

1. Wen et. al., Face Spoof Detection with Image Distortion Analysis, TIFS 2015

MSU-USSA Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
MSU-MFSD	RGB	Х			3	55	280	2015

- Live images from Internet
- Higher resolution compared with MFSD
 - Front-facing camera in the Google Nexus 5 Android phone (1280 × 960).
 - Rear-facing camera in the Google Nexus 5 Android phone (3264 × 2448)
- Spoof from 8 devices

1. Patel et. al., Secure Face Unlock: Spoof Detection on Smartphones, TIFS 2016

OULU-NPU Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
OULU-NPU	RGB	Х			4	55	4950	2017

- 6 camera, 1080P resolution
- Comprehensive evaluation protocols

IJCB 2020

1. Boulkenafet et. al., OULU-NPU: A Mobile Face Presentation Attack Database with Real-World Variations, FG, 2017

SiW Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
SiW	RGB	Х			6	165	4478	2018

- Pose, illumination, expression
- More subjects
- Comprehensive evaluation protocols

IJCB 2020

1. Liu et. al., Learning Deep Models for Face Anti-Spoofing: Binary or Auxiliary Supervision, CVPR, 2018

CASIA-SURF Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
CASIA-SURF	RGB, NIR, Depth	Х				1000	21000	2019
• Mu	ulti modalities			Real, RGB				
• Mc	ore subjects/vi	deos		Real,Dept	h			
				Real, IR	2. 2.	2. 2.	A. 1	
				Fake, RGB			à l	
				Fake, Dept		A C	1 12 1	2
				Fake, IR	威威	AN A		

1. Zhang et. al., CASIA-SURF: A Large-scale Multi-modal Benchmark for Face Anti-spoofing, CVPR 2019

3DMAD Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
3DMAD	RGB, Depth		Х		1	17	510	2014

- Multi modalities
- More subjects/videos

1. Erdogmus et. al., Spoofing in 2D Face Recognition with 3D Masks and Anti-spoofing with Kinect, BTAS 2013 MICHIGAN STATE UNIVERSITY

HKBU MAR Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
HKBU MAR	RGB		Х		2	35	1008	2016

- 1. Liu et. al., rPPG Correspondence Feature for 3D Mask Face Presentation Attack Detection, ECCV 2018
- 2. Liu et. al., 3D Mask Face Anti-spoofing with Remote Photoplethysmography, ECCV 2016
- 3. Liu et. al., A 3D Mask Face Anti-spoofing Database with RealWorld Variations, CVPRW 2016

SiW-M Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
SiW-M	RGB	Х	Х	Х	13	493	1630	2019

- More spoof types
- Leave-one-out testing protocols
- Include hard live and spoof samples

1. Liu et. al., Deep Tree Learning for Zero-shot Face Anti-Spoofing, CVPR 2019

CelebA-Spoof Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
CelebA-Spoof	RGB	Х	х		4	10,177	625,537 (I)	2020

• Rich variations and annotations

MICHIGAN STATE UNIVERSITY

1. Zhang et. al., CelebA-Spoof: Large-Scale Face Anti-Spoofing Dataset with Rich Annotations , ECCV 2020

CelebA-Spoof Database

Database	Sensors	Print/Replay	Mask	Makeup	# Spoof Type	# Subjects	# Videos	Year
CelebA-Spoof	RGB	Х	х		4	10,177	625,537 (I)	2020

- Testing protocols less challenging
- Better to design new protocols or do cross-database testing

MICHIGAN STATE UNIVERSITY

Collection Dimension Shape Angle Input Sensor Vertical Down Up Forward Backward Normal Inside Outside Corner PC Camera Tablet Phone X) 0 Spoof Type (b) Illumination Condition and Environment (a) Print Paper Cut Replay 3D Normal Strong Back Dark Face Upper Body Region Photo Poster A4 Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor PC Pad Phone Mask Mask Mask Mask

1. Zhang et. al., CelebA-Spoof: Large-Scale Face Anti-Spoofing Dataset with Rich Annotations , ECCV 2020

- Area Under the Curve (AUC)
 - 0.5 \rightarrow useless model
 - <0.7 \rightarrow sub-optimal performance
 - 0.7 0.8 \rightarrow good performance
 - > 0.8 \rightarrow excellent performance
 - 1 \rightarrow perfect
- EER

MICHIGAN STATE UNIVERSITY

- APCER / BPCER / ACER
- TPR at FPR = x (e.g. x = 0.2%)

- Area Under the Curve (AUC)
- EER

MICHIGAN STATE UNIVERSITY

- False pos rate = False neg rate
- APCER / BPCER / ACER
- TPR at FPR = x (e.g. x = 0.2%)

- Area Under the Curve (AUC)
- EER
- APCER / BPCER / ACER
 - ISO standard
 - APCER: Attack Presentation Classification Error Rate
 - BPCER: Bona Fide Presentation Classification Error Rate
 - ACER: (APCER+BPCER)/2
- TPR at FPR = x (e.g. x = 0.2%)

- Area Under the Curve (AUC)
- EER

MICHIGAN STATE UNIVERSITY

- APCER / BPCER / ACER
- TPR at FPR = x (e.g. x = 0.2%)

- We recommend:
 - EER
 - APCER / BPCER / ACER
 - TPR at FPR = x (e.g. x = 0.2%)

Summary

- Direct FAS
- Auxiliary FAS
- Temporal FAS
- Generative FAS
- Cross-domain FAS
- Unknow attack FAS

Problem 1: Training-Testing Difference

- Cross-domain and unknown attack performances are still poor
 - EER for intra-testing: ~ 0% 5%
 - EER for inter-testing: ~ 15% 50%
- How cross-domain testing contribute to real-world applications?

Problem 2: Explainablity

• Spatial explainablity

MICHIGAN STATE UNIVERSITY

- Temporal explainablity
- Spoofing process explainablity
- Research on camera and imaging

Problem 3: New Attacks

- Can we transfer our knowledge of FAS to other attacks?
 - Face/Generic adversarial attacks
 - Face /Generic manipulation attacks
- Counter attacks to current methods
 - 3D mask attacks with flashing light \rightarrow rPPG methods

End of Session II

7 Minutes Break

