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Abstract

This paper presents an automated monocular-camera-

based computer vision system for autonomous self-backing-

up a vehicle towards a trailer, by continuously estimating

the 3D trailer coupler position and feeding it to the vehicle

control system, until the alignment of the tow hitch with the

trailers coupler. This system is made possible through our

proposed distance-driven Multiplexer-CNN method, which

selects the most suitable CNN using the estimated coupler-

to-vehicle distance. The input of the multiplexer is a group

made of a CNN detector, trackers, and 3D localizer. In the

CNN detector, we propose a novel algorithm to provide a

presence confidence score with each detection. The score

reflects the existence of the target object in a region, as well

as how accurate is the 2D target detection. We demonstrate

the accuracy and efficiency of the system on a large trailer

database. Our system achieves an estimation error of 1.4
cm when the ball reaches the coupler, while running at 18.9
FPS on a regular PC.

1. Introduction

Trailers range in size from small utility and boat trailers

to large box trailers or recreation vehicle (RV) trailers. RV

trailers alone had a revenue of five billion dollars in 2015 [9]

and are estimated to exceed 381 thousand units sold in the

United States in 2016 [22].

To hitch with a vehicle, trailers have a coupler at the front

that is placed over a ball connected to the vehicle at the

rear. Small, lightweight trailers may be manually moved

into place. However, for heavy trailers, the vehicle must be

driven backwards to connect to the stationary trailer. Tradi-

tionally, a second person, called a spotter, stands outside the

vehicle to instruct the driver. Even with rear-view cameras

on modern vehicles, the task is difficult and tedious due to

the small size of the coupler on the screen. An automated

system can take the place of the spotter and allow a single

person to connect to a trailer with ease.
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Figure 1: Automatic trailer hitching by detecting and tracking the

coupler using a Multiplexer-CNN.

Engineers have developed numerous advanced vehicle

systems providing security and comfort for drivers, e.g.,

emergency breaking, blind spot assist, lane recognition, and

active park assist. Current systems for trailers only provide

assistance after they are hitched to a vehicle, such as maneu-

vering in narrow spaces [15], preventing large articulation

angles [21], and avoiding oscillation at high speeds [8]. To

the best of our knowledge, no other automated system ex-

ists for backing-up towards a trailer. This paper presents an

automated computer vision system using a single rear-view

camera to hitch the vehicle to a trailer, as in Fig. 1.

There are three main challenges or sources of visual vari-

ation: position, trailer, and environment. Position refers to

the pose and scale of the trailer. The trailer varies in type,

shape, color, and size of the trailer and coupler. The en-

vironment affects the background of the scene through as-

phalt, dirt, grass, or snow and the lighting from sun, clouds,

or nighttime. Furthermore, there are strong performance re-

quirements needed to successfully hitch the trailer. When

hitching, the coupler 2D estimation should have an error

less than the radius of the ball, e.g., 2.2 cm for a standard

ball. And the efficiency should exceed 10 FPS.

Assuming the driver parks the vehicle with the trailer

in the field of view of the camera, this work presents a

Multiplexer-CNN based system to automatically detect and

track the trailer’s coupler and continuously provide 3D co-

ordinates to control a vehicle, while relying solely on a

monocular rear-view fish-eye camera. Specifically, the goal

of our system is to estimate both the 2D location in pixels



and the 3D location in meters. An automatic control system

may consume the 3D estimate to mechanically control the

vehicle’s movement. A feedback loop can be established

between the control unit and our system, providing addi-

tional valuable info for detecting the coupler. However, the

mechanical system is outside the scope of this paper.

The Multiplexer-CNN system selects from five CNN ar-

chitectures to perform detection operations. The current

estimate of the coupler position drives the CNN selection.

Each CNN is invoked independently based on the estimated

distance between the vehicle and the coupler. When no esti-

mate is known, the DCNN detects the coupler by estimating

potential locations along with presence confidence scores.

We develop a novel loss function to enable DCNN to learn

accurate presence confidence measures, along with regres-

sion estimates of the coupler position. With a confident

estimate of trailer position, the multiplexer selects among

three networks, TCNN1, TCNN2, and TCNN3 to perform

2D tracking by detection until the coupler is centered over

the ball. During this time, the 3D location is inferred us-

ing a calibrated distance map from a fixed coupler height.

As the coupler approaches the ball, it is crucial to estimate

the height to avoid collision. The fifth CNN, CCNN, esti-

mates the coupler’s contour, which regresses the height, and

adjusts the distance map to provide accurate 3D estimation.

Data is key to learning an accurate Multiplexer-CNN. We

introduce the first large-scale dataset for trailers, with 899
videos containing ∼712, 000 frames. We demonstrate the

accuracy and efficiency of the system using a regular PC.

Our system fulfills the performance requirements for suc-

cessful hitching by achieving an estimation error of 1.4 cm

when the ball reaches the coupler, while running at 18.9
FPS. Qualitatively, we show the ability of our system to de-

tect and track unseen trailers in the field, generalizing to

handle a large variety of challenges.

In summary, our main contributions are: 1) Develop a

novel loss function along with a CNN-based object detec-

tor, which estimates coupler coordinates associated with

presence scores. 2) Design a distance-driven Multiplexer-

CNN that achieves both generalization across larger varia-

tions and real-time efficiency. 3) Develop a method to esti-

mate the 3D coupler coordinate with a monocular camera.

4) Present a large dataset for trailer detection and tracking.

2. Related Work

We review prior work in three areas: object detection,

object tracking, and 3D localization.

Object detection Recent approaches using CNNs to

regress the location of object bounding boxes demonstrate

remarkable accuracy and efficiency. Sermanet et al. [26]

propose a regression network for detection where classifica-

tion confidence helps aggregate proposed bounding boxes.

However, it exhaustively searches the image and is not suit-

able for real-time applications. Girshick et al. [11] pro-

pose R-CNN, using object proposals generated by selective

search. This model has been extended to Fast R-CNN [10]

and Faster R-CNN [25]. In Faster R-CNN, the region pro-

posal network (RPN) generates a set of rectangular object

proposals, each with an objectness score measuring mem-

bership to an object class, after which the proposal is as-

signed a class specific confidence score. Note that both the

objectness score of RPN and classification confidence are

trained separately from localization and are thresholded to

produce a binary detection decision. In contrast, we incor-

porate the presence confidence score into the learning pro-

cess and use it as a scalar without thresholding. Our score

reflects two major cues: (1) the existence of the target object

in a region, and (2) how accurate is the 2D target detection.

Object tracking As shown in a recent benchmark

study [6], Correlation Filters (CF) [14, 19, 13] and

CNNs [16, 29, 32] achieve the top performances. CFs pro-

vide better efficiency, while CNNs have superior accuracy.

Both approaches work well on the scale variation observed

in benchmarks. However, for trailer videos, the extreme

scale variation induces substantial appearance variation due

to changes in perspective that current single object track-

ers cannot handle. We propose multiple CNN trackers,

i.e., TCNNi, for accurate tracking at all scales and compare

against state-of-the-art single trackers.

3D Object localization Recently, many works aim to lo-

calize objects in 3D for autonomous vehicles [31, 12, 3, 4].

RADAR and LIDAR [12, 4] are popular sensors. With two

cameras, stereo vision [3] provides depth. Many obsta-

cle detection systems use stereo vision, e.g., the occupancy

map [2] and digital elevation map [23]. However, vehicles

come equipped with a monocular backup camera.

Structure from Motion (SfM) uses a monocular camera

to localize a moving camera and objects [17]. However,

SfM was shown to have difficulties in real driving scenarios

due to the small object size, fast speeds and lack of texture.

On the other hand, [27] performs 3D object localization by

combining SfM cues such as the ground plane, with object

cues such as 2D bounding boxes. We assume the height of

the camera is fixed relative to the ground and create a dis-

tance map offline. Then the height of the coupler, estimated

via the 3D coupler localization algorithm, is used to dynam-

ically elevate the distance map for efficient localization.

3. Our Proposed Approach

Our Multiplexer-CNN system has five CNN inputs:

DCNN, TCNN1, TCNN2, TCNN3, CCNN. As shown in

Fig. 2, our system consists of three stages: (1) 2D coupler

detection, (2) 2D coupler tracking, and (3) 3D coupler lo-

calization for vehicle automation. Stage 1 initializes the 2D

coordinate of the coupler for Stage 2. Stage 2 and 3 collab-

orate in estimating both 2D and 3D coupler positions.
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Figure 2: An automated computer vision system for coupler detection, tracking, and 3D localization.

3.1. Preprocessing for Geometric Interpolation

Our rear-view camera has a fish-eye lens with a wide

field-of-view (FOV). Using a checkerboard, standard cam-

era calibration is performed to estimate camera intrinsics,

extrinsics, and lens distortion parameters, based on which

we unwarp the input frame to correct the fish-eye effect.

In our Multiplexer system, the coupler-to-vehicle dis-

tance (CVD) is crucial in serving as the selector to choose

one CNN among five. Thus, it is important to estimate

CVD accurately and efficiently. Instead of employing SfM

for distance estimation [27], we propose to rely on a dis-

tance map covering the entire frame. This distance map can

be obtained as follows. Given an unwarped frame with a

checkerboard placed on a flat ground, we estimate the cam-

era rotation and translation matrices, which can convert a

single pixel (u, v) to a 3D world coordinate and measure the

distance between the camera and target pixel (green point in

Fig. 3). This step is repeated for all pixels in the unwarped

frame. Given the known (fixed) camera height h0, solving

a simple triangle problem can convert the camera-to-pixel

distance to the origin-to-pixel distance, where the origin of

the 3D world coordinate is the projection of the camera onto

the ground plane ((0, 0, 0) in Fig. 3). The origin-to-pixel

distances of all pixels constitute the distance map on the

ground plane D0. Finally, given the coupler is at a fixed

but unknown height hc, we elevate D0 to obtain the coupler

distance map Dh by simply applying Dh = (1− hc

h0

)D0. In

our system, we assume hc = 50 cm when the CVD is over 1
meter, and otherwise estimate using the method in Sec. 3.4.

For different vehicles with different hc, the camera should

be recalibrated to generate a new ground distance map D0.

We can do this for all possible heights offline, and assign

one to a vehicle during manufacture.

Our distance map method has a few advantages. First,

we only use a single camera without additional sen-

sors/cameras to retrieve 3D depth information. Second, Dh

can be updated efficiently to accommodate changes in the

coupler height. Finally, CVD is obtained by a simple look-

up of Dh(u, v). However, our flat ground assumption might

affect CVD estimation if the ground is not flat. Fortunately,
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Figure 3: 3D distance estimation of the coupler.

this would impact most when the trailer is far away, and

have much less influence while approaching it, since close

regions become locally flat. Note that the critical distance

is the last CVD meter when the coupler is near the vehicle.

3.2. Coupler Detection

When the system starts, we assume the trailer is posi-

tioned between three and seven meters from the rear of the

vehicle. This is a reasonable assumption for our applica-

tion. If the trailer starts too close, the vehicle may not have

enough room to align with the hitch. If too far away, the

coupler cannot be detected. We train a dedicated network,

DCNN, to detect the coupler in the frame along with pro-

viding a presence confidence score of the estimation.

DCNN network The architecture of DCNN is in Tab. 1.

Each convolution layer is followed by an ReLU and max-

pool layer. The key to DCNN is the novel presence loss that

allows the detector to balance the regression accuracy with

the detection presence confidence accuracy. These scores

reflect the existence of the target object within the spatial

enclosure of the training patches, as well as how accurate

the 2D regression detection. The presence loss is,

L =
∑

s̄||∆ū−∆u||2+
∑

λ1||s− 2s̄(1− sigm(λ2||∆ū−∆u||2))||2, (1)

where ∆u and s are the estimated 2D offset and presence

confidence score, and ∆ū and s̄ are the groundtruth. The

loss function has two parts. The first part represents the Eu-

clidean loss, which is the regression error when having a



Table 1: CNN architectures.

DCNN TCNN1,2,3 CCNN

input(200× 200) input(224× 224) input(200× 200)

conv (7× 7× 20) conv (3× 3× 20) conv (7× 7× 20)

maxpool (2) conv (3× 3× 20) maxpool (3)

conv (7× 7× 30) maxpool (3) conv (5× 5× 40)

maxpool (2) conv (3× 3× 40) maxpool (3)

conv (5× 5× 40) conv (3× 3× 40) FC-100

maxpool (2) maxpool (3) FC-76

FC-100 conv (3× 3× 60) Euclidean loss

FC-3 maxpool (2) —

Presence loss conv (3× 3× 80) —

— maxpool (2) —

— conv (3× 3× 100) —

— FC-100 —

— FC-2 —

— Euclidean loss —

positive coupler patch enabled by s̄. For negative patches

where s̄ = 0, loss is ignored so learning focuses only on

the presence confidence score. The second part is the pres-

ence confidence score loss. For negative patches, it penal-

izes nonzero scores since the system should have no confi-

dence. For positive patches, the confidence should be neg-

atively correlated to the regression error, i.e., more accurate

predictions of ∆u should have higher presence confidence.

We pass the regression error through a sigmoid function and

subtract from 1, restricting confidence between 0-1.

We obtain training image patches to learn DCNN. The

positive patches are obtained from the videos when the

trailer is in the range of d1 to d2, and are assigned con-

fidence scores s̄ = 1, along with the coupler offset ∆ū.

Random perturbation is applied to the patches such that the

center of the coupler is less than |∆ū| < w

4
away from

the patch center, where w is the patch size. The negative

patches are randomly selected in the surrounding area of

the coupler such that the coupler center is far away from the

patch center |∆ū| > w

4
, and are assigned scores of zero.

Coupler detection algorithm An illustration of the cou-

pler detection algorithm is in Fig. 2. Given the initial trailer

location within [d1, d2] meters, we place a grid G containing

N1 evenly distributed points covering the region as shown

in the first column of Fig. 4. These points represent the

center locations of N1 test patches, which are processed by

DCNN. These patches have different sizes based on their

estimated CVD dt, such that the patches in the top row of

G have the smallest sizes, whereas the bottom row have the

largest sizes. This is motivated by the desire to feed CNN

training data with smaller scale variations. Otherwise if we

would select a fixed patch size, e.g., 200× 200, the patches

contain a lot of background info when the trailer is far away,

and nearly no background when near by. We follow a sim-

ple formula to decide the patch size via CVD,

w =
−45

2
Dh(ut−1, vt−1) + 300. (2)

Here the maximum patch size is 300× 300 when the trailer

is at zero meters away, and 75 × 75 when 10 meters away.

Iteration 1 Iteration 2 Iteration 4Initialization

Figure 4: Iterative coupler detection using DCNN. The top row is

the input image with the results of (∆u, s). The green color means

s = 1, and the red is s = 0. The bottom row shows the results of

the weighted sum of Gaussians. Best viewed in color.

Once the scale is determined, the patches are resized to

200× 200. Since many patches overlap with the target cou-

pler, it is likely that a number of patches will have high pres-

ence scores. We update each grid point with its estimated

location and repeat the process iteratively on the same initial

frame, until the points cluster around potential couplers.

In this particle filter like approach, we adopt a weighted

sum of Gaussians approach for a final detection estimation.

Every grid point is replaced with a 2D Gaussian (100× 100
kernel size with σ = 30) weighted by the presence score.

The final detection is the maximum of the summation of

weighted Gaussians from all grid points. The estimated

presence scores of correct points increases with more itera-

tions performed. In general, we observe that four iterations

are sufficient for satisfactory accuracy as seen in Fig. 4.

3.3. Coupler Tracking

In coupler tracking, the coupler appearance changes

throughout the backing-up process, which can be described

in three stages: (a) Initially, the coupler is far and often hard

to discern. (b) As the trailer gets closer, the coupler appears

increasingly larger. (c) Within the last meter of backing-

up, the coupler appearance changes dramatically due to the

increasing downward viewing angle of the camera. There-

fore, we propose to use three networks, TCNN1, TCNN2

and TCNN3, to perform tracking by detection.

Tracking CNN networks The network architecture of

TCNN is in Tab. 1. The first 10 layers are similar to the

VGG network [24], with minor changes in the number of

filters and maxpool layers. The full network is optimized

using training images of trailer couplers. Unlike most ob-

ject tracking works estimating a bounding box, we are only

interested in finding the center of the coupler. Therefore, we

define the Euclidean loss for the 2D coupler center position.

A large number of training images are used to learn all

three TCNN networks. Similar to DCNN, we apply ran-

dom perturbation to the training patches such that the cou-

pler center is less than w

4
away from the patch center. We

also follow Eqn. 2 to crop the local region with the CVD-

dependent size to a training patch.

Coupler tracking algorithm We adopt a tracking by de-

tection method where TCNN serves as the detector. We

use the tracking result of the previous frame to initialize the



Algorithm 1: 3D coupler localization algorithm

Data: Input frame It, (ut,vt), zt−1, Dh,t−1

Result: (xt,yt,zt), Dh,t

1 Obtain current distance dt = Dh(ut−1, vt−1);
2 if dt > τ3 then

3 zt = 0.5 m, compute (xt, yt) using Fig. 5b;

4 else

5 Multiplexer selects CCNN;

6 for i := 1 to N3 do

7 Generate random perturbation riu and riv;

8 Generate patch Pi = It(ut + riu, vt + riv; di);
9 ci ←− CCNN(Pi);

10 b = P
T (ci − c̄0);

11 if ¬ ValidShapeTest(b) then

12 remove Pi and ci;

13 Mean of all contours c = 1

N̂3

∑N̂3

i
ci;

14 Feature extraction f = F(c) using Fig. 5a;

15 Compute zt = Rj(f); // j is Regressor index;

16 Update Dh,t = D0(1− zt/h0);
17 Update (ut, vt) =

1

2
(ut, vt) +

1

2
(c(75), c(76)) ;

18 Update (xt, yt, zt) using Fig. 5b;

current frame. For stable tracking, we apply N2 randomly

perturbed patches surrounding the initialization. The track-

ing result is obtained by averaging the estimations of all

N2 patches. Two thresholds, τ1 and τ2, define three ranges

where each of the three TCNNs operate.

3.4. Height Estimation and 3D Localization

The motivation of estimating the coupler height is two-

fold. 1) To control the vehicle mechanically, where the ve-

hicle control system requires a precise 3D location of the

coupler, (x, y, z) which is the range, offset and height in

meters. This demands the distance map at the true height of

the coupler. Hence, we need to estimate the coupler height

rather than using the assumed height. 2) The vehicle has a

hitch ball set to a fixed height. We need to ensure that the

coupler is high enough to avoid colliding with the hitch ball.

It is challenging to estimate the coupler height from a

monocular camera. For fixed size objects like license plates,

the depth can be estimated from the plate pixel size [5].

However, couplers vary significantly in their shape. To ad-

dress this problem, we discover that the geometric shape of

the coupler contour is indicative of the height, e.g., at a fixed

CVD, increasing the height of a coupler will spread out the

contour points.Therefore, we propose to estimate the cou-

pler contour using CCNN. This allows us to extract contour

geometric features and feed them to regressors to estimate

coupler heights, as detailed in Alg. 1.

Coupler contour network The network architecture of

CCNN is in Tab. 1. Given the small number of contour

labels, we learn a shallow network of 2 convolution layers
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Origin point(b)

Figure 5: (a) Geometric feature of a contour include: distances

along straight lines, and slopes of red lines. (b) Estimation of xt

and yt, on the Dh elevated by estimated height zt. Red dot is the

estimated coupler, green has zero offset from the origin point.

and 2 FC layers, with an ReLU and maxpool layer after

each convolution layer. CCNN defines the Euclidean loss

on the coupler contour represented by a 76-dim c, i.e., 38
points, where 37 points are on the contour, and the last one

(c(75), c(76)) is the coupler center.

Contour estimation Similar to tracking, to improve esti-

mation stability, our contour is estimated using candidate

contours of N3 patches extracted with random perturba-

tions, each obtained by CCNN. Due to the high-dimension

output, there are normally a few outliers among the can-

didate contours. Therefore, we propose to use a shape

model [20] to remove the outliers, i.e., contours with un-

usual coupler shapes. Based on labeled contour training im-

ages c̄, we compute a mean shape c̄0 and five basis shapes

P, such that any candidate contour c can be represented as

a coefficient b = P
T (c − c̄0). If any candidate contour’s

b does not meet the normal coefficient distribution learned

from training data, the contour will be ignored when mak-

ing a final mean estimation.

Height estimation Given a stable contour estimation, we

extract geometric features to capture the 2D shape of the

coupler as shown in Fig. 5a. Specifically, we uniformly

sample five points along the contour, including the two end

points. We compute the Euclidean distance between any

two points, resulting in 10 features, i.e., red and green lines.

We further compute the slopes of the red lines, resulting in

four features. Thus, a 14-dim feature vector is extracted

from the contour estimation of CCNN. Given five sets of

training images, each having couplers at a specific CVD,

we utilize their feature vectors to learn five height estima-

tors {Ri}
5

i=1
via the bagging M5P regressor [30, 1]. Our

analysis shows bagging M5P to be superior to other well-

known regression paradigms.

3D coupler localization A detailed algorithm for 3D cou-

pler localization is in Alg. 1. Given the current 2D coupler

location (ut, vt) estimated via TCNN, we find the CVD dt
utilizing the distance map Dh at the assumed height of 50
cm. However, when dt is less than τ3 = 1 meter, CCNN is

activated to estimate the contour, followed by the height es-

timation for each video frame. Then a refined CVD dt can

be retrieved for two updates: First, the distance map Dh is

elevated to the estimated coupler height hc. Second, the 2D

coupler location (ut, vt) is refined by averaging the TCNN



Figure 6: Statistics of the trailer coupler database.

result with the coupler center estimation from CCNN.

Independent of whether dt is less than τ3, we need

to convert the CVD dt to the 3D coupler localization

(xt, yt, zt), for the purpose of vehicle control. To find xt

and yt, we solve a simple triangle problem on the distance

map at the coupler height, where xt and yt are the two sides

forming the 90◦ angle as seen in Fig. 5b, and the third side

is the CVD dt. As for zt, it is either the assumed height of

50 cm if dt > τ3 or otherwise the estimated height hc.

4. Trailer Coupler Database

With a rear-view camera of a vehicle, the videos cap-

ture the process of a vehicle backing-up towards a trailer

from a variable distance to the point where the hitch ball

is aligned with the trailer coupler. The database contains

899 videos consisting of ∼712K frames, with an average

length of 19.3 seconds. The videos are collected at 40 FPS

with a resolution of 1, 920×1, 200 using M-JPEG compres-

sion. A Point Gray camera (Model: BFLY-PGE-23S6C-C)

with a fish-eye lens is used with a wide FOV of 190◦. The

database contains three types of challenges as explained in

Sec. 1. Fig. 6 shows some statistics of the database. Nearly
3

4
of the database is obtained from RV trailers, as they are

the most popular and available. Even if the trailer type in-

troduces differences in shape and size, they all have sim-

ilarities in the coupler itself. Typically, people backup to

the trailer in a straight line with a center pose, however, we

collect videos with various poses to make the system robust

to any pose situation. The database is collected in a period

of one year, which covered different weather conditions and

ground types. Some examples can be seen in Fig. 15.

There are three types of labels in the dataset. 1) Coupler

label set: the 2D coordinate of the coupler center is labeled

at every 10th frame of all 899 videos. 2) Contour label set:

the 2D coordinates of 37 coupler contour points are labeled

for a set of 810 frames, collected from 162 videos, when the

CVD is 1.0, 0.8, 0.6, 0.4, and 0.2 meters away. 3) Height

label set: the coupler height is physically measured at the

site when 72 videos are captured. These 72 videos are a

subset from the 162 videos of the contour label set, which

means we also have contour labels along with them.

5. Experiments

In this section, we will discuss the experimental setup,

report the quantitative results of all three main stages sepa-

rately, and then jointly as a whole system. Finally, we will

show qualitative results of the entire system.
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5.1. Multiplexer­CNN Setup

Network Implementation Details We train and test

DCNN and TCNN using the first 827 videos using only the

coupler label set. The videos are divided into 413 training

videos, and 414 testing videos. Given most trailers have

2∼3 videos captured at different posses, we make sure that

each unique trailer does not exist in both training and test-

ing sets. To train and test CCNN, we use all videos which

contained contour labeled frames. The videos are divided

into 90 training videos with 450 labeled coupler contour

frames, and 72 testing videos with 360 labeled coupler con-

tour frames. The networks are trained with a learning rate of

0.001 and a mini-batch size of 100, 20, and 20 for DCNN,

TCNN and CCNN, respectively.

Parameter setting Our system uses the following param-

eters: τ1 = τ2 = 3, τ3 = 1, N1 = 100, N2 = N3 = 10,

λ1 = λ2 = 1 . For V alidShapeTest(b) in Alg. 1, it

returns true if all elements of b are within three standard

deviations of coefficient distributions. The five height esti-

mators {Ri}
5

i=1
are trained from contours at distance ranges

of (0.9, 1.1], (0.7, 0.9], (0.5, 0.7], (0.3, 0.5], (0.1, 0.3] me-

ters, respectively.

5.2. Results

Coupler detection For coupler detection, the baseline is

similar to DCNN with the exact same network structure ex-

cept for the loss function, which is a normal Euclidean loss,

i.e., it only estimates ∆u without the presence confidence

score s. Hence, the coupler detection algorithm remains the

same, except replacing the sum of weighted Gaussians with

a sum of Gaussians. Fig. 7 reports the results of both meth-

ods at various initializations of CVD in the range of 3∼7
meters. This experiment shows the advantage of learning

presence confidence score over the typical regression detec-

tors. A clear margin of 20∼45 in pixel errors is due to incor-

porating presence confidence score learning into DCNN.

To visualize the effectiveness of our presence confidence

scores in DCNN, we demonstrate the correlation between

the estimated scores and the 2D offset estimation errors.

Given six randomly selected testing videos, we collect a to-

tal of 600 pairs of (u, s) after running DCNN at seven CVD

meters for four iterations. As seen in Fig. 8, the scores have

an inverse correlation with the Euclidean estimation errors,

i.e., the detections with lower errors will have higher scores.
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Figure 9: Tracking comparison

with errors in meters.
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Figure 11: Tracking compari-

son with precision plot.
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Figure 12: Contour estimation

comparison.
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networks used for tracking.
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Figure 14: Overall system ac-

curacy on the height label set.

The correlation coefficent is found to be −0.65 capturing

this strong correlation between these two. Note that some

large offset estimation errors might still have a high score.

This false alarm is caused by the patch drifting away from

the coupler, where it detects some background object think-

ing it’s the target coupler. An example is found in iteration

1 of Fig. 4, where some points illustrate this noisy behavior.

Coupler tracking We compare our TCNN with two base-

line object tracking methods, KCF [13] and C-COT [7].

Both methods have excelled on many tracking benchmarks,

e.g., C-COT wins the 2016 VOT challenge. To compare

with the baseline, we provide three initializations to both

baselines, while one initialization to our method. For the

baseline tracking initialization, we define a 100 × 100
bounding box centered around the coupler, at three CVD lo-

cations d0, d1 = 7 and d2 = 3 meters. Here d0 is the CVD

of the first video frame, with an average of 10 meters in our

database. We report resultant x− y plane error in meters at

specific CVD in Fig. 9, 2D pixel errors at specific CVD in

Fig. 10, and precision plots in Fig. 11. We observe that both

KCF and C-COT perform well after initialization. However,

both baseline methods suffer from drifting problems due to

the extreme scale variations, which induces substantial ap-

pearance variation caused by changes in perspective. To the

best of our knowledge, this challenge is rarely addressed in

any of the tracking benchmark studies.

Using three TCNN networks was specifically justified

due to large appearance variation in the trailer coupler as

the CVD converges to zero meters. We have experimentally

studied the effect of using different numbers of TCNN net-

works, as seen in Fig. 13, with the final error at zero CVD

meters in parenthesis. With increasing number of TCNN

networks, a higher tracking accuracy can be achieved yet

system complexity increases. Thus, we choose three TCNN

Table 2: System efficiency.

System DCNN TCNN CCNN Alg 1 Alg 2 Alg 3

Time(s) 0.088 0.023 0.010 0.471 0.053 0.035

networks to balance the accuracy and complexity.

Height estimation Contour estimation is crucial to our

height estimation. We first compare our CCNN-based

contour estimation with two baselines, ASM contour fit-

ting [20], and CNN-based polynomial coefficient fitting in-

spired by [18], which used curve functions to describe the

facial contour. For the classic ASM method, we learn a

2D ASM model to iteratively fit a shape to the coupler

contour. For the second baseline, we learn a CNN named

CCNNP similar to CCNN with the same structure, except

that instead of producing a regression output for 38 con-

tour points, CCNNP estimates an 8-dim vector (αi, βi) for

i = 1 · · · 4. Here αi and βi are the third degree polynomial

coefficients of the x-coordinate and y-coordinate of the con-

tour points, respectively. We report the Euclidean distance

error by measuring the shortest path of the estimated point

to the groundtruth contour in Fig. 12. Observing a fixed

threshold at 20 pixels, our CCNN has a precision rate of

92% compared to 75% and 63% for CCNNP and ASM.

Given the coupler contour and its geometric features, we

can estimate the height. We analyze the performance of the

five height estimators through a 5-fold cross validation on

the 72 videos of the height labeled set. The absolute mean

errors are 0.85, 0.75, 0.60, 0.54, and 0.45 cm for {Ri}
5

i=1
.

We observe higher performance for both contour and height

estimation the closer we get to the coupler.

Given the estimated height, we adjust the distance map,

based on which we retrieve the CVD using the coupler cen-

ter estimated by CCNN, i.e., (c(75), c(76)). Then we per-

form the 3D coupler localization using the same trianguliza-

tion in Fig. 5b. The blue curve in Fig. 14 shows the height

estimation accuracy using the height label set of 72 videos.

Overall system test We report the results of the entire sys-

tem, using components from all three stages, in Fig. 14. We

use the height label set, because the labeled height (i.e., its

elevated distance map) and the labeled coupler center can

provide the ground truth 3D coupler locations in each video

frame. Note that the 2D coupler center is estimated by fus-

ing TCNN3 and CCNN, as in Line 17 of Alg. 1. The min-

imum error can be found in the offset estimation, followed

by the height and range estimations. The small error of off-
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Figure 15: Qualitative results of five videos. The first column is the DCNN results, the three middle columns are TCNN results, last

column is the CCNN result. Red + is the estimated result, yellow ◦ is groundtruth, green × is the estimated contour. Above each frame is

(CVD, meter error, pixel error), the last column also has the estimated height in meters. The red rectangles indicate the failure cases.

set is due to the fact that most backups are along the frontal

angle, and therefore, the error on the x − y plane is almost

the same as the range error. The final estimation error on the

x− y plane is merely 1.4 cm. While not directly compara-

ble due to different datasets, it is substantially smaller than

TCNN3 error of 2.4 cm in Fig. 9. This x − y plane error is

the most important accuracy metric for our system. At 1.4
cm, the vehicle control system would drive the vehicle to

park and stop at a point where the hitch ball is only 1.4 cm

away from the coupler center. The fact that most couplers

have a radius of 2.2 cm means that users can easily lower

the coupler and hook up with the hitch.

System efficiency Our system is implemented in MATLAB

using MatConvNet [28] on an Intel Core i7 − 4770 CPU

with 3.40GHz and a single NVIDIA TITAN X GPU. The

system can run in real-time obtaining frames from the rear-

view fish-eye camera, or offline using the trailer coupler

database for analysis. Table. 2 provides detailed efficiency

analysis per CNN network and per system stage, where Alg

1, Alg 2, and Alg 3 are the detection, tracking and local-

ization of the coupler when tested with N1 (for 1 iteration),

N2 and N3 patches. Note that Alg 1 requires nearly 1.88
seconds to perform 4 iterations during initialization of the

system. While tracking the coupler, we can achieve 18.9
FPS. However, when the CVD passes τ3 the system drops

in speed to 11.4 FPS due to running both TCNN and CCNN.

Qualitative results Figure 15 shows qualitative results of

detecting and tracking the coupler for full video sequences.

We illustrate five different video examples, representing

typical challenging cases in the database. We show a few

failure cases of the system obtained from different stages of

the videos. Note that the fourth and fifth columns use the

same frame to illustrate the results of TCNN and CCNN,

respectively. One key observation in our system, is that

our Multiplexer-CNN approach has the ability to overcome

failure cases at various stages of the system. E.g., if our

TCNN fails within the last few frames, such as the last row

of Fig. 15, our CCNN has a good chance of correcting the

problem. The same observation is made when Multiplexer-

CNN switches between any two possible networks.

6. Conclusions

We present an automated computer vision system for

backing-up a vehicle towards a trailer, using a distance-

driven Multiplexer-CNN. While relying solely on a monoc-

ular rear-view fish-eye camera, we are able to provide ac-

curate 3D coordinates of the coupler, which are needed for

vehicle control. One of the key contributions in this system,

is the ability to detect the trailer using DCNN through a new

loss function producing presence confidence measures asso-

ciated with regression estimates. Our quantitative and qual-

itative results on the collected large-scale trailer database,

demonstrate our system’s ability to be integrated in any ve-

hicle with a rear-view camera. This work also represents

how successful vision systems are built to meet real world

needs. From the technical perspective, other applications

such as autonomous driving problems, may benefit from our

components, e.g., presence confidence loss function, dis-

tance map, Multiplexer-CNN.
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