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1. Overview
In this supplementary material, we provide additional

experimental results, including
� Visualization and analysis of latent space;
� Computational efficiency comparison;
� Additional dense correspondence comparison and re-

sults;
� Details of evaluation experiments.

2. Visualization and Analysis of Latent Space
Our 3D face modeling learns two latent spaces, one

for identity and the other for expression. To explore the
two latent spaces, we conduct two experiments: 1) top
5 elements of identity and expression representations, and
2) identity and expression representations interpolation. A
supplementary video is prepared to visualize these two
experiments.

Top 5 Elements of Latent Representations. We start
with an experiment that explores the learned identity and
expression latent spaces by perturbing the top 5 compo-
nents. We first encode all training scans in the latent
space to obtain identity and expression latent vectors via the
trained encoder. The mean and standard deviation of each
element of the two latent vectors are computed respectively.
We then perturb each element of the latent vector with the
amount of perturbation equal to the corresponding standard
deviation, and use the decoder to transform the perturbed
latent vector to a reconstructed shape. By ranking the
difference between the reconstruction and the original scans
in a descending order, we select the top 5 elements for the
identity and expression latent vectors respectively. In other
words, varying these elements can have the most significant
deformation on the decoded 3D face.

We report visual results of perturbing top 5 elements
of identity and expression vectors in the Fig. 1 and 2.
As can be seen from this illustration, the first element
of the identity latent vector captures the global shape.
The next four elements capture deformations of different
face regions, e.g., the 2nd element for the nose region

Figure 1: 3D shapes of varying top 5 elements of identity latent
vector and the corresponding error maps.

and the 5th for the forehead region. On the other hand,
the top 5 elements of expression latent vector capture the
corresponding face region deformations with expressions.
This indicates that our proposed model indeed separates
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Figure 2: 3D error maps of varying top 5 elements of expression
latent vector.

the geometrical deformation into different semantically
meaningful elements of the latent representations.

Latent Representations Interpolation. An alternative
way to explore the latent spaces, which is usually employed
in deep generative model, is to evaluate the interpolation
capability of the model. For the identity interpolation
experiment, we select 3 subjects with neutral expression
which are denoted as S1E1, S2E1 and S3E1. In the
expression setting, 3 different expression scans of one
subject are used and denoted as S1E1, S1E2 and S1E3. We
apply t-SNE [8] to the latent vectors to visualize the face
manifold in a 2D space. As observed in the Fig. 3 and 4,
our proposed model generalizes well on different identity
and expression deformations. It further demonstrates that
our model allows us to easily synthesize 3D faces with new
identity and expression, by sampling the latent spaces.

3. Computational Efficiency Comparison
In this experiment, we compare the computational effi-

ciency with two 3D face dense correspondence methods,
NICP [1] and [6]. The runtime of [6] is reported in their
paper. We run NICP and our method on a PC (with an
Inter Core i7-7700K @ 4.20GHz, 16GB RAM and a N-
VIDIA GeForce GTX 1080Ti) for 700 samples of BU3DFE
database [13], and calculate the average runtime. Table 1
gives per scan runtime of various methods. Here, the
NICP code 1 is re-implemented with additional landmark
constraint for faster convergence. Our proposed method
requires only 0.00219 seconds on GPU and 0.26 seconds
on CPU, which is at least two order of magnitude faster
than the existing methods. This is owing to the data-driven

1https://github.com/charlienash/nricp

Figure 3: Exploring interpolation results on identity latent space.
S1E1, S2E1 and S3E1 denote 3 subjects with neutral expression.
We interpolate the latent vector in stride of 1/6.

Figure 4: Exploring interpolation results on identity latent
space. S1E1, S1E2 and S1E3 denote one subject with 3 different
expressions. We interpolate the latent vector in stride of 1/6.

methodology we employ in our implementation, which
avoids the slow optimization procedure common in almost
all prior dense correspondence methods.

4. Additional Dense Correspondence Compar-
ison and Results

Figure 5 compares Bolkart et al. [5], NICP [1] and
the proposed method in terms of 3D face dense corre-
spondence results on one BU3DFE subject under sever
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Figure 6: Dense correspondence results by our proposed method on scans from BU3DFE [13], BU4DFE [12], Bosphorus [11], FRGC [9],
Texas-3D [7], MICC [3] and BJUT-3D [4]. Note the diversity of scan resolutions and scanners’ noises among these databases, and how
our reconstructions faithfully preserve those of the inputs. Also, the area inside the mouths can be precisely ignored regardless the amount
of expression intensity.
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Figure 5: Dense correspondence results for one BU3FE subject
under sever different expressions. The first column shows the input
scans. Column 2-4 are the results by Bolkart et al. [5], NICP [1]
and the proposed method.

Table 1: Efficiency comparison of different dense correspondence
methods.

Method Time (s)

NICP [1] 57.48
Fan et al. [6] 164.60

Proposed (CPU) 0.26
Proposed (GPU) 2.19× 10−3

Figure 7: Visualization of the semantic landmark error and per-
vertex fitting error on one BU3DFE example.

Figure 8: Landmarks used for semantic landmark evaluation of
(a) FRGC (10 points in Tab. 4 of the main paper) and (b) BFM (51
points in Tab. 6 of the main paper) databases.

different expressions. From these results, we can clearly see
that the proposed method performs well in reconstructing
expressive scans and capturing fine details. Additional 3D
face dense correspondence results of our proposed method
on some scans from the related 7 databases are shown in
Fig. 6. One can obviously observe from these results that
the reconstructed 3D faces do preserve the high frequency
details of the original scans (e.g., wrinkles and expressions),
despite the diverse resolutions, and distinct scanner-specific
noise among the different 3D face databases.

5. Details of Evaluation Experiments

Dense correspondence accuracy. Figure 7 visualizes
the semantic landmark error and per-vertex fitting error of
one BU3DFE example. It can be observed that the landmark
error is much large than per-vertex fitting error, due to the
inconsistent and imprecise annotations.

Shape representation on COMA. COMA
database [10] contains 20,466 3D face models. The
dataset is captured at 60fps with a multi-camera active
stereo system, which consists of 12 classes of expressions
from 12 different subjects. These expressions are complex
and asymmetric. The shapes in COMA are not specified
with expression labels. We manually select 4,000 neutral
models from all the 12 subjects for the identity decoder
training. We follow the train process as described in
Sec. 3.4 of the main paper.
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