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Abstract— Despite recent advancements in depth estimation
and face alignment, it remains difficult to predict the distance
to a human face in arbitrary videos due to the lack of
camera calibration. A typical pipeline is to perform calibration
with a checkerboard before the video capture, but this is
inconvenient to users or impossible for unknown cameras. This
work proposes to use the human face as the calibration object
to estimate metric depth information and camera intrinsics.
Our novel approach alternates between optimizing the 3D
face and the camera intrinsics parameterized by a neural
network. Compared to prior work, our method performs
camera calibration on a larger variety of videos captured by
unknown cameras. Further, due to the face prior, our method is
more robust to noise in 2D observations compared to previous
self-calibration methods. We show that our method improves
calibration and depth prediction accuracy over prior works
on both synthetic and real data. Code will be available at
https://github.com/yhu9/FaceCalibration.

I. INTRODUCTION

Camera calibration is a classic computer vision problem
which involves solving the internal parameters of a pinhole
camera to define the projection of 3D objects to the 2D imag-
ing plane [1]. Such calibration is crucial to any application
which needs the projection of a captured 2D image to the
more practically useful real-world 3D metric space.

There are two algorithm categories for camera calibration:
object-based and self-calibration. The former can provide
accurate calibration results, but requires active user partic-
ipation and the presence of a calibration object with known
3D dimensions such as a checkerboard [38]. The latter is
sensitive to noise in 2D correspondences, but can operate
without any 3D information [13], [14], [24]. In this work,
we propose a method in between the two which leverages
prior 3D information of human faces, i.e. a 3D Morphable
Model (3DMM), and uses 2D correspondences of the face
across a video to perform self-calibration. In doing so, our
method gains higher camera calibration performance com-
pared to existing self-calibration methods while having more
accessible use cases compared to object-based calibration.

Object-based calibration methods [6], [13], [26], [38], [40]
can acquire highly accurate intrinsic parameters, and only
require several images of a checkerboard. However, this
has made camera calibration an offline procedure where the
camera intrinsic is estimated within laboratory setting. This
causes two issues: i) the camera must be recalibrated man-
ually anytime the intrinsics are changed (zooming in/out),
and ii) the camera cannot be calibrated without imaging the
known calibration object. Although object-based methods are
the best for accurate calibration, this is often not practical for
consumer use where camera intrinsics change often. Further,

Fig. 1: Our self-calibration algorithm takes a face video as input
and estimates the 3D face, focal length, principal point, and head
pose. With calibration we can determine the distance to the face in
metric units.

if no access is available to the camera, e.g., existing YouTube
videos, it is impossible to use object-based calibration on that
camera. Our motivation is to therefore use a common 3D
object like a human face, which is more likely to appear
in images or videos. By being able to perform camera
calibration via a human face, it becomes more likely a in-
the-wild video can be calibrated.

Self-calibration methods [5], [8], [10], [14], [15], [24] can
theoretically be applied to any video since only 2D corre-
spondences are needed. However, in reality self-calibration
algorithms are extremely sensitive to noise in 2D obser-
vations to the point that they are rarely used in practice
[29]. Small errors in image correspondences can significantly
change optimization results on camera intrinsics using ex-
isting self-calibration methods [9], [14], [22], [24]. Further,
the initial solution provided to self-calibration must be fairly
accurate for proper optimization [5], [10].

As a method in between object-based and self-calibration,
we propose to utilize the human face as a calibration object
without knowing its exact 3D shape. Faces are commonly
found in videos in the wild, unlike other calibration objects
like checkerboards [38] or household items [10], allowing
our method to be applied in a wider range of scenarios.
Further, our method has higher calibration performance com-
pared to existing self-calibration algorithms which makes no
assumption on the existing 3D geometry. Finally, we are
motivated to utilize faces because there is a rich history of re-
search in face alignment and 3D face reconstruction [3], [20],
[31], [32]. Many algorithms [3], [17], [31] have excelled in
2D landmark localization on numerous datasets. Moreover,
3DMMs of faces [2] provides prior knowledge of the 3D
shape in metric space while fitting to diverse individuals.

https://github.com/yhu9/FaceCalibration


Problem Method Input Output # imgs # pts2D 3D K K pose 3D
Pn

P P3P [7] ✓ ✓ ✓ ✗ ✓ ✗ 1 3
EPnP [19] ✓ ✓ ✓ ✗ ✓ ✗ 1 ≥4
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te DLT [13] ✓ ✓ ✗ ✓ ✓ ✗ 1 ≥ 6
UPnP [26] ✓ ✓ ✗ ✓ ✓ ✗ 1 ≥ 6
DLS [40] ✓ ✓ ✗ ✓ ✓ ✗ 1 ≥ 6

Zhang [38] ✓ ✓ ✗ ✓ ✓ ✗ ≥ 2 ≥ 4
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Hartley [14] ✓ ✗ ✗ ✓ ✗ ✗ ≥ 2 ≥ 8
Louraki [22] ✓ ✗ ✗ ✓ ✗ ✗ ≥ 2 ≥ 8

Fetzer [9] ✓ ✗ ✗ ✓ ✗ ✗ ≥ 2 ≥ 8
Pedestrian [15] ✓ ✗ ✗ ✓ ✓ ✗ ≥ 3 ≥ 2

GP2C [10] ✓ ✗ ✗ ✓ ✓ ✓ 1 ≥ 4
BPnP [5] ✓ ✗ ✗ ✓ ✓ ✓ ≥ 1 ≥ 3

NN+AO (ours) ✓ ✗ ✗ ✓ ✓ ✓ ≥ 1 ≥ 4

TABLE I: The 3D shape and intrinsic parameter K can either be
estimated or required as input, depending on the problem. [Keys:
2D/3D=2D/3D points as input]. The number of images and points
indicate the problem size each method handles.

We propose to jointly solve for the 3D face shape and
camera intrinsic in an alternating fashion. Recent work
BPnP [5] has shown that PnP solutions can provide mean-
ingful direction for stochastic gradient descent optimization
on structure from motion and camera calibration problems.
Base on this work, we optimize the 3D face shape and
camera intrsinsic through the EPnP algorithm [19]. We are
the first work to perform optimization of the 3D shape and
camera intrinsic using alternating optimization. Compared to
object-based calibration work [5], [10], [38], we can perform
camera calibration on any videos containing a human face.
Compared to self-calibration methods [5], [8], [9], [14], [22],
[33], we demonstrate that our method is significantly more
robust to noise. Additionally, using faces as a calibration
object allows us to utilize SOTA face alignment methods
which have been refined over the years [2], [3], [17].

In summary, the contribution of this work is three fold:
1) This is the first camera calibration work that utilizes a

prior 3DMM of human faces as a calibration object to
determine camera intrinsics.

2) We propose a novel alternating optimization strategy
between the 3D shape and camera intrinsics by opti-
mizing through the EPnP solution.

3) We demonstrate our superior performance on focal
length and depth estimation on both synthetic and real
data over SOTA methods. Additionally, our method is
more robust to errors in 2D observations.

II. RELATED WORKS

Tab. I shows a list of camera calibration algorithms, sep-
arated into object-based methods and self-calibration based
on whether 3D information is required. Our method falls into
the self-calibration category, and is most similar to recently
proposed BPnP [5] and GP2C [10].
PnP. Given a 3D object and its corresponding observations in
2D, the problem of localizing the object pose into the scene
is known as the PnP problem. The minimal solution requires
3 points and is known as the P3P problem. Unfortunately,
the minimal solution degrades drastically in the presence of
noisy correspondences, and it is better to use the EPnP [19]
algorithm which utilizes all observed points.

Recently, Chen et al. [5] show that it is possible to train
neural networks through the P3P problem. We take this

knowledge a step further and show that camera calibration
can be performed using the EPnP [19] algorithm. We find
that EPnP is a better alternative to the P3P algorithm since
it can utilize all points to solve for pose while still being a
differentiable function. Our usage of the EPnP is significantly
faster since we do not need to use the RANSAC procedure
with P3P, and is more robust to noise thanks to the EPnP
algorithm’s formulation to utilize all points.

Object-based Calibration. The gold standard for object-
based calibration is Zhang’s method [38] which uses a planar
checkerboard with known 3D dimensions. Its efficacy comes
from the ability to use multiple views of a known planar
object in determining camera intrinsics and extrinsics while
easily acquiring accurate 2D-3D correspondences. Given
the known geometry of a checkerboard beforehand allows
users to match 3D geometry to 2D, allowing algorithms to
know the exact lengths of lines and features on the object.
Methods exist for other special objects: 1D objects [39], line
segments [18], [37], and spheres [35]. In contrast, DLT [13],
DLS [40], and UPnP [26] are single-image methods with
lower accuracy, but are more flexible as they can calibrate
with arbitrary 3D objects. Our goal is to bridge the gap
between object-based methods which performs exceptionally
well when given known 3D geometry, to self-calibration
which only requires images but has traditionally worse
performance.

Self-calibration. Unlike object-based calibration, self-
calibration requires 2D observations to perform calibration.
A typical pipeline is to generate corresponding points across
frames in order to solve
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fundamental matrices, and solve

for the Dual Image of the Absolute Conic (DIAC) which
best minimizes Kruppa’s constraints [7], [9], [13], [14], [22],
[24], [33]. The differing flavors of self-calibration comes
from derivation of alternative constraints from the original
Kruppa equation. However, we empirically demonstrate that
these approaches deteriorates severely with noise in 2D
observations and are often unusable in real scenarios where
the 2D correspondence information is not always reliable.

We are not the first self-calibration work to use people
in order to perform camera calibration. Earlier pedestrian
based camera-calibration have been proposed [15], [23],
[30], but these methods perform calibration by estimating
the vanishing point via the ground plane and detecting
upright humans. Although showing considerable promise,
these methods do not estimate the 3D shape and will fail
if not in view of a flat ground plane while tracking people.

Recently a few deep learning methods are proposed for
camera calibration. BPnP [5] creates a differentiable PnP [13]
solver. However, we find that BPnP is highly susceptible
to noisy data, and cannot provide reliable results for in-
the-wild videos. GP2C [10] solves for the fPnP problem
without a 3D object, by supervising a network to recognize
common household objects and their 3D shapes. GP2C
requires training a network with hard-to-acquire ground truth
(GT) pose, known 3D objects, and clean testing images
with centered and easily visible objects. We show that our



Fig. 2: Overview of our method for self-calibration using human faces. We use networks g(·) and h(·) to estimate the 3D shape and camera
intrinsics. Training is done entirely offline on 3DMM-generated synthetic face landmarks under varying pose and camera intrinsics. Forward
processes are represented by blue arrows and colored arrows indicate gradient computation. During testing, our Alternating Optimization
alternates between 1) camera intrinsic estimation, and 2) 3DMM face shape estimation.

method is more robust to noise compared to BPnP [5], and
outperforms it on both real and synthetic data.
Face Shapes. Recent work has shown success in acquiring
wrinkle-level details for the 3D face shape reconstructed
from 2D images [3], [11], [20], [31], [32], [41]. Blanz et
al. [2] have also shown that one can represent faces with met-
ric information by a set of linear bases, forming a 3DMM.
3DMM offers a strong prior to the 3D geometry of faces in
videos, while face alignment [3], [17], [20], [20] can acquire
the 2D correspondences in a variety of pose and lighting.
By utilizing the prior 3D information captured by 3DMM
and the 2D face alignment and pose detection, our algorithm
is able to robustly acquire camera intrinsic information by
observing faces within videos. We take advantage of prior
work in faces for our camera calibration method.

III. METHODOLOGY

Our algorithm can be summarized into training on syn-
thetic data, and applying optimization during testing, as
shown in Fig. 2. We elect to utilize a network based model
to overparameterize the unknown 3D shape and camera
intrinsics through a neural network. We train two separate
networks for the camera intrinsic and 3D shape estimation
using 2D facial landmark correspondences across synthetic
videos as input. During testing, we optimize the results of
this solution by finetuning the weights of both the 3D shape
and camera intrinsic estimation networks.

Previous methods typically do not rely on prior data
and attempt to directly solve the self-calibration problem
of estimating both 3D shape, camera intrinsics, and pose
simultaneously. However, camera self-calibration is known to
be highly sensitive to noise in 2D correspondences [10], [14],
[24], and current formulations which directly solve the self-
calibration problem rely on highly accurate correspondences
for its estimations. Unlike prior self-calibration work, our
method takes advantage of a prior 3DMM representation of
a human face to estimate an accurate 3D shape to perform
self-calibration. By utilizing a neural network as a model,
we can pre-train on synthetic data to predict to predict 3D
shape and camera intrinsics from 2D information. Moreover,
by finetuning a trained network during testing, our method
is more robust and can still perform well under severe noise
in 2D correspondences.

A. Existing Formulas
Camera Projection. We adopt the standard pinhole camera
model. Given a 3D shape and a set of corresponding 2D
points, the projection of the 3D points in the world coordi-
nates onto the image coordinates can be explained through
the intrinsic and extrinsic matrices up to a scale,
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where PI
j are the 2D landmarks of the j-th frame in homo-

geneous coordinates, j = [1,M ], M is the frame number,
Pw are the 3D points in homogeneous coordinates, K is the
intrinsic matrix, R is the 3× 3 orthonormal rotation matrix,
t is the translation vector, and λ is the depth in z-direction.
Intrinsic Matrix. Assuming zero skew s and square pixels,
we parameterize the intrinsic matrix with 3 degrees of
freedom (DoF): the focal length f and principal point px, py .

K =

f 0 px
0 f py
0 0 1

 . (3)

3DMM. We represent the 3D facial landmarks using the
formulation defined by Blanz and Vetter [2],

Pw = S̄+V ∗ diag(σ) ∗α, (4)

where S̄ is the mean shape, V is the 3DMM basis vectors, σ
is the eigenvalues diagonalized in a descending order, and α
is the 3DMM coefficients to be estimated. We use the public
3DMM fitter [42] which has 199 basis vectors to define the
3DMM shape.
3DMM offers several advantages. Thanks to the acqui-

sition procedure of gathering 3D face scans, the predicted
3D shape is naturally in metric units, which carries over to
enable the pose prediction on the same metric scale. Another
is how the usage of 3DMM leverages face priors to predict
realistic 3D facial geometry captured during its creation,
avoiding solutions with severe perspective ambiguity and
unrealistic shape. Finally, using 3DMM reduces the number
of unknowns for determining the 3D shape from 3N where
N is the number of points to the number of basis vectors
which is 199 in our case and is typically less than N .



We note that it is possible to add expression basis such
as [4], but due to the minimal changes of facial expression in
our video data we elect to exclude this extension. We leave
the handling of facial expressions to future work.

B. Training

Unlike previous methods, we integrate Deep Neural Net-
works (DNNs) to predict the 3D shape and the focal length
based on the input 2D points. We propose to optimize the
DNNs in alternating fashion instead of directly optimizing
shape and focal length directly due to the sensitivity of
the focal length parameter. Previous methods which directly
optimize both shape and focal length together can quickly
degenerate to wrong solutions when in the presence of
noisy 2D and 3D correspondences. Our method attempts to
decrease this sensitivity by introducing a DNNs pretrained on
ground truth synthetic data to predict 3D shape and camera
intrinsics from 2D points, and finetune the DNNs instead
of direct optimization of 3D shape and focal length. By
finetuning the DNNs during optimization, we find that we are
able to avoid the sensitivity to noise previous self-calibration
methods face while also leveraging the pre-trained solution
as a reasonable starting point of the optimization problem.
Model. Given 2D points PI

1→M = PI
1, ...,P

I
M , we define

networks g(·) and h(·) parameterized by θg and θh to predict
α, the coefficients of the 3DMM [2], and the 3 DoF of the
intrinsic matrix: f , px, py . Since the videos are assumed to
have constant intrinsics and 3D shape, we average the α
and intrinsic matrix estimation across all frames. We denote
the 3D shape prediction network g(·) and intrinsic prediction
network h(·) as

g(PI
1→M ; θg) = α, (5) h(PI

1→M ; θh) = K. (6)

We use a variant of PointNet [28] for both g(·) and h(·).
Note that PointNet takes an arbitrary number of points as
input. As result, this allows us to define PI ∈ RM×2×N . Our
method is able to make predictions with a dynamic length
on M and N .

Since the original PointNet [28] takes 3D points as input,
we make several modification to handle 2D points instead.
We first change the 3×3 transformation layer to a 2×2 trans-
formation. Next we adjust the input of the first convolutional
layer to take 2D points instead of 3D ones. Finally, the last
layer of the network is adjusted to output a 3-dim vector
for the intrinsic matrix estimation, and a 199-dim vector
representing the 3DMM coefficients.
Synthetic Training. We pre-train both g(·) and h(·) on
synthetic data and use them to predict an initial solution
at inference. Our synthetic data is generated with known
intrinsics and 3D shape. Thus, we directly supervise the
networks via a shape loss Lg and focal length loss Lh,

Lg = ||α− α̃||, (7)

Lh =
∥∥[f, px, py]− [

f̃ , p̃x, p̃y
]∥∥ , (8)

where α̃ and f̃ denote the respective ground truths.

Algorithm 1: Alternating Optimization.
1 Input: PI

1→M
2 Output: Pw , f , [R|t]1→M

3 Pw = g(PI
1→M |θg);

4 K = h(PI
1→M |θh);

5 for 1 to q do
6 for 1 to 5 do
7 K = h(PI

1→M |θh);
8 [R|t]1→M = EPnP(PI

1→M ,Pw,K);
9 L = ln(L2D) + β ∗ ln(L∆P) + Lpp;

10 θh = θh − ∂L
∂θh

;
11 end
12 for 1 to 5 do
13 Pw = g(PI

1→M |θg);
14 [R|t]1→M = EPnP(PI

1→M ,Pw,K);
15 L = ln(L2D) + β ∗ ln(L∆P) + Lpp;
16 θg = θg − ∂L

∂θg
;

17 end
18 end

C. Inference by Alternating Optimization

Compared to previous methods which optimize the 3D
shape and intrinsics jointly, we alternate between the opti-
mization of the two networks. We use Adam [16] to optimize
the network outputs of Eq. 5 and Eq. 6 in alteration. We
depict our optimization process in Alg. 1.

Similar to BPnP [5] we optimize both networks through a
PnP algorithm, however we utilize the EPnP algorithm [19]
rather than P3P algorithm with RANSAC in [5]. We choose
to use the EPnP due to its ability to efficiently handle an
arbitrary number of points in O(n) time while being differ-
entiable. By estimating the pose using a closed-form solution
with the EPnP, we sidestep the challenge of estimating pose
via network. Hence, we are able to finetune the network
parameters with emphasis on the 3D shape and focal length,
instead of additionally optimizing the pose per frame directly.
We denote EPnP as a differentiable function,

EPnP(PI
1→M ,PW ,K) = [R|t]1→M . (9)

We implement the EPnP within the automatic differentia-
tion engine of PyTorch [25], in contrast to BPnP [5] which
defines their own implicit function for the derivative. Note
that the EPnP defines several solutions which can be used
to determine the pose. We opt to always use the first linear
solution since we observe the initial solution is similar in
accuracy to the other solutions. We additionally apply a fixed
10 iterations of Gauss Newton optimization to improve the
initial pose estimation. We refer to the original EPnP paper
for additional details on the algorithm [19].
Alternating Optimization.

We test both joint optimization of all parameters of g(·)
and h(·), but ultimately we find that an alternating opti-
mization strategy is best for this problem. By looking at
Eq. 9, it can be observed that the pose of the 3D object
is dependent on both PW and K. However, both PW and
K are highly different quantities with severe differences in
both scale and purpose, making the joint optimization of the
parameters incredibly difficult. Therefore, we choose to do



an alternating optimization of both g(·) and h(·) instead of
jointly optimizing both.

To start the optimization, we use the initial network
parameters learned during pre-training on synthetic data to
predict Pw and K. We next train the intrinsic network h(·)
by predicting the intrinsic matrix K for 5 iterations, then
switch to finetuning the 3D shape network g(·) by predicting
PW for 5 iterations. We use L2D in Eq. 11 for training
both g(·) and h(·). We stop optimization after a fixed global
number of iteration q.
Loss. The final loss used in the alternating optimization is

L = ln(L2D) + β ∗ ln(L∆P) + Lpp, (10)

where β is a fixed variable depending on the magnitude of
L∆P at the initial solution.

Using Eq. 4−6, and 9, we solve for the right hand side of
Eq. 1 along with the scale λ. We supervise the network θg
and θh using a reprojection loss defined as:

L2D =
1

M

M∑
j=1

||PI
j − λAjP

w||2. (11)

We further apply a consistency loss to encourage a smaller
range of motion. The consistency error is meant to ensure
that the solution across all video frames is consistent with a
person’s realistic range of motion. Minimizing the reprojec-
tion error of Eq. 11 does not necessarily ensure the average
motion per frame is as expected for a person, and can cause
predictions where the average motion is no longer feasible.
The predicted motion can be calculated by projecting the
3D world coordinates to the camera coordinates using the
currently predicted pose by Eq. 9: Pc

j =
[
R|t

]
j
Pw. We

then define the motion consistency loss as:

L∆P =
1

M

M∑
j=2

||Pc
j −Pc

j−1||2. (12)

It is typically assumed that the principal point is close
to the center of the image. Therefore, we add a strategy
proposed by [12] which adds a bias towards the center of
the image a-priori:

Lpp = ωpp||
[
px, py

]
−
[
px, py

]
||2. (13)

Lpp equals to zero when px, py are at the center of the image
px, py . We set the weight wpp to a small value of 1e−5.

Similar to Grabner et al. [10] who solves for the loga-
rithmic parameterization of the focal length, we minimize
the logarithmic loss of Eq. 11 and Eq. 12. We find that
minimization of Eq. 11 has an inherent bias towards larger
focal lengths due to an inverse relationship between the
gradient magnitude and the focal length. Taking the loga-
rithmic loss removes this bias and ensures a larger gradient
at the minimum solution. See supplementary Sec. 5 for more
details.

Dataset Walk GT int. GT 3D # Vid. # Sub. Face size (pix2) Depth (meters)
Synthetic ✓ ✓ ✓ 50 50 85.53± 54.23 1.83± 0.67

BIWI ✗ ✓ ✓ 24 24 78.24± 10.04 0.95± 0.14
BIWI-ID ✓ ✓ ✗ 105 50 25.64± 6.84 3.71± 1.78
CAD-120 ✓ ✗ ✗ 40 4 41.19± 6.89 2.11± 0.31

Human3.6M ✓ ✗ ✓ 720 6 27.34± 8.47 5.08± 0.83

TABLE II: Summary of synthetic and real datasets for evaluation.

IV. EXPERIMENTS

Synthetic Dataset. As our method only works with 2D
landmark sequences, it is convenient to generate synthetic
data for training and testing. To do so, we randomly generate
3DMM coefficients α from a uniform random distribution
with a deviation of 3. The coefficients are then used to
compute Pw via Eq. 4 and project Pw onto image co-
ordinates using a random camera intrinsic and pose. By
defining a random initial and ending pose, we use a smooth
spherical linear interpolation of the rotation matrix and a
linear interpolation of the translation to generate a 100-frame
video of 2D landmarks. We limit pose to a max pitch, yaw,
and roll to 30◦, and limit translation to ensure faces 1 − 4
meters from the camera. We generate all synthetic videos on
the fly during training. For testing we synthesize 5 videos
for each focal length within [500, 1400] pixels at intervals
of 100 totaling 50 videos. For each video, we sample the
principal point from a 2D Gaussian distribution at the image
center with a 10-pixel STD in both px and py. Similar to [10],
all evaluations is the median error over all video sequences.
Real Datasets. While there are many public face datasets,
few come with GT in either the intrinsics, depth or 3D
shapes, which are necessary for quantitative evaluation. We
therefore utilize 4 RGBD human datasets which we prepro-
cess using automatic face detection [36], cropping [34], and
alignment [42]. A summary of each dataset and the data it
provides is shown in Tab. II.

While Human3.6M contains 11 subjects, we only test on
6 subjects where GT depth and 3D shape are available. For
Human3.6M, the dataset surrounds subjects with 6 cameras
including angles behind the individual. We therefore remove
any cameras and frames where the subject is not facing the
camera.

For Human3.6M and CAD-120 which does not provide
GT camera intrinsics, we utilize the depth information to
acquire pseudo ground truth camera intrinsics. We list further
details on preprocessing on supplementary materials.
Implementation Details. For training and inference, we
use Adam [16] optimizer, with a learning rate of 1e-4 for
h(·), and 5e-1 for g(·). For all experiments, we set β =
1e-3 for walking sequences and 1e-1 for still sequences as
walking has a larger range of motion. To make sequence-
level decision on walking vs. still at inference, we compute
Eq. 12 under the initial solution and classify videos as still if
L∆P is less than 40mm between frames. for both networks,
we utilize the point net implementation by [27] with our
added modifications for handling 2D points instead of 3D
points.
Baselines. We select baselines that are representative of both
object-based calibration and self-calibration. Some baselines
do not estimate a particular error metric due to a lack of



Method ef ed e3D (mm) epx (pix) epy (pix) e2D (pix)

DLT [13] 0.546 0.436 S̄ 0.386 1.069 0.633
UPnP [26] 0.427 0.579 S̄ – – 2.908

Hartley [14] 0.302 – – 0.548 0.566 –
Louraki [14] 0.103 – – 0.168 0.220 –
Fetzer [14] 0.137 – – 0.022 0.034 –
BPnP [5] 0.165 0.142 2.500 0.016 0.021 0.029
NN (ours) 0.171 0.226 3.470 0.105 0.293 0.911
NN+BPnP 0.167 0.166 3.459 0.001 0.001 0.882

NN+JO 0.170 0.164 3.211 0.001 0.003 1.151
NN+SO 0.212 0.192 3.212 0.001 0.001 0.709

NN+AO (ours) 0.090 0.107 2.988 0.006 0.017 0.265

TABLE III: Synthetic test set evaluation. For methods that do
not output 3D shapes, S̄ denotes using the mean 3D face to
localize landmarks. Our pretrained network is denoted by NN,
and BPnP, JO, SO, AO denote optimization strategies. [Key: Best,
Second Best]

3D estimation or pose estimation, and cannot handle the
scenario we care for (any video with a human face facing
the camera). Additionally, certain baselines are excluded if
they cannot be handle camera calibration on videos of faces.
Current pedestrian based camera-calibration methods [15],
[21] cannot be applied in indoor scenarious where full
view of the ground plane is not visible along with multiple
pedestrians due to the methods being based on pedestrian
height distribution.

Object-based calibration baselines [13], [26] are included
to show the effects of an incorrect 3D shape when performing
object-based calibration. Self-calibration methods [5], [9],
[14], [22], [24] can consume the detected facial landmarks on
unconstrained scenes without assumption on the 3D shape.
However, these methods only estimate the camera intrinsics
and do not additionally predict the 3D shape, depth, or
reprojection error. Methods such as [9], [14], [22], [24]
are SOTA traditional solutions without deep learning. The
recently introduced BPnP [5] proposes a SOTA deep learning
solution to camera calibration from 2D correspondences. We
show that our method performs better against all previous
algorithms on both our synthetic and publicly available real
data. To compare with BPnP optimization, NN+BPnP uses
our pretrained face network to provide an initial solution,
then we optimize f(·), g(·) using BPnP.

In order to show the advantage of our alternating opti-
mization (AO) strategy, we additionally perform joint opti-
mization (JO) and sequential optimization (SO) on our initial
NN solution. Instead of optimizing both the 3D shape and
the camera intrinsic in an alternating fashion, (SO) looks
to first optimize the 3D shape until convergence, and then
the camera intrinsic afterwards. (JO) optimizes both the 3D
shape and the camera intrinsic at the same time.

Error Metrics. We report the relative depth error,
ed = 1

M

∑M
j=1 ||m(pc

j)−m(p̃c
j)||2/||m(p̃c

j)||2, relative fo-
cal length error, ef = |f − f̃ |/f̃ , relative px error, px =
|px − p̃x|/p̃x, and relative py error, py = |py − p̃y|/p̃y
following recent work [10], where m(p) computes the mean
of 68 landmarks in p. To understand the overall alignment
of the predicted pose and 3D shape, we further report the
2D reprojection error in pixels and the 3D shape error,
e3D = ||Pw − P̃w||2, in millimeters. The 2D reprojection
error e2D essentially equals to L2D in Eq. 11.

Dataset Method ef ed e3D (mm) epx (pix) epy (pix) e2D

B
IW

I

DLT [13] 1.209 5.765 S̄ 0.595 1.279 0.356
UPnP [26] 4.117 4.133 S̄ – – 3.245

Hartley [14] 0.754 – – 0.251 0.400 –
Louraki [22] 0.426 – – 0.268 0.228 –

Fetzer [9] 0.538 – – 0.007 0.013 –
BPnP [5] 0.664 0.683 9.936 0.013 0.018 0.440
NN (ours) 0.669 0.691 10.339 0.100 0.288 0.939

NN+AO (ours) 0.101 0.091 10.176 0.064 0.176 0.745

B
IW

I
R

G
B

D
-I

D

DLT [13] 1.632 1.543 S̄ 0.080 1.193 0.116
UPnP [26] 1.206 1.178 S̄ – – 1.007

Hartley [14] 0.744 – – 0.250 0.324 –
Louraki [22] 0.662 – – 0.387 0.222 –

Fetzer [9] 0.845 – – 0.001 0.005 –
BPnP [5] 0.675 0.672 – 0.322 0.479 0.304
NN (ours) 0.220 0.379 – 0.088 0.274 0.428

NN+AO (ours) 0.133 0.231 – 0.026 0.042 0.377

C
A

D
-1

20

DLT [13] 1.788 1.202 S̄ 0.265 0.861 0.274
UPnP [26] 7.215 6.894 S̄ – – 4.110

Hartley [14] 0.784 – – 0.192 0.306 –
Louraki [22] 0.732 – – 0.255 0.180 –

Fetzer [9] 0.679 – – 0.001 0.005 –
BPnP [5] 1.178 1.673 – 0.103 0.129 5.873
NN (ours) 0.237 0.343 – 0.359 0.376 0.785

NN+AO (ours) 0.151 0.126 – 0.023 0.063 0.376

H
um

an
3.

6M

DLT [13] 1.289 1.227 S̄ 0.228 0.453 0.182
UPnP [26] 0.436 0.421 S̄ – – 3.056

Hartley [14] 0.779 – – 0.134 0.377 –
Louraki [22] 0.618 – – 0.201 0.202 –

Fetzer [9] 0.400 – – 0.359 0.520 –
BPnP [5] 0.366 0.902 9.714 0.016 0.017 3.114
NN (ours) 0.409 0.370 6.673 0.410 0.394 1.763

NN+AO (ours) 0.350 0.318 6.014 0.006 0.006 0.789

TABLE IV: Real dataset evaluation. We estimate e3D whenever
GT is available. S̄ denotes we use the mean 3D face to predict the
intrinsics and pose. [Key: Best, Second Best].

A. Synthetic Data

Tab. III summarizes comparisons on the synthetic test
set. We emphasize that our method can estimate the camera
intrinsic, relative depth, and 3D shape at comparable accu-
racy compared to prior work with only the base algorithm
denoted by NN, supporting the usage of a neural network
for inference of the camera intrinsic. We validate that our
alternating optimization strategy outperforms the recently
proposed BPnP, and simple strategy of (JO) and (SO). It
can be seen that our method reduces errors ef , ed, epx, epy
on the entire synthetic dataset compared to SOTA methods.
We note that e2D is a commonly used objective function for
existing methods [5], [10], [13], [26], but minimizing this
error is not always reflective of better camera intrinsic or
depth estimation, which are the most significant metrics in
practice.

B. Real Data

Our results on real datasets are summarized in Tab. IV.
Compared to baselines, our method has lowest errors on
ef and ed on all RGBD face datasets. We consistently find
that object based methods such as DLT and UPnP which
assumes the 3D shape as the mean 3DMM to perform the
worst. Previous SOTA self-calibration methods which require
clean 2D correspondences for accurate fundamental matrix
estimation cannot handle the noise present in the 2D corre-
spondences of the real dataset. Compared to their synthetic
dataset counterpart in Tab. III, self-calibration algorithms
perform much worse in Tab. IV. However, our method still
provides reliable results despite noisy 2D correspondences.
Additionally, our optimization strategy consistently reduces
all errors of the initial solution provided by our pretrained
model.



Problem Setting ef ed e3D (mm) epx epy e2D (pix)
Calib. Ideal 0.001 0.002 – 0.000 0.000 0.007
SfM – 0.003 1.719 – – 0.141

Calib. Non-ideal 0.182 0.176 3.813 0.000 0.001 1.340
SfM 1.336 1.285 3.182 0.000 0.000 1.156

TABLE V: Optimization of 3D shape and focal length separately
under ideal and semi-ideal setting, on the synthetic test set.

Fig. 3: Relative depth error (a) and focal length error (b) at different
amounts of noise in 2D landmarks and 3D shape.

C. Ablation Study
We perform ablation on both synthetic and real data by

leveraging the numerous RGBD datasets gathered.
3D Shape vs Calibration. We wish to better understand the
importance of predicting 3D shape as part of the camera
calibration problem. Therefore, we propose to investigate
the optimization of the camera intrinsic and the 3D shape
under ideal and non-ideal conditions to get the upper and
lower bound of our method. We show this analysis in
Tab V. Assuming there is always some noise in 2D, the
ideal condition is when 3D, or camera intrinsic is known,
and the last unknown variable is estimated. The non-ideal
condition assumes a mean 3D shape or a focal length of
2, 000 instead of the ground truth, and again estimates the
unknown variable.

Both camera intrinsic and 3D shape optimization perform
accurately in the ideal setting. However, both problems break
down in the non-ideal case. This supports the idea that
the 3D shape and the camera intrinsic problem must be
solved jointly in order to reach the preferable lower bound
performance. Indeed, our results in Tab. III are closer to the
upper bound ef and ed of the ideal condition in Tab. V.
Noise Robustness. We add varying amount of noise to the
GT 3D shape and 2D landmarks of the synthetic test set,
to understand the required accuracy of 2D face alignment
and 3D estimation. We plot heat maps of focal length and
depth error with varying noises in Fig. 3. For each noise
combination, we select the focal length which minimizes
Eq. 11 by exhaustively searching a focal length range in
integer intervals.

In practice the focal length tends to be inaccurate with
either noise in 2D or 3D. The worst case appears to be
when the 3D noise is the largest and 2D noise is the lowest.
In this case, calibration attempts to fit an incorrect 3D shape
onto 2D landmarks throughout the video. Despite the correct
landmarks, with the wrong 3D shape the predicted focal
length under the objective will be incorrect. Thus, 3D shape
prediction is crucial for an accurate focal length estimation.

Next, we compare with other self-calibration methods
in 2D noise robustness. We add 2D noise from [0, 5] at

Fig. 4: Focal length, depth, principal point, and shape errors on the
synthetic test set at varying levels of noises added to 2D landmarks.
Each point shows the median and STD over 20 runs.

Fig. 5: Relative depth error (a) and focal length error (b) vs video
lengths and landmarks, selected w.r.t. the order in (c).

intervals of 0.5 to our entire synthetic video test set and
show the results in Fig. 4. We plot the median and stan-
dard deviation over 20 trials for ef , ed, e3D, and epc =
1
w ||

[
px py

]
−
[
p̃x p̃y

]
||2, where w is the image width.

Note that our method remains reliable despite noise added to
2D landmarks, whereas all prior self-calibration algorithms
have significantly worse performance when noise is added.
Compared to BPnP, our optimization is worse at zero noise
for 3D estimation, but significantly outperforms it at noise
levels greater than 0.5. This validates our method better
handles the noisier real data over previous methods.
Impact of Video Length and Landmarks on Synthetic.
We study the impact of the video length and the number of
landmarks on both synthetic and real data. We plot heatmaps
of the relative focal length and depth errors by varying the
number of video frames and landmarks, using our pre-trained
network in Fig. 5. To form a subset of 68 landmarks, we
follow a fixed order to evenly sample 5 face regions: left eye,
right eye, nose, mouth, and contour. Without surprise, less
frames and landmarks lead to lower performance. Further,
Fig. 5 suggests a favorable balance is at ≈30 landmarks and
≈50 frames, if low computation is desirable. It is important
to have algorithms handling both image and video input
for this problem, as current calibration is highly susceptible
to outliers within the data. Hence, by leveraging multiple
frames and landmarks, our method becomes more robust.
Impact of Video Length and Depth on Real Data. We



Fig. 6: Relative focal length error (a) and depth error (b) at varying
depths and video lengths on all 4 real datasets.

bin the GT depth at intervals of 0.5 from 1 to 10 meters,
then computing the average error across all real datasets as
plotted in Fig. 6(a). Intuitively, errors are higher for frames
further away. This effect becomes particularly noticeable
after 4 meters, indicating the difficulty of camera calibration
in the Human3.6M dataset whose depth is ≈ 5 meters. We
attribute this to the small face size (27 pixels as in Tab. II)
and the resultant noisy landmarks on low-resolution imagery.
Our method may operate on faces with much larger GT
depth, as high-resolution videos increase in availability.

We validate the impact of video length on real data in
Fig. 6(b). While the overall performance improves with more
frames, it does fluctuate more than Fig. 5, likely due to much
more short real videos than longer ones, and more “irregular”
noise present in real data.

V. CONCLUSION

This work carries out camera self-calibration using faces
without knowing the exact 3D geometry. We propose to
predict the 3D shape and camera intrinsic under alternating
optimization while using a differentiable EPnP pose estima-
tion derived from both predictions as supervision. By using
a face as the calibration object, we determine the metric
distance to the person in the camera, and operate on a
large range of videos. We compare with current SOTA on
self-calibration algorithms on human faces and show that
ours is repeatedly best in 3D estimation and calibration
performance.
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