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ABSTRACT

It has been well recognized that neural network based image classifiers are easily
fooled by images with tiny perturbations crafted by an adversary. There has been a
vast volume of research to generate and defend such adversarial attacks. However,
the following problem is left unexplored: How to reverse-engineer adversarial
perturbations from an adversarial image? This leads to a new adversarial learn-
ing paradigm—Reverse Engineering of Deceptions (RED). If successful, RED
allows us to estimate adversarial perturbations and recover the original images.
However, carefully crafted, tiny adversarial perturbations are difficult to recover
by optimizing a unilateral RED objective. For example, the pure image denoising
method may overfit to minimizing the reconstruction error but hardly preserves
the classification properties of the true adversarial perturbations. To tackle this
challenge, we formalize the RED problem and identify a set of principles crucial
to the RED approach design. Particularly, we find that prediction alignment and
proper data augmentation (in terms of spatial transformations) are two criteria to
achieve a generalizable RED approach. By integrating these RED principles with
image denoising, we propose a new Class-Discriminative Denoising based RED
framework, termed CDD-RED. Extensive experiments demonstrate the effective-
ness of CDD-RED under different evaluation metrics (ranging from the pixel-level,
prediction-level to the attribution-level alignment) and a variety of attack generation
methods (e.g., FGSM, PGD, CW, AutoAttack, and adaptive attacks). Codes are
available at link.

1 INTRODUCTION

Deep neural networks (DNNs) are susceptible to adversarially-crafted tiny input perturbations during
inference. Such imperceptible perturbations, a.k.a. adversarial attacks, could cause DNNs to draw
manifestly wrong conclusions. The existence of adversarial attacks was first uncovered in the domain
of image classification (Goodfellow et al., 2014; Carlini & Wagner, 2017; Papernot et al., 2016b),
and was then rapidly extended to the other domains, such as object detection (Xie et al., 2017; Serban
et al., 2020), language modeling (Cheng et al., 2020; Srikant et al., 2021), and medical machine
learning (Finlayson et al., 2019; Antun et al., 2020). Despite different applications, the underlying
attack formulations and generation methods commonly obey the ones used in image classification.

A vast volume of existing works have been devoted to designing defenses against such attacks, mostly
focusing on either detecting adversarial examples (Grosse et al., 2017; Yang et al., 2020; Metzen
et al., 2017; Meng & Chen, 2017; Wójcik et al., 2020) or acquiring adversarially robust DNNs
(Madry et al., 2017; Zhang et al., 2019; Wong & Kolter, 2017; Salman et al., 2020; Wong et al.,
2020; Carmon et al., 2019; Shafahi et al., 2019). Despite the plethora of prior work on adversarial
defenses, it seems impossible to achieve ‘perfect’ robustness. Given the fact that adversarial attacks
are inevitable (Shafahi et al., 2020), we ask whether or not an adversarial attack can be reverse-
engineered so that one can estimate the adversary’s information (e.g., adversarial perturbations)
behind the attack instances. The above problem is referred to as Reverse Engineering of Deceptions
(RED), fostering a new adversarial learning regime. The development of RED technologies will also
enable the adversarial situation awareness in high-stake applications.
∗Equal contributions.
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To the best of our knowledge, few work studied the RED problem. The most relevant one that we are
aware of is (Pang et al., 2020), which proposed the so-called query of interest (QOI) estimation model
to infer the adversary’s target class by model queries. However, the work (Pang et al., 2020) was
restricted to the black-box attack scenario and thus lacks a general formulation of RED. Furthermore,
it has not built a complete RED pipeline, which should not only provide a solution to estimating
the adversarial example but also formalizing evaluation metrics to comprehensively measure the
performance of RED. In this paper, we aim to take a solid step towards addressing the RED problem.

1.1 CONTRIBUTIONS

The main contributions of our work is listed below.

• We formulate the Reverse Engineering of Deceptions (RED) problem that is able to estimate
adversarial perturbations and provides the feasibility of inferring the intention of an adversary, e.g.,
‘adversary saliency regions’ of an adversarial image.

•We identify a series of RED principles to effectively estimate the adversarially-crafted tiny pertur-
bations. We find that the class-discriminative ability is crucial to evaluate the RED performance. We
also find that data augmentation, e.g., spatial transformations, is another key to improve the RED
result. Furthermore, we integrate the developed RED principles into image denoising and propose a
denoiser-assisted RED approach.

•We build a comprehensive evaluation pipeline to quantify the RED performance from different
perspectives, such as pixel-level reconstruction error, prediction-level alignment, and attribution-level
adversary saliency region recovery. With an extensive experimental study, we show that, compared
to image denoising baselines, our proposal yields a consistent improvement across diverse RED
evaluation metrics and attack generation methods, e.g., FGSM (Goodfellow et al., 2014), CW (Carlini
& Wagner, 2017), PGD (Madry et al., 2017) and AutoAttack (Croce & Hein, 2020).

1.2 RELATED WORK

Adversarial attacks. Different types of adversarial attacks have been proposed, ranging from
digital attacks (Goodfellow et al., 2014; Carlini & Wagner, 2017; Madry et al., 2017; Croce & Hein,
2020; Xu et al., 2019b; Chen et al., 2017a; Xiao et al., 2018) to physical attacks (Eykholt et al.,
2018; Li et al., 2019; Athalye et al., 2018; Chen et al., 2018; Xu et al., 2019c). The former gives the
most fundamental threat model that commonly deceives DNN models during inference by crafting
imperceptible adversarial perturbations. The latter extends the former to fool the victim models in the
physical environment. Compared to digital attacks, physical attacks require much larger perturbation
strengths to enhance the adversary’s resilience to various physical conditions such as lightness and
object deformation (Athalye et al., 2018; Xu et al., 2019c).

In this paper, we focus on `p-norm ball constrained attacks, a.k.a. `p attacks, for p ∈ {1, 2,∞}, most
widely-used in digital attacks. Examples include FGSM (Goodfellow et al., 2014), PGD (Madry et al.,
2017), CW (Carlini & Wagner, 2017), and the recently-released attack benchmark AutoAttack (Croce
& Hein, 2020). Based on the adversary’s intent, `p attacks are further divided into untargeted attacks
and targeted attacks, where in contrast to the former, the latter designates the (incorrect) prediction
label of a victim model. When an adversary has no access to victim models’ detailed information
(such as architectures and model weights), `p attacks can be further generalized to black-box attacks
by leveraging either surrogate victim models (Papernot et al., 2017; 2016a; Dong et al., 2019; Liu
et al., 2017) or input-output queries from the original black-box models (Chen et al., 2017b; Liu et al.,
2019; Cheng et al., 2019).

Adversarial defenses. To improve the robustness of DNNs, a variety of approaches have been
proposed to defend against `p attacks. One line of research focuses on enhancing the robustness
of DNNs during training, e.g., adversarial training (Madry et al., 2017), TRADES (Zhang et al.,
2019), randomized smoothing (Wong & Kolter, 2017), and their variants (Salman et al., 2020;
Wong et al., 2020; Carmon et al., 2019; Shafahi et al., 2019; Uesato et al., 2019; Chen et al., 2020).
Another line of research is to detect adversarial attacks without altering the victim model or the
training process. The key technique is to differentiate between benign and adversarial examples by
measuring their ‘distance.’ Such a distance measure has been defined in the input space via pixel-level
reconstruction error (Meng & Chen, 2017; Liao et al., 2018), in the intermediate layers via neuron
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activation anomalies (Xu et al., 2019a), and in the logit space by tracking the sensitivity of deep
feature attributions to input perturbations (Yang et al., 2020).

In contrast to RED, adversarial detection is a relatively simpler problem as a roughly approximated
distance possesses detection-ability (Meng & Chen, 2017; Luo et al., 2015). Among the existing
adversarial defense techniques, the recently-proposed Denoised Smoothing (DS) method (Salman
et al., 2020) is more related to ours. In (Salman et al., 2020), an image denoising network is prepended
to an existing victim model so that the augmented system can be performed as a smoothed image
classifier with certified robustness. Although DS is not designed for RED, its denoised output can be
regarded as a benign example estimate. The promotion of classification stability in DS also motivates
us to design the RED methods with class-discriminative ability. Thus, DS will be a main baseline
approach for comparison. Similar to our RED setting, the concurrent work (Souri et al., 2021) also
identified the feasibility of estimating adversarial perturbations from adversarial examples.

2 REVERSE ENGINEERING OF DECEPTIONS: FORMULATION AND
CHALLENGES

In this section, we first introduce the threat model of our interest: adversarial attacks on images.
Based on that, we formalize the Reverse Engineering of Deceptions (RED) problem and demonstrate
its challenges through some ‘warm-up’ examples.

Preliminaries on threat model. We focus on `p attacks, where the adversary’s goal is to generate
imperceptible input perturbations to fool a well-trained image classifier. Formally, let x denote a
benign image, and δ an additive perturbation variable. Given a victim classifier f and a perturbation
strength tolerance ε (in terms of, e.g., `∞-norm constraint ‖δ‖∞ ≤ ε), the desired attack generation
algorithmA then seeks the optimal δ subject to the perturbation constraints. Such an attack generation
process is denoted by δ = A(x, f, ε), resulting in an adversarial example x′ = x+ δ. Here A can be
fulfilled by different attack methods, e.g., FGSM (Goodfellow et al., 2014), CW (Carlini & Wagner,
2017), PGD (Madry et al., 2017), and AutoAttack (Croce & Hein, 2020).

Problem formulation of RED. Different from conventional defenses to detect or reject adversarial
instances (Pang et al., 2020; Liao et al., 2018; Shafahi et al., 2020; Niu et al., 2020), RED aims to
address the following question.

(RED problem) Given an adversarial instance, can we reverse-engineer the adversarial perturba-
tions δ, and infer the adversary’s objective and knowledge, e.g., true image class behind deception
and adversary saliency image region?

Formally, we aim to recover δ from an adversarial example x′ under the prior knowledge of the
victim model f or its substitute f̂ if the former is a black box. We denote the RED operation as
δ = R(x′, f̂), which covers the white-box scenario (f̂ = f ) as a special case. We propose to learn a
parametric model Dθ (e.g., a denoising neural network that we will focus on) as an approximation
ofR through a training dataset of adversary-benignity pairs Ω = {(x′,x)}. Through Dθ, RED will
provide a benign example estimate xRED and a adversarial example estimate x′RED as below:

xRED = Dθ(x′), x′RED = x′ − xRED︸ ︷︷ ︸
perturbation estimate

+x, (1)

where a perturbation estimate is given by subtracting the RED’s output with its input, x′ −Dθ(x′).

Figure 1: Overview of RED versus AD.

We highlight that RED yields a new defensive ap-
proach aiming to ‘diagnose’ the perturbation details
of an existing adversarial example in a post-hoc, foren-
sic manner. This is different from adversarial detec-
tion (AD). Fig.1 provides a visual comparison of RED
with AD. Although AD is also designed in a post-hoc
manner, it aims to determine whether an input is an
adversarial example for a victim model based on cer-
tain statistics on model features or logits. Besides, AD
might be used as a pre-processing step of RED, where
the former provides ‘detected’ adversarial examples for
fine-level RED diagnosis. In our experiments, we will
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also show that the outputs of RED can be leveraged to guide the design of adversarial detection. In
this sense, RED and AD are complementary building blocks within a closed loop.

Challenges of RED In this work, we will specify the RED model Dθ as a denoising network.
However, it is highly non-trivial to design a proper denoiser for RED. Speaking at a high level, there
exist two main challenges. First, unlike the conventional image denoising strategies (Zhang et al.,
2017), the design of an RED-aware denoiser needs to take into account the effects of victim models
and data properties of adversary-benignity pairs. Second, it might be insufficient to merely minimize
the reconstruction error as the adversarial perturbation is finely-crafted (Niu et al., 2020). Therefore,
either under- or over-denoising will lead to poor RED performance.

3 RED EVALUATION METRICS AND DENOISING-ONLY BASELINE

Since RED is different from existing defensive approaches, we first develop new performance metrics
of RED, ranging from pixel-level reconstruction error to attribution-level adversary saliency region.
We next leverage the proposed performance metrics to demonstrate why a pure image denoiser is
incapable of fulfilling RED.

RED evaluation metrics. Given a learned RED modelDθ , the RED performance will be evaluated
over a testing dataset (x′,x) ∈ Dtest; see implementation details in Sec. 5. Here, x′ is used as the
testing input of the RED model, and x is the associated ground-truth benign example for comparison.
The benign example estimate xRED and adversarial example estimate x′RED are obtained following
(1). RED evaluation pipeline is conducted from the following aspects: ¬ pixel-level reconstruction
error,  prediction-level inference alignment, and ® attribution-level adversary saliency region.

â ¬ Pixel-level: Reconstruction error given by d(x,xRED) = E(x′,x)∈Dtest
[‖xRED − x‖2].

â  Prediction-level: Prediction alignment (PA) between the pair of benign example and its estimate
(xRED,x) and PA between the pair of adversarial example and its estimate (x′RED,x

′), given by

PAbenign =
card({(xRED,x) |F (xRED) = F (x)})

card(Dtest)
, PAadv =

card({(x′RED,x
′) |F (x′RED) = F (x′)})

card(Dtest)

where card(·) denotes a cardinality function of a set and F refers to the prediction label provided by
the victim model f .

â ® Attribution-level: Input attribution alignment (IAA) between the benign pair (xRED,x) and
between the adversarial pair (x′RED,x

′). In this work, we adopt GradCAM (Selvaraju et al., 2020) to
attribute the predictions of classes back to input saliency regions. The rationale behind IAA is that the
unnoticeable adversarial perturbations (in the pixel space) can introduce an evident input attribution
discrepancy with respect to (w.r.t.) the true label y and the adversary’s target label y′ (Boopathy et al.,
2020; Xu et al., 2019b). Thus, an accurate RED should be able to erase the adversarial attribution
effect through xRED, and estimate the adversarial intent through the saliency region of x′RED (see
Fig. 1 for illustration).
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Figure 2: IAA of DO compared with ground-truth.

Denoising-Only (DO) baseline. We further
show that how a pure image denoiser, a ‘must-
try’ baseline, is insufficient of tackling the RED
problem. This failure case drive us to rethink
the denoising strategy through the lens of RED.
First, we obtain the denoising network by min-
imizing the reconstruction error:

minimize
θ

`denoise(θ; Ω) := E(x′,x)∈Ω‖Dθ(x′)− x‖1, (2)

where a Mean Absolute Error (MAE)-type loss is used for denoising (Liao et al., 2018), and the
creation of training dataset Ω is illustrated in Sec. 5.1. Let us then evaluate the performance of DO
through the non-adversarial prediction alignment PAbenign and IAA. We find that PAbenign = 42.8%
for DO. And Fig. 2 shows the IAA performance of DO w.r.t. an input example. As we can see, DO
is not capable of exactly recovering the adversarial saliency regions compared to the ground-truth
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adversarial perturbations. These suggest that DO-based RED lacks the reconstruction ability at
the prediction and the attribution levels. Another naive approach is performing adversarial attack
back to x′, yet it requires additional assumptions and might not precisely recover the ground-truth
perturbations. The detailed limitations are discussed in Appendix A.

4 CLASS-DISCRIMINATIVE DENOISING FOR RED

Figure 3: CDD-RED overview.

In this section, we propose a novel Class-
Discriminative Denoising based RED approach
termed CDD-RED; see Fig. 3 for an overview.
CDD-RED contains two key components. First,
we propose a PA regularization to enforce the
prediction-level stabilities of both estimated be-
nign example xRED and adversarial example
x′RED with respect to their true counterparts
x and x′, respectively. Second, we propose
a data augmentation strategy to improve the
RED’s generalization without losing its class-
discriminative ability.

Benign and adversarial prediction alignment. To accurately estimate the adversarial perturbation
from an adversarial instance, the lessons from the DO approach suggest to preserve the class-
discriminative ability of RED estimates to align with the original predictions, given by xRED vs.
x, and x′RED vs. x′. Spurred by that, the training objective of CDD-RED is required not only
to minimize the reconstruction error like (2) but also to maximize PA, namely, ‘clone’ the class-
discriminative ability of original data. To achieve this goal, we augment the denoiser Dθ with a
known classifier f̂ to generate predictions of estimated benign and adversarial examples (see Fig. 3),
i.e., xRED and x′RED defined in (1). By contrasting f̂(xRED) with f̂(x), and f̂(x′RED) with f̂(x′),
we can promote PA by minimizing the prediction gap between true examples and estimated ones:

`PA(θ; Ω) = E(x′,x)∈Ω[`PA(θ;x′,x)], `PA(θ;x′,x) := CE(f̂(xRED), f̂(x))︸ ︷︷ ︸
PA for benign prediction

+ CE(f̂(x′RED), f̂(x′))︸ ︷︷ ︸
PA for adversarial prediction

, (3)

where CE denotes the cross-entropy loss. To enhance the class-discriminative ability, it is desirable to
integrate the denoising loss (2) with the PA regularization (3), leading to `denoise +λ`PA, where λ > 0
is a regularization parameter. To address this issue, we will further propose a data augmentation
method to improve the denoising ability without losing the advantage of PA regularization.
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Figure 4: The influence of different data augmentations.
‘Base’ refers to the base training without augmentation.

Proper data augmentation improves RED.
The rationale behind incorporating image trans-
formations into CDD-RED lies in two as-
pects. First, data transformation can make RED
foveated to the most informative attack artifacts
since an adversarial instance could be sensitive
to input transformations (Luo et al., 2015; Atha-
lye et al., 2018; Xie et al., 2019; Li et al., 2020;
Fan et al., 2021). Second, the identification of
transformation-resilient benign/adversarial in-
stances may enhance the capabilities of PA and
IAA.

However, it is highly non-trivial to determine
the most appropriate data augmentation operations. For example, a pixel-sensitive data transformation,
e.g., Gaussian blurring and colorization, would hamper the reconstruction-ability of the original
adversary-benignity pair (x′,x). Therefore, we focus on spatial image transformations, including
rotation, translation, cropping & padding, cutout, and CutMix (Yun et al., 2019), which keep the
original perturbation in a linear way. In Fig.4, we evaluate the RED performance, in terms of pixel-
level reconstruction error and prediction-level alignment accuracy, for different kinds of spatial image
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transformations. As we can see, CutMix and cropping & padding can increase the both performance
simultaneously, considered as the appropriate augmentation to boost the RED. Furthermore, we
empirically find that combining the two transformations can further improve the performance.

Let T denote a transformation set, including cropping & padding and CutMix operations. With the
aid of the denoising loss (2), PA regularization (3), and data transformations T , we then cast the
overall training objective of CDD-RED as

minimize
θ

E(x′,x)∈Ω,t∼T ‖Dθ(t(x′))− t(x)‖1︸ ︷︷ ︸
`denoise (2) with data augmentations

+λE(x′,x)∈Ω,t∼Ť [`PA(θ; t(x′), t(x))]︸ ︷︷ ︸
`PA (3) with data augmentation via Ť

,
(4)

where Ť denotes a properly-selected subset of T , and λ > 0 is a regularization parameter. In the PA
regularizer (4), we need to avoid the scenario of over-transformation where data augmentation alters
the classifier’s original decision. This suggests Ť = {t ∈ T | F̂ (t(x)) = F̂ (x), F̂ (t(x′)) = F̂ (x′) },
where F̂ represents the prediction label of the pre-trained classifier f̂ , i.e., F̂ (·) = argmax(f̂(·)).

5 EXPERIMENTS

We show the effectiveness of our proposed method in 5 aspects: a) reconstruction error of adversarial
perturbation inversion, i.e., d(x,xRED), b) class-discriminative ability of the benign and adversarial
example estimate, i.e., PAbenign and PAadv by victim models, c) adversary saliency region recovery,
i.e., attribution alignment, and d) RED evaluation over unseen attack types and adaptive attacks.

5.1 EXPERIMENT SETUP

Attack datasets. To train and test RED models, we generate adversarial examples on the ImageNet
dataset (Deng et al., 2009). We consider 3 attack methods including PGD (Madry et al., 2017),
FGSM (Goodfellow et al., 2014), and CW attack (Carlini & Wagner, 2017), applied to 5 models
including pre-trained ResNet18 (Res18), Resnet50 (Res50) (He et al., 2015), VGG16, VGG19,
and InceptionV3 (IncV3) (Szegedy et al., 2015). The detailed parameter settings can be found in
Appendix B. Furthermore, to evaluate the RED performance on unseen perturbation types during
training, additional 2K adversarial examples generated by AutoAttack (Croce & Hein, 2020) and 1K
adversarial examples generated by Feature Attack (Sabour et al., 2015) are included as the unseen
testing dataset. AutoAttack is applied on VGG19, Res50 and two new victim models, i.e., Alexet
and Robust Resnet50 (R-Res50), via fast adversarial training (Wong et al., 2020) while Feature Attack
is applied on VGG19 and Alexnet. The rational behind considering Feature Attack is that feature
adversary has been recognized as an effective way to circumvent adversarial detection (Tramer et al.,
2020). Thus, it provides a supplement on detection-aware attacks.

RED model configuration, training and evaluation. During the training of the RED denoisers,
VGG19 (Simonyan & Zisserman, 2015) is chosen as the pretrained classifier f̂ for PA regularization.
Although different victim models were used for generating adversarial examples, we will show that
the inference guided by VGG19 is able to accurately estimate the true image class and the intent of
the adversary. In terms of the architecture of Dθ , DnCNN (Zhang et al., 2017) is adopted. The RED
problem is solved using an Adam optimizer (Kingma & Ba, 2015) with the initial learning rate of
10−4, which decays 10 times for every 140 training epochs. In (4), the regularization parameter λ is
set as 0.025. The transformations for data augmentation include CutMix and cropping & padding.
The maximum number of training epochs is set as 300. The computation cost and ablation study of
CDD-RED are in Appendix D and E, respectively.

Baselines. We compare CDD-RED with two baseline approaches: a) the conventional denoising-
only (DO) approach with the objective function (2); b) The state-of-the-art Denoised Smoothing (DS)
(Salman et al., 2020) approach that considers both the reconstruction error and the PA for benign
examples in the objective function. Both methods are tuned to their best configurations.

5.2 MAIN RESULTS

Reconstruction error d(x,xRED) and PA. Table 1 presents the comparison of CDD-RED with
the baseline denoising approaches in terms of d(x,xRED), d(f(x), f(xRED)), d(f(x′), f(x′RED)),
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PAbenign, and PAadv on the testing dataset. As we can see, our approach (CDD-RED) im-
proves the class-discriminative ability from benign perspective by 42.91% and adversarial per-
spective by 8.46% with a slightly larger reconstruction error compared with the DO approach.

Table 1: The performance comparison among
DO, DS and CDD-RED on the testing dataset.

DO DS CDD-RED
d(x,xRED) 9.32 19.19 13.04

d(f(x), f(xRED)) 47.81 37.21 37.07
d(f(x′), f(x′RED)) 115.09 150.02 78.21

PAbenign 42.80% 86.64% 85.71%
PAadv 71.97% 72.47% 80.43%

In contrast to DS, CDD-RED achieves similar PAbenign

but improved pixel-level denoising error and PAadv. Fur-
thermore, CDD-RED achieves the best logit-level recon-
struction error for both f(xRED) and f(x′RED) among
the three approaches. This implies that xRED rendered
by CDD-RED can achieve highly similar prediction to
the true benign example x, and the perturbation estimate
x′ − xRED yields a similar misclassification effect to the
ground-truth perturbation. Besides, CDD-RED is robust against attacks with different hyperparame-
ters settings, details can be found in Appendix F.

Input image DO DS CDD-RED (ours) Groundtruth

B
en

ig
n

ex
am

pl
e

x
/x

R
E
D

A
dv

.e
xa

m
pl

e
x
′ /x

′ R
E
D

I(·, y) I(·, y′) I(·, y) I(·, y′) I(·, y) I(·, y′) I(·, y) I(·, y′)

Figure 5: Interpretation (I) of benign (x/xRED) and adversarial (x′/x′RED) image w.r.t. the true label
y=‘ptarmigan’ and the adversary targeted label y′=‘shower curtain’. We compare three methods of RED training,
DO, DS, and CDD-RED as our method, to the ground-truth interpretation. Given an RED method, the first
column is I(xRED, y) versus I(x′RED, y), the second column is I(xRED, y

′) versus I(x′RED, y
′), and all maps

under each RED method are normalized w.r.t. their largest value. For the ground-truth, the first column is I(x, y)
versus I(x′, y), the second column is I(x, y′) versus I(x′, y′).

Attribution alignment. In addition to pixel-level alignment and prediction-level alignment to
evaluate the RED performance, attribution alignment is examined in what follows. Fig. 5 presents
attribution maps generated by GradCAM in terms of I(x, y), I(x′, y), I(x, y′), and I(x′, y′), where
x′ denotes the perturbed version of x, and y′ is the adversarially targeted label. From left to right
is the attribution map over DO, DS, CDD-RED (our method), and the ground-truth. Compared
with DO and DS, CDD-RED yields a closer attribution alignment with the ground-truth especially
when making a comparison between I(xRED, y) and I(x, y). At the dataset level, Fig. 6 shows
the distribution of attribution IoU scores. It is observed that the IoU distribution of CDD-RED,
compared with DO and DS, has a denser concentration over the high-value area, corresponding to
closer alignment with the attribution map by the adversary. This feature indicates an interesting
application of the proposed RED approach, which is to achieve the recovery of adversary’s saliency
region, in terms of the class-discriminative image regions that the adversary focused on.

(a) Denoising Only (b) Denoised Smoothing (c) CDD-RED (ours)

Figure 6: IoU distributions of the attribution alignment by three RED methods. Higher IoU is better. For
each subfigure, the four IoU scores standing for IoU(xRED,x, y), IoU(xRED,x, y

′), IoU(x′RED,x
′, y), and

IoU(x′RED,x
′, y′).
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Figure 7: Reverse engineer partially-perturbed data under different interpolation portion p.

RED vs. unforeseen attack types. The experiments on the recovery of unforeseen attack types are
composed of two parts: a) partially-perturbed data via linear interpolation, and b) the unseen attack
type, AutoAttack, Feature Attack, and Adaptive Attack. More attack results including adversarial
attacks on CIFAR-10 dataset, Wasserstein minimized attacks, and attacks on smoothed classifiers can
be found in Appendix C.

First, we construct partially-perturbed data by adding a portion p ∈ {0%, 20%, · · · , 100%} of the
perturbation x′ − x to the true benign example x, namely, x′p = x + p(x′ − x). The interpolated
x′p is then used as the input to an RED model. We aim to investigate whether or not the proposed
RED method can recover partial perturbations (even not successful attacks).

Fig. 7 (a) and (b) show the the prediction alignment with y and y′, of the adversarial example estimate
x′pRED = x′p −Dθ(x′p) + x by different RED models. Fig. 7 (c) shows the logit distance between
the prediction of the partially-perturbed adversarial example estimate and the prediction of the benign
example while Fig. 7 (d) demonstrates the pixel distance between x′pRED and the benign example.

First, a smaller gap between the ground-truth curve (in red) and the adversarial example estimate
x′pred curve indicates a better performance. Fig. 7 (a) and (b) show that CDD-RED estimates the
closest adversary’s performance to the ground truth in terms of the prediction accuracy and attack
success rate. This is also verified by the distance of prediction logits in Fig. 7 (c). Fig. 7 (d) shows
that DS largely over-estimates the additive perturbation, while CDD-RED maintains the perturbation
estimation performance closest to the ground truth. Though DO is closer to the ground-truth than
CDD-RED at p < 40%, DO is not able to recover a more precise adversarial perturbation in terms
of other performance metrics. For example, in Fig. 7 (b) at p = 0.2, x′pRED by DO achieves a lower
successful attack rate compared to CDD-RED and the ground-truth.

Table 2: The d(x,xRED), PAbenign, and PAadv performance
of the denoisers on the unforeseen perturbation type AutoAttack,
Feature Attack, and Adaptive Attack.

DO DS CDD-RED

d(x,xRED)
AutoAttack 6.41 16.64 8.81

Feature Attack 5.51 16.14 7.99
Adaptive Attack 9.76 16.21 12.24

PAbenign

AutoAttack 84.69% 92.64% 94.58%
Feature Attack 82.90% 90.75% 93.25%

Adaptive Attack 33.20% 27.27% 36.29%

PAadv

AutoAttack 85.53% 83.30% 88.39%
Feature Attack 26.97% 35.84% 63.48%

Adaptive Attack 51.21% 55.41% 57.11%

Moreover, as for benign examples with
p = 0% perturbations, though the RED
denoiser does not see benign example
pair (x, x) during training, it keeps the
performance of the benign example re-
covery. CDD-RED can handle the case
with a mixture of adversarial and benign
examples. That is to say, even if a be-
nign example, detected as adversarial, is
wrongly fed into the RED framework,
our method can recover the original per-
turbation close to the ground truth. See
Appendix G for details.
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Table 2 shows the RED performance on the unseen attack type, AutoAttack, Feature Attack, and
Adaptive Attack. For AutoAttack and Feature Attack, CDD-RED outperforms both DO and DS in
terms of PA from both benign and adversarial perspectives. Specifically, CDD-RED increases the
PAadv for Feature Attack by 36.51% and 27.64% compared to DO and DS, respectively.

As for the adaptive attack (Tramer et al., 2020), we assume that the attacker has access to the
knowledge of the RED model, i.e., Dθ. It can then perform the PGD attack method to generate
successful prediction-evasion attacks even after taking the RED operation.

We use PGD methods to generate such attacks within the `∞-ball of perturbation radius ε = 20/255.
Table 2 shows that Adaptive Attack is much stronger than Feature Attack and AutoAttack, leading
to larger reconstruction error and lower PA. However, CDD-RED still outperforms DO and DS in
PAbenign and PAadv. Compared to DS, it achieves a better trade-off with denoising error d(x,xRED).

In general, CDD-RED can achieve high PA even for unseen attacks, indicating the generalization-
ability of our method to estimate not only new adversarial examples (generated from the same attack
method), but also new attack types.

RED to infer correlation between adversaries. In what follows, we investigate whether the RED
model guided by the single classifier (VGG19) enables to identify different adversary classes, given
by combinations of attack types (FGSM, PGD, CW) and victim model types (Res18, Res50, VGG16,
VGG19, IncV3).

(a) Groundtruth (b) CDD-RED (ours)
Figure 8: Correlation matrices between different adversaries. For each cor-
relation matrix, rows and columns represent adversarial example estimate
x′RED and true adversarial example x′ (For the ground-truth correlation ma-
trix, x′RED = x′). Each entry represents the average Spearman rank correlation
between the logits of two adversary settings ∈ {(victim model, attack type)}.

Fig. 8 presents the corre-
lation between every two
adversary classes in the
logit space. Fig. 8 (a)
shows the ground-truth
correlation map. Fig. 8
(b) shows correlations be-
tween logits of x′RED
estimated by our RED
method (CDD-RED) and
logits of the true x′.
Along the diagonal of
each correlation matrix,
the darker implies the bet-
ter RED estimation under
the same adversary class.
By peering into off-diagonal entries, we find that FGSM attacks are more resilient to the choice of a
victim model (see the cluster of high correlation values at the top left corner of Fig. 8). Meanwhile,
the proposed CDD-RED precisely recovers the correlation behavior of the true adversaries. Such a
correlation matrix can help explain the similarities between different attacks’ properties. Given an
inventory of existing attack types, if a new attack appears, then one can resort to RED to estimate
the correlations between the new attack type and the existing attack types. Based on the correlation
screening, it can infer the properties of the new attack type based on its most similar counterpart in the
existing attack library; see Appendix I.2. Inspired by the correlation, RED-synthesized perturbations
can also be used as a transfer attack as well; see Appendix H.

Other applications of RED. In Appendix I, we also empirically show that the proposed RED
approach can be applied to adversarial detection, attack identity inference, and adversarial defense.

6 CONCLUSION

In this paper, we study the problem of Reverse Engineering of Deceptions (RED), to recover the
attack signatures (e.g. adversarial perturbations and adversary saliency regions) from an adversarial
instance. To the best of our knowledge, RED has not been well studied. Our work makes a solid step
towards formalizing the RED problem and developing a systematic pipeline, covering not only a
solution but also a complete set of evaluation metrics. We have identified a series of RED principles,
ranging from the pixel level to the attribution level, desired to reverse-engineer adversarial attacks.
We have developed an effective denoiser-assisted RED approach by integrating class-discrimination
and data augmentation into an image denoising network. With extensive experiments, our approach
outperforms the existing baseline methods and generalizes well to unseen attack types.
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A RED BY PGD ATTACK: PERFORMING PGD BACK TO THE TRUE CLASS

A naive approach to reverse engineer the adversarial perturbation is using the target PGD attack
to revert the label back to the groundtruth. However, this requires additional assumptions. First,
since PGD is a test-time deterministic optimization approach for perturbation generation, its targeted
implementation requires the true class of the adversarial example, which could be unknown at testing
time. What is more, one has to pre-define the perturbation budget ε for PGD. This value is also
unknown. Second, performing PGD back to the true class might not exactly recover the ground-truth
adversarial perturbations. By contrast, its RED counterpart could be over-perturbed. To make it more
convincing, we applied the target l∞ PGD attack method to adversarial examples generated by PGD
(assuming true class, victim model, and attack budget are known). We tried various PGD settings
(PGD10ε=10/255 refers to PGD attack using 10 steps and ε = 10/255). Eventually, we compare
these results to our CDD-RED method in Table A1.

Given that the average reconstruction error between x and x′ is 20.60, we can see from Table A1 that
PGD attacks further enlarge the distortion from the clean data. Although PGD attacks can achieve
high accuracy after reverting the adversarial data back to their true labels, the resulting perturbation
estimate is far from the ground-truth in terms of their prediction alignment. We can tell from the low
PAadv by PGD methods that x′RED does not align with the input x′ at all.

Table A1: The performance comparison among DO, DS, and CDD-RED on the CIDAR-10 dataset.
PGD10ε20/255 PGD10ε10/255 PGD20ε20/255 CDD-RED

d(x,xRED) 27.63 22.67 27.53 11.73
PAbenign 96.20% 82.60% 99.80% 83.20%

PAadv 6.20% 7.20% 4.80% 97.40%

B DATASET DETAILS.

The training and testing dataset is composed of three attack methods including PGD (Madry et al.,
2017), FGSM (Goodfellow et al., 2014), and CW attack (Carlini & Wagner, 2017), applied to
5 models including pre-trained ResNet18 (Res18), Resnet50 (Res50) (He et al., 2015), VGG16,
VGG19, and InceptionV3 (IncV3) (Szegedy et al., 2015). By default, PGD attack and FGSM
attack are bounded by `∞-norm constraint and CW attack is bounded by `2-norm. The range of the
perturbation strength ε for PGD attack and FGSM attack are [1/255, 40/255) and [1/255, 20/255),
respectively. As for CW attack, the adversary’s confidence parameter k is uniformly sampled from
from [1, 20]. One attack method is applied to one victim model to obtain 3K successfully attacked
images. As a consequence, 45K (3× 5× 3K) adversarial images are generated in total: 37.5K for
training and 7.5K for validating. The testing set contains 28K adversarial images generated with the
same attack method & victim model.

C PERFORMANCE ON MORE ATTACK TYPES

We show more evaluations of the RED approaches on unforeseen attacks during training. The
denoisers are all trained on the training dataset containing adversarial examples generated on the
ImageNet dataset, as in Appendix B. The test data includes adversarial examples generated on the
CIFAR-10 dataset in C.1, Wasserstein minimized attackers in C.2, and attacks on smoothed classifiers
in C.3.

C.1 PERFORMANCE ON CIFAR-10 DATASET

We further evaluate the performance of the RED approaches on the adversarial examples generated
on the CIFAR-10 dataset. As the denoiser is input agnostic, we directly test the denoiser trained on
adversarial examples generated on the ImageNet dataset. Here we consider the 10-step PGD-linf
attack generation method with the perturbation radius ε = 8/255. And these examples are not seen
during our training. As shown in the Table A2, the proposed CDD-RED method provides the best
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PAclean and PAadv with a slightly larger d(x,xRED) than DO. This is not surprising as DO focuses
only on the pixel-level denoising error metric. However, as illustrated in Sec. 3, the other metric like
PA also plays a key role in evaluating the RED performance.

Table A2: The performance comparison among DO, DS, and CDD-RED on the CIDAR-10 dataset.
DO DS CDD-RED

d(x,xRED) 0.94 4.50 1.52
PAbenign 9.90% 71.75% 71.80%

PAadv 92.55% 89.70% 99.55%

C.2 PERFORMANCE ON WASSERSTEIN MINIMIZED ATTACKERS

We further show the performance on Wasserstein minimized attackers, which is an unseen attack
type during training. The adversarial examples are generated on the ImageNet sub-dataset using
Wasserstein ball. We follow the same setting from Wong et al. (2019), where the attack radius ε is
0.1 and the maximum iteration is 400 under l∞ norm inside Wasserstein ball. The results are shown
in Table A3. As we can see, Wasserstein attack is a more challenging attack type for RED than the
lp attack types considered in the paper, justified by the lower prediction alignement PAbenign across
all methods. This implies a possible limitation of supervised training over (l2 or l∞) attacks. One
simple solution is to expand the training dataset using more diversified attacks (including Wasserstein
attacks). However, we believe that the further improvement of the generalization ability of RED
deserves a more careful study in the future, e.g., an extension from the supervised learning paradigm
to the (self-supervised) pre-training and finetuning paradigm.

Table A3: The performance comparison among DO, DS, and CDD-RED on Wasserstein minimized
attackers.

DO DS CDD-RED
d(x,xRED) 9.79 17.38 11.66

PAbenign 92.50% 96.20% 97.50%
PAadv 35.00% 37.10% 37.50%

C.3 PERFORMANCE ON ATTACKS AGAINST SMOOTHED CLASSIFIERS

We further show the performance on the attack against smoothed classifiers, which is an unseen attack
type during training. A smoothed classifier predicts any input x using the majority vote based on
randomly perturbed inputs N (x, σ2I) (Cohen et al., 2019). Here we consider the 10-step PGD-`∞
attack generation method with the perturbation radius ε = 20/255, and σ = 0.25 for smoothing.
As shown in Table A4, the proposed CDD-RED method provides the best PAclean and PAadv with a
slightly larger d(x,xRED) than DO.

Table A4: The performance comparison among DO, DS, and CDD-RED on the PGD attack against
smoothed classifiers.

DO DS CDD-RED
d(x,xRED) 15.53 22.42 15.89

PAbenign 68.13% 70.88% 76.10%
PAadv 58.24% 58.79% 61.54%

D COMPUTATION COST OF RED

We measure the computation cost on a single RTX Titan GPU. The inference time for DO, DS, and
CDD-RED is similar as they use the same denoiser architecture. For the training cost, the maximum
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training epoch for each method is set as 300. The average GPU time (in seconds) of one epoch for
DO, DS, and CDD-RED is 850, 1180, and 2098, respectively. It is not surprising that CDD-RED is
conducted over a more complex RED objective. Yet, the denoiser only needs to be trained once to
reverse-engineer a wide variety of adversarial perturbations, including those unseen attacks during
the training.

E ABLATION STUDIES ON CDD-RED

In this section, we present additional experiment results using the proposed CDD-RED method for
reverse engineering of deception (RED). We will study the effect of the following model/parameter
choice on the performance of CDD-RED: 1) pretrained classifier f̂ for PA regularization, 2) data
augmentation strategy Ť for PA regularization, and 3) regularization parameter λ that strikes a balance
between the pixel-level reconstruction error and PA in (4). Recall that the CDD-RED method in the
main paper sets f̂ as VGG19, Ť = {t ∈ T | F̂ (t(x)) = F̂ (x), F̂ (t(x′)) = F̂ (x′) }, and λ = 0.025.

E.1 PRETRAINED CLASSIFIER f̂ .

Table A5: The performance of CDD-RED using a different pretrained classifier f̂ (either Res50 or
R-Res50) compared with the default setting f̂ =VGG19.

f̂=Res50 f̂=R-Res50
d(x,xRED)
(↓ is better) 12.84 (↓ 0.20) 10.09 (↓ 2.95)

PAbenign

(↑ is better) 84.33% (↓1.38%) 57.88% (↓ 27.83%)

PAadv

(↑ is better) 79.94% (↓ 0.49%) 71.02% (↓ 9.40%)

Besides setting f̂ as VGG19, Table A5 shows the RED performance using the other pretrained models,
i.e., Res50 and R-Res50. As we can see, the use of Res50 yields the similar performance as VGG19.
Although some minor improvements are observed in terms of pixel level reconstruction error, the
PA performance suffers a larger degradation. Compared to Res50, the use of an adversarially robust
model R-Res50 significantly hampers the RED performance. That is because the adversarially robust
model typically lowers the prediction accuracy, it is not able to ensure the class-discriminative ability
in the non-adversarial context, namely, the PA regularization performance.

E.2 DATA SELECTION FOR PA REGULARIZATION.

Table A6: Ablation study on the selection of Ť (Ť = T and without (w/o) Ť )) for training CDD-RED,
compared with Ť = {t ∈ T | F̂ (t(x)) = F̂ (x), F̂ (t(x′)) = F̂ (x′). }

Ť = T w/o Ť
d(x,xRED)
(↓ is better) 15.52 (↑ 2.48) 13.50 (↑ 0.46)

PAbenign

(↑ is better) 83.64% (↓ 2.07%) 84.04% (↓1.67%)

PAadv

(↑ is better) 75.92% (↓ 4.51%) 79.99% (↓ 0.44%)

As data augmentation might alter the classifier’s original decision in (4), we study how Ť affects the
RED performance by setting Ť as the original data, i.e., without data augmentation, and all data, i.e.,
Ť = T . Table A6 shows the performance of different Ť configurations, compared with the default
setting. The performance is measured on the testing dataset. As we can see, using all data or original
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data cannot provide an overall better performance than CDD-RED. That is because the former might
cause over-transformation, and the latter lacks generalization ability.

E.3 REGULARIZATION PARAMETER λ.

Table A7: Ablation study on the regularization parameter λ (0, 0.0125, and 0.05) for CDD-RED
training, compared with λ=0.025.

λ=0 λ=0.0125 λ=0.05
d(x,xRED)
(↓ is better) 8.92 (↓ 4.12) 12.79 (↓ 0.25) 14.85 (↑ 2.13)

PAbenign

(↑ is better) 47.61% (↓38.10%) 81.00% (↓4.71%) 85.56% (↓ 0.15%)

PAadv

(↑ is better) 73.37% (↓7.06%) 78.25% (↓ 2.18%) 79.94% (↓ 0.49%)

The overall training objective of CDD-RED is (4), which is the weighted sum of the reconstruction
error and PA with a regularization parameter λ. We further study the sensitivity of CDD-RED to
the choice of λ, which is set by 0, 0.0125, and 0.05. Table A7 shows the RED performance of using
different λ values, compared with the default setting λ = 0.025. We report the average performance
on the testing dataset. As we can see, the use of λ = 0, which corresponds to training the denoiser
without PA regularization, achieves a lower pixel-level reconstruction error d(x,xRED), but degrades
the prediction-level performance, especially PAbenign greatly. In the same time, λ = 0 provides a
smaller pixel-level reconstruction error with a better PA performance than DO, which indicates the
importance of using proper augmentations. We also observe that keep increasing λ to 0.05 is not able
to provide a better PA.

F ABLATION STUDY OF DIFFERENT ATTACK HYPERPARAMETER SETTINGS

We test on PGD attacks generated with different step sizes, including 4/255 and 6/255, and with
and without random initialization (RI). Other hyperparameters are kept the same. The adversarial
examples are generated by the same set of images w.r.t. the same classifier ResNet-50. The results
are shown in Table A8. As we can see, the RED performance is quite robust against the varying
hyperparameters of PGD attacks. Compared with DO, CDD-RED greatly improves PAbenign and
achieves higher PAadv with a slightly larger d(x,xRED). Compared to DS, CDD-RED achieves
slightly better PA but with a much smaller reconstruction error d(x,xRED).

Table A8: RED performance for PGD with different hyperparameter settings, including stepsize as
4/255 and 6/255, and with and without RI.

Without RI / With RI Stepsize DO DS CDD-RED
4/255 5.94/5.96 16.56/16.57 8.91/8.94

d(x,xRED) 6/255 5.99/5.98 16.52/16.50 8.97/8.94
4/255 40.00%/47.00% 91.00%/91.00% 94.00%/93.00%PAbenign 6/255 51.00%/61.00% 94.00%/93.00% 95.00%/94.50%
4/255 97.50%/97.50% 97.50%/97.50% 99.50%/99.50%PAadv 6/255 96.50%/96.50% 95.50%/95.50% 98.50%/99.50%

G PERFORMANCE WITHOUT ADVERSARIAL DETECTION ASSUMPTION

The focus of RED is to demonstrate the feasibility of recovering the adversarial perturbations from
an adversarial example. However, in order to show the RED performance on the global setting, we
experiment with a mixture of 1) adversarial images, 2) images with Gaussian noise (images with
random perturbations), and 3) clean images on the ImageNet dataset. The standard deviation of
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the Gaussian noise is set as 0.05. Each type of data accounts for 1/3 of the total data. The images
are shuffled to mimic the live data case. The overall accuracy before denoising is 63.08%. After
denoising, the overall accuracy obtained by DO, DS, and CDD-RED is 72.45%, 88.26%, and 89.11%,
respectively. During the training of the denoisers, random noise is not added to the input.

H TRANSFERABILITY OF RECONSTRUCTED ADVERSARIAL ESTIMATE

We further examine the transferability of RED-synthesized perturbations. In the experiment, RED-
synthesized perturbations are generated from PGD attacks using ResNet-50. We then evaluate the
attack success rate (ASR) of the resulting perturbations transferred to the victim models ResNet-
18, VGG16, VGG19, and Inception-V3. The results are shown in Table A9. As we can see, the
perturbation estimates obtained via our CDD-RED yield better attack transferability than DO and
DS. Therefore, such RED-synthesized perturbations can be regarded as an efficient transfer attack
method.

Table A9: The tranferability of RED-synthesized perturbations.
DO DS CDD-RED

ResNet-18 66.50% 70.50% 77.50%
VGG16 71.50% 74.00% 81.00%
VGG19 71.50% 70.00% 80.00%

Inception-V3 86.00% 85.50% 90.00%

I POTENTIAL APPLICATIONS OF RED

In this paper, we focus on recovering attack perturbation details from adversarial examples. But in
the same time, the proposed RED can be leveraged for various potential interesting applications. In
this section, we delve into three applications, including RED for adversarial detection in I.1, inferring
the attack identity in I.2, and provable defense in I.3.

I.1 RED FOR ADVERSARIAL DETECTION

The outputs of RED can be looped back to help the design of adversarial detectors. Recall that our
proposed RED method (CDD-RED) can deliver an attribution alignment test, which reflects the
sensitivity of input attribution scores to the pre-RED and post-RED operations. Thus, if an input is an
adversarial example, then it will cause a high attribution dissimilarity (i.e., misalignment) between the
pre-RED input and the post-RED input, i.e., I(x, f(x)) vs. I(D(x), f(D(x))) following the notations
in Section 3. In this sense, attribution alignment built upon I(x, f(x)) and I(D(x), f(D(x))) can
be used as an adversarial detector. Along this direction, we conducted some preliminary results
on RED-assisted adversarial detection, and compared the ROC performance of the detector using
CDD-RED and that using denoised smoothing (DS). In Figure A1, we observe that the CDD-RED
based detector yields a superior detection performance, justified by its large area under the curve.
Here the detection evaluation dataset is consistent with the test dataset in the evaluation section of the
paper.
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Figure A1: RoC of detecting adversarial examples.

I.2 RED FOR ATTACK IDENTITY INFERENCE

We consider another application to infer the attack identity using the reverse-engineered adversarial
perturbations. Similar to the setup of Figure 8, we achieve the above goal using the correlation
screening between the new attack and the existing attack type library. Let z′ (e.g., PGD attack
generated under the unseen AlexNet victim model) be the new attack. We can then adopt the RED
model D(·) to estimate the perturbations δnew = z′ −D(z′). And let x′Atki denote the generated
attack over the estimated benign data D(z′) but using the existing attack type i. Similarly, we can
obtain the RED-generated perturbations δi = x′Atki −D(x′Atki). With the aid of δnew and δi for all i,
we infer the most similar attack type by maximizing the cosine similarity: i∗ = argmaxi cos(δnew, δi).
Figure A2 shows an example to link the new AlexNet-generated PGD attack with the existing VGG19-
generated PGD attack. The reason is elaborated on below. (1) Both attacks are drawn from the
PGD attack family. And (2) in the existing victim model library (including ResNet, VGG, and
InceptionV3), VGG19 has the most similar architecture as AlexNet, both of which share a pipeline
composed of convolutional layers following fully connected layers without residual connections.

Figure A2: Similarity between AlexNet-generated PGD vs. existing attacks in the library.
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I.3 RED FOR PROVABLE DEFENSE

We train the RED models to construct smooth classifiers, the resulting certified accuracy is shown in
Figure A3. Here the certified accuracy is defined by the ratio of correctly-predicted images whose
certified perturbation radius is less than the `2 perturbation radius shown in the x-axis.

Figure A3: Certified Robustness by different methods.
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