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Adaptive 3D Face Reconstruction from
Unconstrained Photo Collections
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Abstract—Given a photo collection of “unconstrained” face images of one individual captured under a variety of unknown pose,
expression, and illumination conditions, this paper presents a method for reconstructing a 3D face surface model of the individual along
with albedo information. Unlike prior work on face reconstruction that requires large photo collections, we formulate an approach to
adapt to photo collections with a high diversity in both the number of images and the image quality. To achieve this, we incorporate prior
knowledge about face shape by fitting a 3D morphable model to form a personalized template, following by using a novel photometric
stereo formulation to complete the fine details, under a coarse-to-fine scheme. Our scheme incorporates a structural similarity-based
local selection step to help identify a common expression for reconstruction while discarding occluded portions of faces. The evaluation
of reconstruction performance is through a novel quality measure, in the absence of ground truth 3D scans. Superior large-scale
experimental results are reported on synthetic, Internet, and personal photo collections.

Index Terms—Face reconstruction, photometric stereo, unconstrained.
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1 INTRODUCTION

3D reconstruction, the process of inferring a 3D model
from 2D imagery, is a long-standing problem in com-

puter vision. Beginning with simple and constrained desk-
top objects and expanding to large, complex, or uncon-
strained objects including outdoor scenes [1], many different
approaches have been proposed. One specific object, the
face, has seen a recent growth of research for creating
detailed 3D models, often called face reconstruction. Not
only are faces one of the most commonly photographed
objects, but having an understanding of the 3D face shape
enables many applications in face recognition [2], 3D ex-
pression recognition [3], facial animations [4], avatar pup-
peteering [5], and more. Face reconstruction is important for
biometrics since the estimation of pose, expression, and illu-
mination, the confounding factors of face recognition, may
all be improved with accurate person-specific models [2],
[6], [7]. Faces are particularly challenging for multi-image
reconstructions since they are non-rigid with deformations
caused by expression variation, aging, weight changes, etc.

Face reconstruction itself is a broad topic spanning many
different situations depending on the input type and desired
level of detail. Table 1 provides an overview of the most
common scenarios and approaches. It is important to note
the large variety of different scenarios and methods for
face reconstruction. Oftentimes, commercial systems will
combine multiple methods in order to overcome the short-
comings of one single approach.

This work specifically looks at the scenario of using
unconstrained photo collections. Unconstrained means there
is no knowledge about the cameras, the illumination of the
scene, or the pose and expression of the subject. A photo col-
lection refers to a set of images of the same subject taken with
no knowledge of the time of capture; this is in contrast to a
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Fig. 1. The proposed system reconstructs a detailed 3D face model of
the individual, adapting to the number and quality of photos provided.

video, which can be viewed as a consecutive set of images
with a consistent and small time intervals between images.
For example, Google Photos clusters your personal photos
to create collections for each individual. Compared to other
unconstrained settings, a photo collection possesses more
information than a single image, but has fewer constraints
than a video which satisfies temporal assumptions.

Dense correspondence among images is the basis for
multi-view stereo and photometric stereo reconstruction
approaches. Unlike videos where optical flow [15] can take
advantage of consistent lighting over time, photo collections
are hard to establish dense correspondence and particularly
challenging for reconstruction. The recent work of [11]
demonstrates the promise of enhanced dense correspon-
dence for arbitrary face images, but it is still not accurate
enough for direct multi-view stereo reconstruction. In the
meantime, photometric stereo-based reconstruction meth-
ods have proven most effective for unconstrained photo
collections. Starting with the reconstruction of 2.5D depth
maps [14] and extending to full 3D meshes [16], photometric
stereo-based methods not only perform face reconstruction
but also explicitly estimate the albedo and per image light-
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TABLE 1
Overview of face reconstruction approaches. Example of levels of detail pore (left), wrinkle (top), and smooth (bottom).

Input Method Detail
C

on
st

r. Point cloud Range scanner ±0.03mm max

Synchronized images Multi-view stereo [8] 0.088mm mean, pore

Time-multiplexed Photometric stereo [9] wrinkle

U
nc

on
.

Single image
3DMM [10] smooth

CNN [11] smooth

Video Optical flow tracking [12] wrinkle

RGB-D Video Dynamic fusion [13] wrinkle, deformable

Photo collection Photometric stereo [14] wrinkle

ing and pose conditions. All prior photo collection methods
reconstruct a single representative face from the collection,
which is challenging given the expression variation.

While prior photo collection-based reconstruction meth-
ods are compelling, they have many limitations. Frontal
images are required for [14], and even though [16] can use
non-frontal images, we demonstrate its significant perfor-
mance drop with large pose variation. Another limitation
of [16] is the requirement of a sufficiently large photo
collection. Theoretically, only four images are necessary
for a photometric stereo-based approach, but in practice
prior approaches report results on collections with over one
hundred images each, for two primary reasons. One, their
singular value decomposition solution to photometric stereo
is susceptible to noise with small collections. Two, prior
approaches perform a local selection step where only ∼10%
of images are used for each vertex of the model.

In our face reconstruction framework, given a collec-
tion of unconstrained face images, we first align 2D land-
marks [17] to all detected faces. We then create a per-
sonalized face model by fitting a 3D morphable model
(3DMM) jointly to the collection such that the estimated 2D
landmarks align with the projection of the associated 3D
landmarks on the model. Dense correspondence is estab-
lished across the collection by estimating the pose for each
image and back-projecting the image onto the personalized
template. The albedo, lighting, and surface normals are
estimated globally with an energy minimization approach
using an adaptive template regularization to allow recon-
struction of small photo collections down to a single face.
The surface normals are further refined locally using a
novel structural similarity feedback, increasing the amount
of images used for local selection to ∼ 50%. Reconstruction
of the face model deforms the mesh to match the estimated
surface normals. A coarse-to-fine process is employed to
first capture the generic shape and then fill in the details. We
perform extensive experimental evaluations to show quali-
tatively and quantitatively the performance of the proposed
face reconstruction method.

In short, this paper makes the following contributions.
�A 3D morphable model is fit jointly to 2D landmarks of

multiple images for model personalization. Prior work used
either a fixed template or landmark-based deformation that
does not work well for small collections.
� A joint Lambertian image rendering formulation with

an adaptive template regularization solves the photometric

stereo problem, allowing for graceful degradation to a small
number of images.
� A pose-based dependability measure is proposed to

weight the influence of face regions based on confidence.
� Structural similarity, a measure correlated with human

perception, drives the local selection of images for estimat-
ing surface normals.
� A new reconstruction quality measure based on struc-

tural similarity enables evaluation without ground truth.

2 PRIOR WORK
We now review face reconstruction techniques in con-
strained and unconstrained scenarios, photometric stereo
estimation and how we differ from traditional approaches,
and reconstruction quality assessment.
Constrained Face Reconstruction The most accurate sce-
nario for face reconstruction is constrained. With a con-
strained subject, i.e., when the person is captured under
known conditions (lighting, pose, and expression) with
known equipment, highly detailed models may be recon-
structed. Commercial range scanners capture fine details
ranging from ±0.03mm accuracy for the $75, 000 Konica
Minolta Vivid 9i [18] to ±0.5mm with the reasonably priced
$1, 441 IIIDScan [19]. These detailed scans are often con-
sidered as ground truth for evaluating other reconstruction
methods, but only capture depth maps and need to fuse
multiple scans to form a 3D reconstruction.

Synchronized multi-camera stereo setups [8], [20] can
capture pore-level detail with 0.088mm accuracy demon-
strated on a physical mask. While real faces with their high
specularity and non-uniform albedo will produce higher
quantitative errors, it can still recover realistic pores and
wrinkles for real faces. The most economical constrained
option is photometric stereo where a single camera takes mul-
tiple images with different known lighting conditions [21].
Accuracy is not reported in world distances, but based on
visual inspection it achieves wrinkle and not quite the pore
details of prior work. These constrained approaches cap-
ture detailed, metrically accurate rigid models. Since these
approaches require subject cooperation, they are routinely
used to capture actor models for video games and films.
Unconstrained Face Reconstruction In unconstrained situa-
tions, where the exact camera, lighting conditions, pose, and
expression are unknown, the accuracy depends on the type
of input. The simplest form is a single image, where limited
information about the surface is present and approaches
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must rely on prior knowledge. The most common approach
uses a statistical model of face shape distributions as a
3DMM to produce a smooth reconstruction. The first 3DMM
fitting approach uses an image rendering loss function to
estimate model parameters that produce a similar synthetic
image to the observed real image [10]. However, it takes sev-
eral minutes to converge for a single image. There are also
improved 3DMM fitting algorithms, including [22], [23],
[24]. Recently, CNN-based approaches to fitting the 3DMM
have shown efficient means of performing sparse [25] and
dense [11], [26] reconstructions.

A video provides sufficient information for unconstrained
reconstruction [27], [28], [29], [30], [31], [32], [33], [34] where
each frame comes from the same camera and temporal
coherence may be assumed. Video-based reconstructions
produce smooth details in real-time and are great for ex-
pression transfer, avatar puppeteering, and other consumer
entertainment applications. With more processing time,
video-based reconstructions produce accurate wrinkle de-
tails and can also be used for avatar construction. Recently,
approaches using a depth or RGB-D video [13], [35] can
produce a dynamic model deforming to every video frame.

Harder than videos are photo collections [14], [16], [36].
For detailed reconstructions using photometric stereo, [14]
reconstructs a 2.5D height field that is extended in [16] to a
true 3D surface. A smooth surface can also be reconstructed
using B-splines in [36]. Photo collections are used for a
variety of non-reconstruction purposes such as improved
fitting of a 3DMM [37] and even creating a 3DMM without
range scans [12], [38]. Our work focuses on photomet-
ric stereo-based reconstruction for its ability in producing
wrinkle details, but we address the limitations of current
approaches such as the restriction to large collections with
mainly frontal images as input.
Photometric Stereo Classic photometric stereo estimates
the surface normals of a rigid object from a fixed camera
orientation by observing the reflectance under different
lighting conditions. Photometric stereo was first proposed
with knowledge of the lighting conditions [39] and even
current methods still use this approach for cooperative
subjects [9], [21]. Later it was discovered that even without
detailed knowledge of the light source, photometric stereo
can take advantage of dominant contribution of the low-
rank spherical harmonics in lighting due to the mainly
diffuse reflectance of face [40], [41], [42], [43], [44], [45]. Most
recent work can take multiple camera positions and put
images into correspondence using Structure from Motion
and even estimate arbitrary non-linear camera response
maps [46]. Most photometric stereo techniques reconstruct
from a common viewpoint and produce a 2.5D face sur-
face which can only make use of frontal images. Solutions
usually use singular value decomposition (SVD) to find a
low rank approximation of the spherical harmonics, using
an integrability constraint or prior knowledge of the object
to resolve ambiguity. SVD approaches require sufficient
images to obtain an accurate reconstruction, especially for
non-rigid objects like the face where expression variation
can disturb the low rank assumption. We propose a novel,
adaptive, template regularized, image rendering solution to
photometric stereo, where we solve the same loss function
as traditional 3DMM fitting for the lighting, albedo, and sur-

TABLE 2
Notations.

Symbol Dim. Description
I matrix image
n scalar number of images
q scalar number of landmarks (68)
W 2xq 2D landmark matrix
p scalar number of mesh vertices
X 3xp 3D shape model
N 4xp surface normal matrix
L 4xn lighting matrix
D nxp dependability matrix
L pxp sparse Laplacian
s scalar scale
R 2x3 rotation matrix
t 2x1 translation vector
ρj scalar albedo at vertex j
F nxp image correspondence
Hj scalar mean curvature

face normals instead of the shape. This enables the solution
to work using substantially fewer images.
Quality Assessment Evaluating the quality of a recon-
struction technique is a challenging problem. Many face
reconstruction works avoid a quantitative assessment due to
the lack of ground truth or the inability of measurements to
distinguish between fine details in the reconstruction. Some
works label a sparse set of landmarks on the images and
measure the projection error at these points [11], [26]. With
a ground truth model, a surface-to-surface distance can be
evaluated such as the L2 distance or the Hausdorff distance,
but the L2 distance focuses only on the low frequency
details, while the Hausdorff distance is susceptible to the
error at outliers. A recent work [47] uses a weighted normal
distance between the reconstructed face and the mean face
in order to assign quality to different reconstructions. We
propose a structural similarity based metric to quantita-
tively evaluate reconstruction performance in the absence
of ground truth scans, and demonstrate how it aligns with
human perception of the reconstruction quality.

3 ALGORITHM
We now present the details of the proposed approach,
describing the motivational differences from prior works.
Figure 2 provides an overview of the different steps to face
reconstruction. The algorithm assumes the existence of a
photo collection with automatically annotated landmarks
and a 3DMM. Notations used throughout this paper are
provided in Table 2. The main algorithm is composed of
three steps. Step 1: Fit the 3DMM template to produce a
coarse person-specific template mesh. Step 2: Estimate the
surface normals of the individual using a photometric stereo
(PS)-based approach. Step 3: Reconstruct a detailed surface
matching the estimated normals.

3.1 Inputs and Preprocessing
3.1.1 Photo collection
A photo collection is a set of n images containing the face of
an individual and may be obtained in a variety of ways,
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Fig. 2. Overview of face reconstruction. Given a photo collection, we apply landmark alignment and use a 3DMM to create a personalized template.
Then a coarse-to-fine process alternates between normal estimation and surface reconstruction.

(a) (b) (c) (d) (e)
Fig. 3. The landmark marching process. (a) internal (green) landmarks
and external (red) defined paths; (b) estimated face and pose; (c) face
with roll rotation removed; (d) landmarks without marching; and (e)
landmarks after marching corresponding to 2D image alignment.

e.g., a Google image search for a celebrity or a personal
photo collection. We assume that the only face in each image
belongs to the person of interest. To normalize the images,
we automatically detect the face using the built-in face
detection model from Bob [48] which was trained on various
face datasets, such as CMU-PIE, that include profile view
faces. The face detector is a cascade of Modified Census
Transform (MCT) local binary patterns classifiers. We filter
out faces with a quality score < 25 to remove extremely
poor quality faces or images without a face. Given the face
bounding box from the detector, we scale the image to 110
pixels inter-eye distance and crop it to a total size of 437×437
to ensure that the entire face region is present in the image.

A Lambertian lighting assumption uses a linear encod-
ing of the intensity of the lighted object. However, most
cameras (and displays) use a non-linear gamma encoding
of images in order to provide a subjectively equal step in
brightness for humans. Since the exact cameras and image
encoding are unknown for unconstrained collections, we
apply a single derendering correction [49] to convert each
image into the linear intensity scale.

3.1.2 Landmarks
Landmarks are the locations of common fiducial points such
as the eyes, nose, or mouth on a face. In recent years,
the automatic detection of landmarks [11], [50], [51] has
seen rapid improvement due to large labeled datasets such
as LFPW [52] and 300-W [53]. To estimate 2D landmarks,
we employ the state-of-the-art cascade of regressors ap-
proach [17] to automatically fit q=68 landmarks denoted
as W ∈ R2×q onto each image. Figure 3 shows the 68 land-

marks used in this work. The landmarks can be separated
into two groups. One, the internal landmarks on the eye-
brows, eyes, nose, and mouth. These correspond to physical
parts of the face and are consistent on all faces regardless of
pose. Two, the external landmarks for the cheek / jaw along
the silhouette of the face. These landmarks do not have a
single correspondence to a point on the 3D face. As the
face turns to non-frontal views, face alignment algorithms
typically detect external landmarks on the facial silhouette.
As a result, the external landmarks of two different poses
correspond to different 3D model vertices.
Landmark marching It is therefore desirable to estimate
pose specific vertices to maintain 3D-to-2D correspondences
between the landmarks. In literature, there have been a
few proposed approaches [4], [6], [54]. In this work, we
follow the proposed landmark marching method from [6].
Specifically, for the external landmarks a set of horizontal
paths, each containing a set of vertex indices, are defined to
match the contour of the face as it turns. Given a non-frontal
face image along with an estimated pose, we rotate the 3D
model using the estimated yaw and pitch while ignoring
the roll, and determine the corresponding vertex along each
predefined path based on the maximum (minimum) x-
coordinate for the right (left) side of the face. See Fig 3 for
an illustration of the process.

3.2 Step 1: Model Personalization

The face model plays a vital role in the reconstruction
process. The current face model directly establishes corre-
spondence between photos, provides an initialization for
surface normal estimation, and regularization during sur-
face reconstruction. Therefore, it is important to begin with
a good personalized model of the face. We desire the model
to match the overall metric structure of the individual
to provide accurate correspondence when projected onto
photos of different poses. However, the model need not
contain fine facial details since those will be determined by
the photometric normal estimation.

Prior work used either a single face mesh [14] or a Struc-
ture from Motion-based (SfM) deformation of a single face
mesh [16]. These models have two main limitations. One,
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the model has fixed specific ethnicity and gender and may
not generalize its fit across a diverse set of subjects. Two, the
SfM technique requires multiple images with sufficient pose
variation and may not work for small collections. Therefore,
we propose supplementing additional prior information to
help form a personalized template for a wide range of
subjects with few images.

3.2.1 3D Morphable Model
In light of these limitations, we propose to use a 3DMM
instead of a single template mesh. A 3DMM can approxi-
mate arbitrary face shapes and is one of the most successful
models for describing the face. Represented as a statistical
distribution of linear combinations of scanned face shapes,
the 3DMM compactly represents wide variations due to
identity and expression and is independent of lighting and
pose. We use the 3DMM of the following form,

X = X̄ +
199∑
k=1

Xid
k α

id
k +

29∑
k=1

X
exp
k α

exp
k , (1)

where X ∈ R3×p denotes the shape (vertex locations) of
a 3D face mesh composed of the mean shape X̄, a set of
identity bases Xid, and a set of expression bases Xexp, with
coefficients ~αid and ~αexp. We use the 3DMM from [6] where
the identity comes from the Basel Face Model [55] and the
expression comes from Face Warehouse [29]. The separation
of the bases into expression and identity is based on the
method from [56].

Fitting a 3DMM entails finding the model coefficients
and projection parameters which best match a face in a
given image. Typically, 3DMM fitting aims to minimize
the difference between a rendered image and the observed
photo [22] using manually annotated landmarks for pose
initialization. As automatic face alignment has improved,
Zhu et al. recently propose an efficient fitting method based
only on landmark projection errors [6]. To fit the 3DMM
to a face image, they assume weak perspective projection
sRX + t, where s is the scale, R is the first two rows of a
rotation matrix, and t is the translation on the image plane.

Given the 2D alignment results W for one image, the
model parameters are estimated by minimizing the projec-
tion error of the 3DMM to the landmarks,

arg min
s,R,t,~αid,~αexp

‖W − (sR[X]land + t)‖2F + Ereg, (2)

where [X]land selects the annotated landmarks from the
entire model and ‖ · ‖F is the Frobenius norm and Ereg is a
regularizer (see Eq. 3) for the 3DMM coefficients. However,
as discussed in Sec. 3.1.2, the pose must be known to march
the external 3D landmarks along their paths to establish
correspondence with W, i.e., the 3D landmark selection
depends on the pose and the 3DMM coefficients.

Our single-image joint optimization of Eq. 2 follows [6],
which is performed in an alternating manner for the pose
parameters and the 3DMM coefficients. Initializing with the
mean face, ~αid = ~αexp = ~0, first we solve for the pose (s, R,
and t) [57], then update the landmarks through marching,
and finally solve for the shape (~αid and ~αexp). All steps are
over-constrained linear least squares solutions. In this work
we perform four total iterations since it converges quickly.

We extend this process to jointly fit n faces of the same
person by assuming a common set of identity coefficients
~αid but a unique set of expression ~αi

exp and pose parameters
per image. The modified full error function is,

argmin
{si,Ri,ti,~α

exp
i },~αid

n∑
i=1

1

n
‖Wi−

(siRi[X̄ +
199∑
k=1

Xid
k α

id
k +

29∑
k=1

X
exp
k α

exp
ki ]landi

+ ti)‖2F

+
199∑
k=1

(
αid
k

σid
k

)2

+
1

n

29∑
k=1

n∑
i=1

(
α

exp
ki

σ
exp
k

)2

, (3)

where σk is the variance of the kth shape coefficient, typ-
ically used in Tikhonov regularization, and [·]landi

is used
because different poses of face images have different selec-
tions of corresponding vertices. This function may be solved
as before since it is linear with respect to each variable. Once
the parameters are learned, we generate a personalized
model X0 using the identity coefficients and the mean of
the expression coefficients, indicating the typical expression
of the individual in the collection.
Model projection Correspondence between images in the
collection is established based on the current template mesh
X0. Given X0 and the projection parameters solved per
image during model fitting, we sample the intensity of
the projected location of vertex j in image i and place
the intensity into a correspondence matrix F ∈ Rn×p.
That is, fij = Ii(u, v) where Ii is the ith image and
〈u, v〉T = siRixj + ti is the projected 2D location of 3D
vertex j on image i.

At the conclusion of Step 1, we have a personalized
model for the subject matching their overall shape, as well
as projection parameters for each image. The model at this
stage is a smooth reconstruction for two reasons. One, the
3DMM only captures low-frequency shape details. Two, the
model is fit based on a limited set of sparse landmarks so
it requires a strong regularization, which favors a smooth
result. Despite being smooth, the model allows for a set
of dense correspondence to be established across the photo
collection. These dense correspondences will be leveraged
to produce the fine details of the face.

3.3 Step 2: Photometric Normal Estimation
To add in the wrinkle details to the personalized model,
we use the dense correspondence along with a photometric
stereo-based normal estimation. Intuitively, the differences
in shading observed across the photo collection provide
clues to the true surface normal, which may differ from the
smooth version offered by the 3DMM estimate. Practically
speaking, we will need to estimate the lighting conditions
for each image and the surface albedo or reflectance of the
face in order to estimate the surface normals.

3.3.1 Lighting Model
In computer graphics, lighting models are used to render
a realistic synthetic image from geometric models with re-
flectance information. Whereas, computer vision uses them
to solve the inverse problem, i.e., inferring the model param-
eters from a real image. In either case, assumptions about
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how to model a scene must be made. The assumptions
may be due to limited understanding of the real world
environment such as reflectance properties of surfaces, or
they may be for computational efficiency or tractability.
For example, we use a weak perspective camera projection
model to tractably solve the pose and projection, and we
use the 3DMM model prior knowledge of face shapes to
personalize our initial shape model.

For lighting, we assume a Lambertian model, which
allows accumulation of many far away light sources into
a single vector, where the perceived intensity at a projected
point is defined by a linear combination of lighting param-
eters and the surface normal,

I(u, v) = ρj
(
Ia + Id

(
lxnxj + lynyj + lznzj

))
, (4)

where ρj is the surface albedo at vertex j, nxj , n
y
j , n

z
j is the

unit surface normal at vertex j, Ia is the ambient light inten-
sity, Id is the directional light intensity, and lx, ly, lz is the
unit light source direction of the image. For simplicity, we
combine the lighting coefficients and direction into a vector
l = 〈Ia, Idl

x, Idl
y, Idl

z 〉T , and define nj = 〈1, nxj , n
y
j , n

z
j 〉T for

the normal. Using the notation from the model projection we
see that fij = Ii(u, v) = ρjl

ᵀ
inj . This lighting model is also

called the first-order spherical harmonics lighting.
Ref [58] shows that theoretically 1st order spherical

harmonics models a minimum of 87.5% of the lighting
energy while a non-linear 2nd order will model 99.2%, but
in practice they found 1st and 2nd order model 94-98%
and 99.5% respectively. Furthermore, [43] demonstrates that
shape reconstruction accuracy using 1st order is 95-98%
while 2nd order is 97-99%. So, while a more complex
lighting assumption may potentially increase the accuracy
by a single percentage, it introduces non-linearity into the
solution process. Therefore, we use the 1st order assumption
in this work. In the future, if we allow other nonlinearities
in the model a 2nd order assumption could be made.

Prior work jointly solved for the Lambertian formulation
using SVD by factoring F into a light matrix Lᵀ and a
shape matrix Ñ which includes the albedo and surface
normals [14], [16]. The SVD approach assumes the first four
principal components of F encode the lighting variation
while suppressing differences in expression, facial appear-
ance, and correspondence errors. These assumptions hold
for large collections of nearly frontal images because SVD
can accurately recover the ground truth in the presence of
sparse amounts of errors. However, we will show that small
collections are susceptible to any correspondence errors
from misalignment or expression variations. Furthermore,
subjects with long hair that obscures the face and changes
styles within the collection will express as an albedo change
and affect the first principal component.

In light of the limitations of the SVD approach, we
propose an energy minimization approach to jointly solve
for albedo, lighting, and normals with,

arg min
{ρj},L,N

p∑
j=1

(
n∑
i=1

‖fij − ρjlᵀinj‖
2 + λn‖nj − ntj‖2

)
, (5)

where ntj is the current surface normal of the face mesh at
vertex j, and λn is the regularization weight. The template
regularization helps keep the face close to the initialization.

(a) (b)

Fig. 4. Effect on albedo estimation with (a) and without (b) dependability.
Skin should have a consistent albedo, but without dependability the
cheek shows ghosting effects from misalignment.

However, large deviation from the initialization is possible
for large collections due to our weighting scheme. Since the
summation is not averaged, as more photos are added to the
collection, the regularization has less overall weight with λn
independent of collection size. Thus, the estimated normals
may deviate further to match the observed photometric
properties of the collection. In contrast, when the photo
collection is small, the regularization term will play an
important role in determining the estimated surface normal.
Thus, this adaptive weighting handles a diverse photo col-
lection size. However, the outliers, which are mitigated by
the SVD approach, can have a larger impact with the square
error minimization. Therefore, to alleviate the problem of
outliers, it is important to properly determine which images
to use for each part of the face.

3.3.2 Dependability
While we have claimed to put the photo collection into
correspondence F, we certainly do not assume it to be
perfect. We use a dependability measurement to weight the
influence of different images for each vertex. What makes a
part of the projected mesh on an image dependable? Clearly,
the part must be visible for the given pose and not occluded
by something in front of the face. Does the resolution of
an image contribute to its dependability? If the face has a
different expression, it may have different surface normals.
Faces with inaccurate landmark alignment will be out of
correspondence. Many different factors play a role in the
dependability of a projected point within an image. We use
dij = max(cos(cᵀinj), 0), where ci is the projection direction
(the normal of image plane), as the measure of dependabil-
ity to handle self-occlusion and sampling artifacts. Other
problems such as expression and and external occlusion are
left to local selection (Sec. 3.3.4).

What does this dependability measure accomplish? First,
backward facing self-occluded parts of the face are given a
weight of 0. Second, regions of the image more susceptible
to pose estimation errors are given lower weights. As the
normal approaches perpendicular to the camera, slight per-
turbations of the pose can project a faraway surface point to
the same pixel on the image. Whereas, a vertex pointing
towards the camera is more stable and should be more
dependable. Fig. 4 shows the albedo estimation with and
without dependability. We update Eqn. 5 to,

arg min
{ρj},L,N

p∑
j=1

(
n∑
i=1

‖dij(fij − ρjlᵀinj)‖
2 + λn‖nj − ntj‖2

)
.

(6)
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What is not modeled by this dependability choice? First,
regions in cast shadow by any external occlusion, such as
cheek occluded by nose or sunglasses; second, landmark
alignment errors; and third, expression differences. We will
address these issues with the local selection step in Sec. 3.3.4.

3.3.3 Global Estimation
Now that we have a good idea of how to approach the
normal estimation, we discuss how to minimize the energy
in Eq. 6. While not jointly convex, it is convex for each step
when solved in an iterative approach, it has a closed form
solution for ~ρ, L, and N independently. We begin by initial-
izing nj to the template surface normal at vertex j and ρj
to 1. We then alternate solving for the lighting coefficients,
albedo, and the surface normals until convergence. Solving
lighting through least squares has the solution,

li = (ρ̃ ◦N ◦ di)\(fi ◦ di), (7)

where ◦ is the entrywise product, ρ̃ is ~ρ repeated four times
to become the same size as N, and A\b denotes the least
squares solution of Ax = b as the backslash operator in
Matlab. Similarly, albedo has a closed form solution,

ρj = (dᵀ
jL

ᵀnj)\(dᵀ
jfj). (8)

Finally, the normals are solved via least squares with damp-
ing λn,

nj = (BᵀB + λnI)−1(Bᵀ(fj ◦ dj) + λnntj), (9)

where B = ρ̃ ◦D ◦ L.

3.3.4 Local Selection
As mentioned in Sec. 3.3.2, the dependability measure only
handles small landmark alignment error, but does not con-
sider expression changes, cast shadow, or other potential
correspondence errors. To handle these other forms of er-
rors, we use a local selection process as proposed in [14] to
refine the photometric estimates. The goal of local selection
is to find a collection of images for each vertex that are in
local agreement, and re-estimate the surface normal using
only those images. This prevents smoothing across all ex-
pressions, and can filter the occlusions. The basic approach
of local selection is to identify a subset of images Bj for each
vertex j and then re-minimize the photometric equation for
that vertex’s normal:

argmin
nj

∑
i∈Bj

‖dij(ρjlᵀinj − fij)‖
2 + λn‖nj − ntj‖2. (10)

All of the prior work uses the same scheme of local
selection [14], [16] which we term square error localization.
The subset is chosen such that the square error of the
observed value for the image matches the estimated value
for the specific vertex, Bj = {i | ‖ρjlᵀinj − fij‖2 < ε}.
This localization scheme makes its decision solely on the
observed value at one particular vertex. It also uses the same
loss function to select the local images as the global loss
function used to initially estimate the albedo, lighting, and
surface normals. This may be advantageous since it forces
the localized result to remain close to the global result, while
removing outliers. But since it only uses one pixel value in
the image for selection, the result is sensitive to noise.

Fig. 5. Raw image, synthetic image under estimated lighting conditions,
and SSIM used for local selection. Brighter indicates higher SSIM.

We seek to design a local selection scheme which is
influenced by a larger area than a single pixel and uses a loss
function consistent with human visual perception. Struc-
tural similarity (SSIM) is a measure of perceived quality be-
tween two images [59]. Initially used to measure the quality
of digital television, it typically uses a raw uncompressed
image as ground truth and compares against the encoded
version as presented on a screen. SSIM is computed between
two windows x and y of common size from different images
using the following equation:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (11)

where µx and µy are the mean of x and y, σ2
x and σ2

y are the
variances, σxy is the covariance, and c1 and c2 are constants
used to stabilize the division. In Matlab implementation, the
window is an isotropic Gaussian weighting with standard
deviation γ of the surrounding pixels instead of a blocked
window to avoid artifacts. SSIM was specifically designed
to better match human visual perception than standard
measurements such as mean square error (MSE) or peak
signal to noise ratio (PSNR). We can also vary the window
size (γ) of SSIM in order to enforce a larger area of local
similarity than a single pixel. For this reason, we propose
using SSIM for local selection instead of square error.

To select the subset of images for each vertex, we need
to compute the SSIM at a vertex on the face model, S, and
not at a pixel in the image. To do this, we render a synthetic
image using the estimated per image pose and lighting and
global albedo and normal. We then compute the SSIM in the
image space which gives us a different SSIM value for each
pixel. Finally, we backproject the SSIM image onto the face
model to create S in the same way we created F in Sec. 3.2.1.
Figure 5 demonstrates this process for a single image. The
local selection now becomes Bj = {i | sij > ε}.

3.4 Step 3: Surface Reconstruction
Given the localized surface normals nj that specify the
fine details of the face, we desire to reconstruct a new
face surface X which matches the observed normals. This
process is described in full detail in [16], and we briefly
summarize the procedure here.

We use a Laplacian-based surface editing technique
motivated by [60]. The Laplace-Beltrami operator is the
divergence of a gradient field. Using linear finite elements,
it can be discretized into L, a symmetric matrix with entries
Ljk = 1

2 (cotαjk + cotβjk), where αjk and βjk are the
opposite angles of edge jk in the two incident triangles (see
Figure 6), known as the cotan formula [61]. Geometrically,
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Algorithm 1: Adaptive 3D face reconstruction

Data: Photo collection
Result: 3D face mesh X
// Step 1

1 estimate landmarks Wi for each image
2 fit the 3DMM via Eq. 3 to generate template X0

3 remesh to the coarse resolution
4 for resolution ∈ {coarse, medium, fine} do
5 repeat
6 estimate projection si,Ri, ti for each image
7 establish correspondence F via backprojection

// Step 2
8 globally estimate L, ρ, and N via Eq. 6
9 local selection of images B via Sec. 3.3.4

10 re-estimate surface normals N via Eq. 10
// Step 3

11 reconstruct surface Xk+1 via Eq. 13
12 until 1

p
‖Xk+1 −Xk‖2F < τ

13 subdivide surface

njHj

vj

vk

nk

ejk

αjk βjk

Fig. 6. The mean curvature normal indicates how a vertex deviates
from the average location of its immediate neighbors, which can be
evaluated as the Laplacian of the position. The mean curvature Hj can
be evaluated through n.

L measures the difference between a functions value at a
vertex and the average value of the neighboring vertices.
As in [60], [62], we note that xjL = −njHj , where Hj is
the integral of the mean curvature in the Voronoi region of
vertex j. What this means for us, is that we can use the
estimated surface normals to update the positions of the
mesh assuming we can determine the mean curvature.

We follow the procedure from [16] to estimate Hj given
a normal field. Using a discretization of H = ∇A ·n, i.e., the
mean curvature measures how fast the area changes when
moving the surface along the normal direction. The first
variation of the area can be measured through the difference
between ni and nj as follows,

Hj =
1

4

∑
k∈N(j)

(cotαjk+cotβjk) ejk · (nk−nj), (12)

where N(j) is the one-ring neighborhood of j, and ejk is
the edge from j to k (Figure 6). Note the cotan weights are
identical to those from the Laplace-Beltrami operator.

We put this together to perform surface reconstruction
with an energy composed of three parts,

argmin
X

En + λbEb + λlEl. (13)

Here En = ‖XL + NHk‖2 is the normal energy derived
from the Laplacian discussion where Hk is a diagonal

matrix of the vertex mean curvature integrals Hj from
the face model at k-th iteration. Eb = ‖XLb − XkLb‖2 is
the boundary energy, required since the mean curvature
formula degenerates along the surface boundary into the
geodesic curvature, which cannot be determined from the
photometric normals. We therefore seek to maintain the
same Laplacian along the boundary with Lb,jk = 1/|ejk|
where |ejk| is the edge length connecting adjacent boundary
vertices j and k. To avoid numerical drift accumulated over
iterations, we include landmark deviation energy El =∑
i ‖siRi[X]landi

+ ti −Wi‖2F , which uses the landmark
projection error to provide a global constraint on the face.
The weights λb and λl are necessary to match units and
balance the influences of the three terms. Unlike [16] we
do not need a shadow region smoothing, since we already
introduce dependability and use the template normal as a
regularizer during normal estimation.

In each iteration, the optimization is achieved with a
sparse linear system,

(L2 + λbL2
b + λl

∑
i

s2iCiC
ᵀ
i)X

= NHkL+ λbX
kLb +

λl
n

∑
i

sRᵀ
i(t−Wi)C

ᵀ
i , (14)

where Ci ∈ Rp×q is a sparse selection matrix. Each column
of Ci has a single 1 indicating the vertex index selected
through landmark marching for the corresponding 2D land-
marks for image i.

3.5 Adaptive Mesh Resolution
Additionally, we propose a coarse-to-fine scheme for recon-
struction. Starting with a low resolution mesh allows the
reconstruction process to find the low frequency features
in an efficient manner. Then, as the resolution increases,
we can decrease the surface normal regularization to find
the higher frequency details, while increasing the landmark
reconstruction constraint to ensure the low frequency details
maintain their position.

Here we describe the engineering details of the approach
and present how all the steps fit together in Algorithm 1.
After personalizing the face model, we use ReMESH [63] to
uniformly resample the personalized mesh X0 to a coarse
mesh with 6, 248 (= p) vertices. The resampling is done
once offline on the mean shape and is transferred to a
personalized mesh by using the barycentric coordinates of
the corresponding triangle on the original mesh for each
coarse mesh vertex. Within each resolution, steps 2 and 3
are repeated until the surface converges. After convergence,
one step of Loop subdivision [64] increases the resolution of
the mesh, multiplying the number of vertices by 4. Moving
from the coarse to fine level, we increase the localization
selectivity by altering ε and we lower the template normal
regularization λn (Sec. 4.1.3) to rely more on the observed
images. This helps the coarse reconstruction stay smooth
and fit the generic structure while allowing the fine recon-
struction to capture the details.

3.6 SSIM Quality Measure
Accurately measuring reconstruction quality in the absence
of ground truth data is a difficult task. Even with a ground
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Fig. 7. Qualitative evaluation of 16 individuals from Internet photo collections. Note the diversity in ages, ethnicities and genders.

truth face scan, each popular surface-to-surface distance
measurement has its flaws. Typically, surfaces are aligned
through iterative closest point and for each vertex on the
reconstructed surface, the error is reported as the minimum
distance to the ground truth surface and not the correspond-
ing semantic vertex. Such a measurement captures the over-
all similarity but places little emphasis on high frequency
details like wrinkles. In light of this, the angle between the
surface normals for the closest point is sometimes reported.
However, when ground truth scans are not available, the
surface reconstruction accuracy cannot be measured directly
and must instead be measured indirectly. We desire the
indirect measure to have two properties: 1) surface recon-
struction errors should be evident in the score, 2) it should
align with human perception of the reconstruction.

Considering the case where the only available informa-
tion is the photo collection itself, we propose to measure
the reconstruction accuracy indirectly by using the recon-
structed model to render synthetic images under the same
conditions as the real images and measuring the difference.
If the image conditions (pose and illumination) and albedo
are known, this will satisfy the first property since any
change to the surface will result in a change to the rendered
image. However, we are using the estimated conditions and
albedo, and for a single image collection, it is trivial to
change the albedo for any surface to produce an identical
synthetic image to the real image. Fortunately, for multi-
image collections (with different poses), property one is
satisfied. To satisfy the second property, we use SSIM as
the comparison measure because, as mentioned in Sec. 3.3.4,
SSIM was developed to mimic human perception. We will
verify this relationship in Sec. 4.2.2.

The SSIM quality measure for a reconstruction is given
as follows. For each raw image from the photo collection,

a synthetic image is rendered using the image-specific pose
and lighting condition with the global albedo and surface
estimate. The images are cropped tightly to the bounding
box of the face in the synthetic image and the background
of the synthetic image is filled in with the background from
the raw image (Fig. 5). A single SSIM value from each image
(mean of the pixel-wise SSIM scores) forms a set of scores
for the collection. Two collections are compared directly
by calculating if there is a significant difference between
the two means of the collections using a p-value of 0.01.
Globally, the mean SSIM for the set provides an overall
quality of the reconstruction.

4 EXPERIMENTAL RESULTS
We run a variety of experiments in order to qualitatively
and quantitatively compare the proposed approach to prior
face reconstruction work. For baselines, we only compare
against other photo collection targeted approaches which
use photometric stereo-based approaches [14], [16]. Stereo
imaging and video-based approaches are not compared
against since they can make use of the additional tempo-
ral information. Furthermore, since the proposed approach
uses 3DMM fitting for Step 1 to personalize the template,
we do not compare against other 3DMM fitting approaches,
since any state-of-the-art 3DMM technique can be used in
place for initialization. We also present results exploring the
effectiveness of different parts of the reconstruction process.

4.1 Experimental Setup
4.1.1 Data Collection
We collect three distinct types of photo collections in this
work. First, Internet photo collections. For these, we use the
Bing image search API with a person’s full name to fetch a
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Fig. 8. Synthetic data with lighting (top), pose (middle), and
expression (bottom) variation.

set of images. Occasionally images of the wrong person are
included in these collections due to incorrect search results
or more than one person being in an image. As long as this
is infrequent, these images may be ignored through local
selection. Second, synthetic images are rendered from subject
M001 of the BU-4DFE database [65] using the provided
texture and selecting random frames from the 6 expres-
sion sequences (Fig. 8). A Lambertian lighting model re-
illuminates the face with light sources randomly sampled
from a uniform distribution in front of the face. Third,
personal photo collections. For these, we ask a person to
provide a set of their own personal photos from social
media or their phones photo gallery with it pre-cropped
to remove other people from the images. In all cases, we
use Bob [48] in Python to detect, crop, and scale faces as
described in Sec. 3.1.1. Ground truth scans are captured for
personal collections with a Minolta Vivid 910 range scanner
at VGA resolution capturing 2.5D depth scans accurate to
±0.03mm. Given frontal and both 45◦ yaw scans, we stitch
them together using MeshLab to create a full 3D model.

4.1.2 Metrics

We use two different quantitative metrics. For Internet col-
lections where we do not have a ground truth face shape,
we use structural similarity (SSIM) as a proxy measurement
of the reconstruction error, detailed in Sec. 3.6. For personal
collections where we have a ground truth surface, we com-
pute the average surface to surface distance. Both surfaces
are roughly aligned by Procrustes superimposition of the 3D
landmarks from the internal part of the face and ICP final-
izes the alignment. The normalized vertex error is computed
as the distance between a vertex in the reconstructed mesh
and the closest vertex in the ground truth surface divided by
the eye-to-eye distance. We report the average normalized
vertex error. As a baseline, the mean face of the 3DMM has
an average of 4.58% error to the ground truths.

4.1.3 Parameters

The parameters for the algorithm are set as follows: τ =
0.005, λl = 0.01, λb = 10, λn = [1, 0.1, 0.01], square error
ε = [0.2, 0.08, 0.08], and SSIM error ε = [0.65, 0.65, 0.65] for
coarse, medium, and fine resolution respectively.

4.2 Internet Results

4.2.1 Qualitative Evaluation
We begin by presenting qualitative results of the proposed
method on a diverse set of subjects, spanning multiple
ethnicity and both genders. While qualitative results are
subjective and hard to compare with existing approaches,
they do provide an overview of what types of details are
captured in the reconstruction, whereas numerical surface-
to-surface measurements sometimes lose perspective of the
reconstruction quality. We strive not only for metrically
correct reconstructions, but also for visually compelling
reconstructions. In Figure 7, we present a large sample of
reconstructions from Internet photo collections. The recon-
structions are visually compelling and were generated using
anywhere from 25 to 100 images per person. Note the ability
to even reconstruct hairstyles, which are neither included in
the 3DMM nor explicitly considered in our approach. How-
ever, we do see that facial hair often creates difficulty for the
reconstruction since it is hard to establish correspondence
with the same surface normal across images.

To visually place the proposed approach in comparison
with prior work, we show reconstructions of the sample
with four celebrities used in [14] and [16], George Clooney
(99 photos), Kevin Spacey (143), Bill Clinton (179), and Tom
Hanks (255). Figure 9 presents a side by side comparison be-
tween the various approaches. Due to the subjective nature
of these reconstructions, we only comment on the fact that
we reconstruct with the largest surface area, with similar
visual appearance if not better. For example, by including
areas outside of the internal face features, we capture the
wrinkles to the sides of Clooney’s eyes, and the smile lines
on Spacey’s cheek.

4.2.2 SSIM Quality Evaluation
We seek to validate the hypothesis that the proposed SSIM
quality measure is consistent with human perception of
reconstruction quality. To this end, we design the following
experiment. For a total of 22 subjects, we collect Internet
collections querying 100 images per person; after Python
face detection filtering, this leaves us with 53 images per
person on average. Face reconstruction is performed on the
collection and the final shape and albedo are rendered under
five viewpoints. The set of SSIM scores for each collection
is obtained as described in Sec. 3.6. Since human perception
of reconstruction quality is subjective, it is difficult to ask
humans for a single number ranking the quality of each
reconstruction. Therefore, we use an easier question where
we present a pair of reconstructions and ask which “is a
more visually compelling reconstruction”. The human may
answer “top”, “bottom”, or “equal” for a score of 1,−1, 0
respectively. An example image pair is given in Fig. 10.
Six random sets of 50 comparisons are given to different
pairs of human evaluators. The average human-to-human
correlation within each set is 0.63.

PageRank [66] can provide a global human ranking
based on the comparisons. We create a graph with subjects
as vertices and decisions as directed edges from the less
compelling to the more compelling subject. PageRank pro-
duces a probability score for visiting a subject along random
walks through the graph and has succeeded in sports teams
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Ours [16] [14] Ours [16] [14] Ours [16] [14]

Fig. 9. Qualitative comparison on celebrities. The proposed approach incorporates more of the sides of the face and neck.

Fig. 10. Sample rendering used for human perception experiment.
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Fig. 11. Comparing human-based PageRank scores to SSIM.
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Fig. 12. Best (top) and worst (bottom) reconstructions as determined by
human (a) and SSIM (b).
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Fig. 13. Histograms of reconstruction performance.

ranking [67]. Figure 11 compares human and SSIM scores,
with a correlation of 0.69 indicating SSIM is equivalent to
a single human evaluation. Figure 12 shows the best and
worst subjects as determined by human and SSIM.

SSIM allows large-scale comparison with prior work.
Internet collections for 100 actors, singers, or politicians are
captured by querying 50 images per person with an average
of 28 images remaining after pre-processing. Comparing
against [16], Fig. 13 plots histograms of SSIM quality scores.
We see a clear improvement for the proposed method.

One interesting note is the bimodal distribution of the
scores. One mode at 0.7 is similar to that observed in Fig. 11,
and the other at 0.3 can be viewed as complete failures.
We show an example collection in Fig. 14. While it is hard
to identify a common trend, observed failure collections
contain strong specular reflection, wide age range, cartoon
images, and repeated images. Future work can explore
identifying these conditions, and automatically filtering out
the problematic images before reconstruction.

4.2.3 Adaptability

We look at adaptability with respect to two different fac-
tors. One, the number of images in the photo collection.
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Fig. 14. A complete failure Internet image collection.

A major critique of prior SVD-based photometric stereo
reconstructions is their dependence on a large number of
images, typically over one hundred, which is too many for
numerous applications. Two, the resolution of the images.
By default, we have scaled all images to the same size ∼110
pixel eye-to-eye distance. We desire to know how well the
proposed approach works for very low resolution images at
∼20 pixel eye-to-eye distance.

Figure 15(a) shows the adaptability of the reconstruction
for George Clooney. As the number of images increases, the
reconstruction becomes cleaner, but the overall details are
still present with few images. We also test reconstruction for
low resolution images and find it is able to capture wrinkles
on the forehead since the sampling across multiple images
acts as super-resolution.

4.3 Synthetic Results
The synthetic dataset allows testing under known assump-
tions to see robustness to pose and expression indepen-
dently. We generate three sets of 50 images: frontal with
neutral expression, neutral expression with random yaw
angles between ±30◦, and frontal with random expressions
(Fig. 8). Error is reported as the surface-to-surface distance
to the neutral expression model. Table 3 shows the proposed
method outperforms prior work in all scenarios, and is more
robust to pose than expression variation.

4.4 Personal Results
4.4.1 Local Selection
We explore the effects of local selection on the personal
photo collections. There are 10 personal photo collections
ranging from 6 to 50 images with a median of 24. Table 4
shows the different choices for local selection showing that
local selection improves performance with SSIM performing
better than square error. Exploring why SSIM performs
better, Tab. 5 shows the performance based on the window
size γ, or the size of the local area to consider. When γ is very
small, it behaves similar to the square error method where
only a single point on the face contributes to the selection.
The error decreases as the selection area increases until it is
too broad of an area.

4.4.2 Adaptability
We perform a thorough experiment comparing the adaptabil-
ity of the proposed method to the SVD-based approach
of [16]. We split each photo collection into 4 sizes, 25%, 50%,
75%, 100% of the images and use the high and low resolu-
tion. The results for all 10 photo collections are averaged
together in Table 6. The proposed method performs better
for all collection sizes, and adapts better to small collections.
While the SVD-based approach degrades by 1.44%, the
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Fig. 15. (a) George Clooney with different numbers and quality
images. (b) Reconstruction without coarse-to-fine process.
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Fig. 16. Adaptability on personal photo collections. Sample re-
constructions on quarter and full-size collections.

proposed method only degrades by 0.46%. Figure 17 shows
substantial improvement to the chin and forehead. Figure 16
demonstrates reconstruction quality for different size photo
collections. More images reduce noise and add details, but
small collections are still recognizable.

4.5 Discussions
Efficiency Written in a mixture of C++ and Matlab, the
algorithm runs on a commodity PC with an Intel i7-4770k
3.5 GHz CPU and 8 GB RAM. We report times w.r.t. 100-
image collections. Preprocessing, including face detection,
cropping, and landmark alignment, takes 38 seconds. Tem-
plate personalization takes 5 seconds. Photometric normal
estimation and surface reconstruction take 2, 11, and 45
seconds for each iteration of the coarse, medium, and fine
resolution, respectively. A typical reconstruction of George
Clooney takes 5 coarse iterations, 2 medium, and 1 fine for
a total time of < 1.5 minutes.
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TABLE 3
Synthetic Surface-to-Surface Error.

Method Neutral 30◦ Yaw Expression
Ours 3.22% 3.82% 4.40%

[16] 6.13% 7.48% 6.59%

TABLE 4
Local Selection Error.

Method None Square Error SSIM
Error 4.57% 3.93% 3.58%

TABLE 5
SSIM Radius Error.

γ 0.5 1.5 2.5 3.5
Error 4.11% 4.81% 3.58% 4.86%

25% 50% 75% 100%

Fig. 17. Surface-to-Surface errors by location for personal recon-
structions using [16] (top) and the proposed method (bottom).

TABLE 6
Personal Collection Adaptability.

% of Images 25 50 75 100
Ours - Low 4.10% 3.85% 3.78% 3.65%

Ours - High 4.04% 3.54% 3.53% 3.58%
[16] - Low 5.54% 4.78% 4.63% 4.34%

[16] - High 5.56% 4.77% 4.70% 4.10%

Coarse to Fine The coarse-to-fine scheme benefits both ef-
ficiency and quality. If the coarse-to-fine scheme is not used
and instead the reconstruction starts at the fine resolution,
the Clooney set takes 4 iterations to converge for a total time
of 3.7 minutes, more than double the time. Also, Fig. 15(b)
shows that the resultant reconstructions are similar for large
collections, but noisy for small collections since the coarse
step allows for more template regularization.

5 CONCLUSIONS
We presented an approach for reconstructing a wrinkle-
level 3D face model from an unconstrained 2D photo
collection, adapting to the quantity and quality of im-
ages present. Incorporating prior face knowledge through a
3DMM and an adaptive regularization allows the method to
work on smaller photo collections, and the novel structural
similarity-based local selection improves performance in
the presence of occlusions. Our coarse-to-fine scheme first
reconstructs a smooth yet accurate model and then adds
in the details present in the collection. The resulting recon-
structions have applications for improving face recognition,
landmark alignment, and consumer entertainment.
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