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Abstract

The face image is the most accessible biometric modality
which is used for highly accurate face recognition systems,
while it is vulnerable to many different types of presentation
attacks. Face anti-spoofing is a very critical step before
feeding the face image to biometric systems. In this pa-
per, we propose a novel two-stream CNN-based approach
for face anti-spoofing, by extracting the local features and
holistic depth maps from the face images. The local features
facilitate CNN to discriminate the spoof patches indepen-
dent of the spatial face areas. On the other hand, holistic
depth map examine whether the input image has a face-like
depth. Extensive experiments are conducted on the chal-
lenging databases (CASIA-FASD, MSU-USSA, and Replay
Attack), with comparison to the state of the art.

1. Introduction
Biometrics utilize physiological, such as fingerprint,

face, and iris, or behavioral characteristics, such as typ-
ing rhythm and gait, to uniquely identify or authenticate
an individual. As biometric systems are widely used in
real-world applications including mobile phone authenti-
cation and access control, biometric spoof, or Presentation
Attack (PA) are becoming a larger threat, where a spoofed
biometric sample is presented to the biometric system and
attempted to be authenticated. Since face is the most ac-
cessible biometric modality, there have been many different
types of PAs for faces including print attack, replay attack,
3D masks, etc. As a result, conventional face recognition
systems can be very vulnerable to such PAs.

In order to develop a face recognition system that is in-
vulnerable to various types of PAs, there is an increasing
demand on designing a robust face anti-spoofing (or PA de-
tection) system to classify a face sample as live or spoof be-
fore recognizing its identity. Previous approaches to tackle
face anti-spoofing can be categorized in three groups. The
first is the texture-based methods, which discover discrimi-
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Figure 1: In order to differentiate between live from spoof im-
ages, we propose an approach fusing patch-based and holistic
depth-based cues. Left column shows the output scores of the
local patches for a live image (top) and a spoof image (bottom),
where the blue/yellow represent a high/low probability of spoof.
While this visualization utilizes densely sampled patches, 10 ran-
dom patches are sufficient for our anti-spoof classification. Right
column shows the output of holistic depth estimation, where the
yellow/blue represent a closer/further points.

native texture characteristics unique to various attack medi-
ums. Due to a lack of an explicit correlation between pixel
intensities and different types of attacks, extracting robust
texture features is challenging. The second is the motion-
based methods that aim at classifying face videos based
on detecting movements of facial parts, e.g., eye blinking
and lip movements. These methods are suitable for static
attacks, but not dynamic attacks such as replay or mask
attacks. The third is image quality and reflectance-based
methods, which design features to capture the superimposed
illumination and noise information to the spoof images.

Most of the prior face anti-spoofing work, as one of
our key observations, apply SVM on hand-crafted fea-
tures. While Convolutional Neural Network (CNN) ex-
hibits its superior performance in many computer vision
tasks [24, 25, 20], there are only a few CNN-based meth-
ods for face anti-spoofing. Existing CNN methods typically



use CNN for learning representations, which will be fur-
ther classified by SVM [27, 31]. In our view, further uti-
lizing CNN in multiple ways, such as end-to-end training
and learning with additional supervision, is a viable option
for solving face anti-spoofing problems. On one hand, with
an increasing variety of sensing environments and PAs, it
is not desirable to have a hand-crafted feature to cover all
attacks. On the other hand, we need CNN to learn a robust
feature from the data. With the growing numbers of face
spoofing databases, CNN is known to be able to leverage
the larger amount of training data, and learn generalizable
information to discriminate live vs. spoof samples.

Following this perspective, as shown in Figure 1, this
paper proposes a novel two-stream CNN-based face anti-
spoofing method, for print and replay attacks. The proposed
method extracts the local features and holistic depth maps
from face images. Here the local features are extracted from
random patches within the face region, while the depth fea-
tures leverage the whole face, and describe the live face as
a 3D object but the spoof face as a flat plain (assuming PAs
include print attack and replay attack). Since face spoofing
datasets contain videos with different qualities, combining
the local and holistic features has two benefits: First, uti-
lizing the local patches help to learn spoof patterns inde-
pendent of spatial face areas. Second, holistic depth maps
ensure the input live sample has a face-like depth. Hence,
we use two CNNs to learn local and holistic features re-
spectively. The first CNN is end-to-end trained, and assign
a score to each randomly extracted patch from a face image.
We assign the face image with the average of scores. The
second CNN estimates the depth map of the face image and
provide the face image with a liveness score based on esti-
mated depth map. The fusion of the scores of both CNNs
lead to the final estimated class of live vs. spoof.

We summarize our main contributions as follows:
� Our proposed method utilizes both learned local and

holistic features for classifying live vs. spoof face samples.
� We propose a method for estimating the dense depth

map for a live or spoof face image.
� We achieve the state-of-the-art performance on con-

ventional face anti-spoofing databases.

2. Prior Work
We review papers in three relevant areas: traditional

face anti-spoofing methods, CNN-based methods, and im-
age depth estimation.
Traditional face anti-spoofing methods Most prior work
utilizes hand-crafted features and adopts shallow learn-
ing techniques (e.g., SVM and LDA) to develop an anti-
spoofing system. A great number of work pay attention
to the texture differences between the live faces and the
spoof ones. Common local features that have been used in
prior work include LBP [28, 13, 14], HOG [23, 45], DoG

[40, 34], SIFT [32] and SURF [7]. However, the aforemen-
tioned features to detect texture difference could be very
sensitive to different illuminations, camera devices and spe-
cific identities. Researchers also seek solutions on different
color spaces such as HSV and YCbCr [5, 6], Fourier spec-
tra [26] and Optical Flow Maps (OFM) [3].

Additionally, some approaches attempt to leverage the
spontaneous face motions. Eye-blinking is one cue pro-
posed in [30, 39], to detect spoof attacks such as paper
attack. In [22], Kollreider et al. use lip motion to monitor
the face liveness. Methods proposed in [9, 10] combine au-
dio and visual cues to verify the face liveness.
CNN-based methods CNN have proven to successfully
outperform other learning paradigms in many computer
vision tasks [24, 25, 20]. In [27, 31], the CNN serves
as a feature extractor. Both methods fine-tune their net-
work from a pretrained model (CaffeNet in [31], VGG-face
model in [27]), and extract the features to distinguish live
vs. spoof. In [44], Yang et al. propose to learn a CNN
as a classifier for face anti-spoofing. Registered face im-
ages with different spatial scales are stacked as input and
live/spoof labeling is assigned as the output. In addition,
Feng et al. [15] propose to use multiple cues as the CNN in-
put for live/spoof classification. They select Shearlet-based
features to measure the image quality and the OFM of the
face area as well as the whole scene area. And in [43], Xu et
al. propose an LSTM-CNN architecture to conduct a joint
prediction for multiple frames of a video.

However, compared to other face related problems, such
as face recognition [25, 41] and face alignment [18], there
are still substantially less efforts and exploration on face
anti-spoofing using deep learning techniques. Therefore, in
this work we aim to further explore the capability of CNN
in face anti-spoofing, from the novel perspective of fusing
the local texture-based decision and holistic depth maps.
Image depth estimation Estimating depth from a sin-
gle RGB image is a fundamental problem in computer vi-
sion. In recent years there have been a rapid progress of
data-driven methods [21], especially deep neural networks
trained on large RGB-D datasets [38], as well as weak an-
notations [8]. Specifically, for face images, face reconstruc-
tion from one image [18, 19] or multiple images [35, 36] can
also be viewed as one way for depth estimation. However,
to the best of our knowledge, no prior work has attempted
to estimate the depth for a spoof image, such as a face on a
printed paper. In contrast, our approach estimates depth for
both the live face and spoof face, which is particularly chal-
lenging since the CNN needs to discern the subtle difference
between two cases in order to correctly infer the depth.

3. Proposed Method
The proposed approach consists of two streams: patch-

based CNN, and depth-based CNN. Figure 2 shows a high-
level illustration of both streams along with a fusion strat-
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Figure 2: Architecture of the proposed face anti-spoofing approach.

egy for combining them. For the patch-based CNN stream,
we train a deep neural network end-to-end to learn rich ap-
pearance features, which are capable of discriminating be-
tween live and spoof face images using patches randomly
extracted from face images. For the depth-based CNN
stream, we train a fully convolutional network (FCN) to es-
timate the depth of a face image, by assuming that a print or
replay presentation attack have a flat depth map, while live
faces contain a normal face depth.

Either the appearance or depth cue can detect face at-
tacks independently. However, fusing both cues has proven
to provide promising results. In this paper, we refer to the
fusion output as the spoof-score. A face image or video clip
is classified as spoof if its spoof-score is above a pre-defined
threshold. In the remaining of this section, we explain in de-
tail the two CNN steams used for face anti-spoofing.

3.1. Patch-based CNN
There are multiple motivations to use patches instead of

full face in our CNN. First is to increase the number of train-
ing samples for CNN learning. Note that for all available
anti-spoofing datasets, only a limited number of samples are
available for training. E.g., CASIA-FASD only contains 20
training subjects, with 12 videos per subject. Even though
hundreds of faces can be extracted from each video, overfit-
ting could be a major issue when learning the CNN due to
the high similarities across the frames. Second, when using
the full face images as input, traditional CNN needs to re-
size faces due to varying face image resolutions, where such
scaling change might lead to the reduction of the discrimi-
native information. In contrast, using the local patches can
maintain the native resolution of the original face images,
and thus preserve the discriminative ability. Third, assum-
ing the spoof-specific discriminative information is present
spatially in the entire face region, patch-level input can en-
force CNN to discover such information, regardless of the
patch location. This is a more constrained or challenging
learning task compared to using the whole face image.

3.1.1 Input features
CNN is claimed to be a powerful feature learner that is
able to map from raw RGB pixel intensities to the dis-
criminative feature representation, guided by the loss func-

tion, which is in sharp difference to the conventional hand-
crafted features. In our work, one observation is that CNN
might also benefit from the hand-crafted features, which are
proven to work well for the anti-spoof application. In a way,
this is one form of bringing domain knowledge to the CNN
learning. This might be especially important for face anti-
spoof applications, since without domain knowledge it is
more likely for CNN to learn non-generalizable information
from the data, rather than the true discriminative feature.

In reviewing hand-crafted features for face anti-spoofing,
researchers have been experimenting with several color
spaces as input to a feature extraction module to find dis-
criminative descriptors. Typically, the most common color
spaces used are RGB, HSV , Y CbCr, and several com-
binations among them, such as HSV + Y CbCr [5]. The
RGB has limited applications in face anti-spoofing due
to the high correlation between the three color compo-
nents and the imperfect separation of the luminance and
chrominance information. On the other hand, HSV and
Y CbCr are based on the separation of the luminance and
the chrominance information, providing additional features
for learning the discriminative cues.

In this work, we attempt to use both HSV and Y CbCr

color spaces in the CNN-base methods. Moreover, we also
explore several other input feature maps to the CNN includ-
ing a pixel-wise LBP map, and high-frequency patches.
For the pixel-wise LBP map, we use the LBP8,1 operator
(i.e., P = 8 and R = 1) to extract the pixel-wise textural
features from the face image, and afterwards we randomly
extract patches from the texture map. Note that in previous
works, LBP is only used to extract histogram descriptors.
For the high-frequency patches, the idea is to remove the
low-frequency information from the patches which is moti-
vated by the work in [12]. For any given face image I, we
subtract the low-pass filtered image of I, which results in a
high-frequency image IH = I − flp(I). An illustration of
the various input features explored in our system is in Fig-
ure 3. Compared to using RGB alone, providing these input
features can facilitate the CNN training.

Based on our experiments, all of the proposed input fea-
tures are useful representations to learn a CNN capable of
distinguishing spoof attacks from live faces. In the experi-
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Figure 3: Examples on RGB (G channel), HSV (S channel),
Y CbCr (Cb channel), pixel-wise LBP (LBP of S channel in
HSV ), high-frequency images (using G in RGB) of both live
and spoof face images.

ments section, quantitative results comparing the input fea-
tures will be presented. For the patch-based CNN, after de-
tecting the face region, we convert the full face image into
one of the feature representations, i.e., HSV , and then ex-
tract fixed size patches for CNN training and testing.

3.1.2 CNN architecture
A detailed network structure of the patch-based CNN is il-
lustrated in Table 1. Note that a total of five convolutional
layers are used followed by three fully connected layers.
Following every convolutional layer, we use a batch nor-
malization, ReLU and pooling layers. Softmax loss is uti-
lized in CNN training. Given a training image, we ini-
tially detect the face and then crop the face region based
on eye positions. After that, several patches are extracted
randomly from the face image, such that all patches have
the same fixed size. We avoid any rescaling to the original
face images for the purpose of maintaining the spoof pat-
terns within the extracted patches. If the face image is a live
face, we assign all of its patches a binary label of 1. If the
face is a spoof face, the labels of patches are 0.

During testing, we extract patches in the same manner as
training. The patch-based CNN will produce spoof scores
for every patch in the range of 0 − 1. The final result of
the image is the average spoof score of all patches. If the
presentation attack is in the video format, we compute the
average spoof score across all frames.

3.2. Depth-based CNN
In this section, we explain the details of the depth-based

CNN. Other than 3D-mask PA, all known PAs, such as
printed paper and display, have an obviously different depth
compared to the live faces. Therefore, developing a robust
depth estimator can benefit the face anti-spoofing.

Based on [12], we believe that high-frequency informa-
tion of face images is crucial for anti-spoofing, and resizing
images may lead to a loss of high-frequency information.
Therefore, to be able to handle face images with different
sizes, we proposed to maintain the original image size in

Table 1: The network structure of patch-based CNN and depth-
based CNN. Red texts represent the output of the CNNs. Every
convolution layer is cascaded with a ReLU layer. Note that the
input size for patch-based CNN is fixed to be 96 × 96. The input
size for depth-based CNN is varied from sample to sample. For
simplicity, we show the case when the input size is 128× 128 .

Patch-based CNN Depth-based CNN
Layer Filter/Stride Output Size Layer Filter/Stride Output Size

Conv-11 3× 3/1 128× 128× 64
Conv-1 5× 5/1 96× 96× 50 Conv-12 3× 3/1 128× 128× 64
BN-1 96× 96× 50 Conv-13 3× 3/1 128× 128× 128

MaxPooling-1 2× 2/2 48× 48× 50 MaxPooling-1 2× 2/2 64× 64× 128

Conv21 3× 3/1 6× 6× 128
Conv-2 3× 3/1 48× 48× 100 Conv-22 3× 3/1 64× 64× 256
BN-2 48× 48× 100 Conv-23 3× 3/1 64× 64× 160

MaxPooling-2 2× 2/2 24× 24× 100 MaxPooling-2 2× 2/2 32× 32× 160

Conv-3 3× 3/1 24× 24× 150
BN-3 24× 24× 150 Conv-31 3× 3/1 32× 32× 128

MaxPooling-3 3× 3/2 12× 12× 150 ConvT-32 6× 6/5 37× 37× 128

Conv-4 3× 3/1 12× 12× 200
BN-4 12× 12× 200 Conv-41 3× 3/1 37× 37× 128

MaxPooling-4 2× 2/2 6× 6× 200 ConvT-42 6× 6/5 42× 42× 128

Conv-5 3× 3/1 6× 6× 250
BN-5 6× 6× 250 Conv-51 3× 3/1 42× 42× 160

MaxPooling-5 2× 2/2 3× 3× 250 ConvT-52 6× 6/5 47× 47× 160

FC-1 3× 3/1 1× 1× 1000
BN-6 1× 1× 1000 Conv-61 3× 3/1 47× 47× 320

Dropout 0.5 1× 1× 1000 ConvT-62 6× 6/5 52× 52× 320

FC-2 1× 1/1 1× 1× 400
BN-7 1× 1× 400
FC-3 1× 1/1 1× 1× 2 Conv-71 3× 3/1 52× 52× 1

training the CNN for depth estimation. That is, we train a
fully convolutional network (FCN) whose parameters are
independent to the size of input face images. The input
is face images and the output is the corresponding depth
maps. For the live faces, the depth information is from the
3D face shapes estimated using a state-of-the-art 3D face
model fitting algorithm [18, 19, 17]. For the spoof faces,
the depth information is the flat plain, as assumed by the
attack medium’s geometry, e.g., screen, paper.

3.2.1 Generating the depth labels
We represent the live face with the dense 3D shape A asx1 x2 · · · xQ

y1 y2 · · · yQ
z1 z2 · · · zQ

 where z denotes the depth informa-

tion of the face, and Q is the number of 3D vertices.
Given the face image, the 3D face model fitting algo-

rithm [19] can estimate the shape parameters p ∈ R1×228

and projection matrix m ∈ R3×4. We then use 3DMM
model [4] to compute the dense 3D face shape A by

A = m ·
[

S̄ +
∑228

i=1 p
iSi

1ᵀ
]
, (1)

where S̄ is the mean shape of the face and Si are the
PCA shape bases representing identification variations,
e.g., tall/short, light/heavy, and expression variations, e.g.,
mouth-opening, smile.
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Figure 4: Depth labels for depth-based CNN learning. A live face
image, a fitted face model, and the depth label (top row). A spoof
face image and the flat plain depth (bottom row).

After we compute the 3D dense shape of the face, the
depth map composes of the z-value for Q vertices from the
shape A. In order to obtain a smoothing and consistent
depth map from discrete z-values from Q vertices, the z-
buffering algorithm [29] is applied and the “texture” of the
objects is imported as the depth information (i.e. z values).
To note that, input faces with different sizes would lead to a
different range for z values, mostly proportional to the face
size. Hence the depth map M needs to be normalized before
using as the label for CNN training. In our case, we use the
max-min method for normalization.

Examples of depth maps are shown in the Figure 4. For
spoof faces as well as the background area in the live faces,
the z value is equal to 0. Note that for some print attacks, it
is possible that the papers are bent. Since it is hard to esti-
mate the actual amount of bending, we also treat the ground
truth depth of bending papers as the flat plain.

3.2.2 FCN structure
We employ a FCN to learn the non-linear mapping function
f(I; Θ) from an input image I to the corresponding depth
map M, where Θ is the network parameter. Following the
setting in Sec. 3.1, we use HSV + Y CbCr features as the
CNN input. The depth label M is obtained in the approach
described in the previous subsection. Our FCN network has
a bottleneck structure, which contains two parts, downsam-
pling part and upsampling part, as shown in Table 1. The
downsampling part contains 6 convolutional layers and 2
max pooling layers; The upsampling part consists of 5 con-
volutional layers which sandwich 4 transpose convolutional
layers for the upsampling purpose. This architecture com-
poses of only convolutional layers without fully connected
layer, and each layer is followed by one leaky-ReLU layer.
We define the loss function as the pixel-level Euclidean loss,

arg min
Θ

J = ‖f(I; Θ)−M‖2F . (2)

3.2.3 Depth Map For Classification
The proposed FCN can estimate a depth map for a face im-
age. Since the depth maps used to supervise the training can

distinguish between live and spoof images, the estimated
depth maps should also have the capability to classify live
vs. spoof. To leverage this capability, we train SVM classi-
fiers using the estimated depth maps of the training data.

Specifically, to ensure that the input dimension of SVM
is of the same size, the depth map M is overlaid with a fixed
N × N grid of cells. We compute a mean depth of each
local cell and generate a N2-dim vector, which is fed to
the SVM with RBF kernel. Given that resizing the depth
map might lose information, we propose to train multiple
SVMs with different sizes of N . To properly determine the
number of SVMs, we adopt a Gaussian mixture model to
fit the distribution of input image sizes. During the testing
stage, we feed the testing sample to the SVM, whose input
size N is closest to the sample.

Moreover, we can leverage the temporal information
given a face video input. For live videos, the depth changes
little over time, while the depth of spoof ones can change
substantially due to noisy estimation and involuntary hand
movement while holding spoof mediums. Hence for a
video, we first compute a N2-dim vector for each frame,
and then compute standard deviation of the estimated depth
maps of the video. The final feature of a frame feeding to
SVM is a 2N2-dim vector. Given the SVM output of all
frames, we use their average as the final score of the video.

4. Experiments

4.1. Database

We evaluate our proposed method on two PAs: print and
replay attacks, using three benchmark databases: CASIA-
MFSD [46], MSU-USSA [32], and Replay-Attack [11].
CASIA-MFSD: This database contains 50 subjects, and 12
videos for each subject under 3 different image resolutions
and varied lightings. Each subject includes 3 different spoof
attacks: replay, warp print, and cut print attacks. Due to
the diversity of the spoof types, many previous work [30,
39] that leverage the motion cues such as eye-blinking or
shape deformation would fail on this dataset. This dataset
partitions the subject space and use 20 subjects for training
and 30 subjects for testing.
MSU-USSA: As one of the largest public face spoofing
database, MSU-USSA contains 1, 000 in-the-wild live sub-
ject images from the Weakly Labeled Face Database [42],
and create 8 types of spoof attacks from different devices
such as smart phones, personal computers, tablets and
printed papers. This dataset covers images under different
illuminations, image qualities and subject diversity.
Reaply-Attack: This database contains 1, 300 live and
spoof videos from 50 subject. These videos are divided to
training, development and testing sets with 15, 15 and 20
subjects respectively. The videos contain two illumination
conditions: controlled and adverse. Given the print and re-



play attacks in this set, the database also divides the attacks
into two more types based on whether they use a support to
hold the spoof medium, or if the attack is held by a person.

4.2. Experimental Parameters and Setup

Our experiments follow the protocol associated with
each of the three databases. For each database, we use the
training set to learn the CNN models and the testing set for
evaluation in terms of EER and HTER. The Replay-Attack
database provides a development set which is only used as
a validation set during training to ensure convergence of the
network. We select 5, 000 random patches from the devel-
opment set to validate the training process. For fair compar-
ison on MSU-USSA, we follow the testing protocol in [32],
using a subject-exclusive five-fold cross validation, where
the subjects are randomly split into five folds.

For the patch-based CNN, we use Caffe toolbox [16],
with the learning rate of 0.001, decay rate of 0.0001, mo-
mentum of 0.99, and batch size of 100. Before fed into the
CNN, the data are normalized by subtracting the mean of
training data. Since CASIA and Replay-Attack are video
datasets, we only extract 2 random patches per frame for
training. For the images in MSU-USSA, we extract 64
patches from each live face region, and 8 patches from each
spoof face region. For CASIA and MSU-USSA, a fixed
patch size of 96 × 96 is used. For Replay-Attack, given its
low image resolution, the patch size is 24× 24. To accom-
modate the difference in patch sizes, we remove the first
two pooling layers for the patch-based CNN.

For the depth-based CNN method, we use Tensorflow
toolbox [1], with the learning rate of 0.01 and batch size
of 32. The patches are also normalized by subtracting the
mean face of training data. When generating the depth la-
bels, we normalize the depth to the range of 0 − 1. We
use the weighted average of two streams’ scores as the fi-
nal score of our proposed method, where the weights are
experimentally determined.

4.3. Ablation Study

4.3.1 Patch-based CNN analysis

In our work, we explore several input feature maps to train
the patch-based CNN, which include different combinations
of color spaces, a pixel-wise LBP map, and high-frequency
patches. For all of the experiments, we first detect and
then crop a face for a given frame. After that we convert
the face image into a new feature map as seen in Figure 3,
which will then be used to extract patches. Table 2 presents
the results on CASIA-FASD when using different combi-
nations of input feature maps. Based on our experiments,
we only show the best four combinations of features in
this table. From these results, we can clearly see that the
HSV + Y CbCr features has a significant improvement in

Table 2: EER (%) and HTER (%) of CASIA-FASD, when feed-
ing different features to patch-based CNN.

Feature EER (%) HTER (%)
Y CbCr 4.82 3.95

Y CbCr +HSV 4.44 3.78
Y CbCr +HSV + LBP 7.72 6.09

(Y CbCr +HSV )H 9.58 5.57

performance compared to the other features with an EER
of 4.44% and an HTER of 3.78%. Moreover, when adding
an LBP map to the HSV + Y CbCr has a negative impact
to the CNN learning, which reduces the performance of us-
ing HSV +Y CbCr only by 2.31% HTER. Similarly, when
training the patch-based CNN with high-frequency data in
the HSV +Y CbCr images, it also reduces the performance
by 1.79% HTER. This shows that the low-frequencies may
also provide discriminative information to anti-spoofing.

4.3.2 Depth-based CNN analysis

The depth map results on the CASIA-FASD testing set are
shown in Figure 5. We can find that there is a clear distinc-
tion between the depth maps of the live images and those
of the spoof images. Compared to the depth label shown in
Figure 4, the depth prediction of the live images is still not
perfect. However, CNN is attempting to predict the face-
like depth, i.e., higher values in the depth map, while the
predicted depth of the spoof images to be flat, i.e., lower
values in the depth map. In comparison, in the spoof image,
there might be certain areas that suffer more degradation
and noise from the spoof attack. As we can see from Fig-
ure 5, our CNN is still trying to predict some areas with
high values in the depth map. However, overall depth pat-
terns of spoof samples are far from those of live samples
so that the SVM can learn their difference. Hence, train-
ing a CNN for depth estimation is beneficial to face anti-
spoofing. Figure 6 shows the mean and standard deviation
of the estimated depth maps for all live faces and spoof faces
in Reaply-Attack. The differences of live vs. spoof in both
mean and standard deviation demonstrate the discriminative
ability of depth maps, as well as support the motivation of
feature extraction for SVM in Sec. 3.2.3.

4.3.3 Fusion analysis

We extensively analyze the performance of our patch-
based and depth-based CNNs on CASIA-FASD and re-
port frame-based performance curves as seen in Figure 7.
As mentioned earlier, CASIA-FASD has three different
video qualities and three different presentation attacks,
which we use to highlight the differences of our proposed
CNN streams. For the low-quality images, the patch-based
method achieves an EER of 2.78%. For the same quality,
we notice that depth-based CNN performs better, which is
understandable since the relative depth variation of frontal-



Figure 5: The depth estimation on CASIA-FASD testing subjects. The first two columns are the live images and their corresponding depth
maps, the rest six columns are three different types of spoof attacks (print, cut print and video attacks) and their corresponding depth maps.
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Figure 6: The mean and standard deviation of the estimated depth
maps of live and spoof faces, for all testing samples in Reaply-
Attack. Note the clear differences in both the mean and standard
deviation between the two classes.

view face image is very small compared to the far distance
when a low-quality face image is captured. For the normal
quality, fusion of both methods has a large positive impact
on the final result, which can be seen from the ROC curves.
The result of both methods on high quality videos is rea-
sonable good, and therefore, fusion will maintain the same
performance. It is clear that the depth-based method strug-
gles when the face images are lower in resolution, and vice-
versa for the patch-based method. On the other hand, the
patch-based method suffers with high resolution, and vice-
versa for the depth-based method. Therefore, fusion of both
methods will strengthen the weak part of either one.

When analyzing the three different presentation attacks
in CASIA-FASD with our proposed methods, the most suc-
cesfully detected attack is the video replay attack. It is wor-
thy to note that, since the ROC curve of every attack is an
average of the three different video qualities, the difference
among the three attacks is not large. For the fusion results,

the best gain can be seen in the print attacks compared to
the results of the two methods independently.

4.4. Experimental Comparison

We compare the proposed method with the state-of-the-
art CNN-base methods on CASIA-FASD. Table 3 shows the
EER and HTER of six face anti-spoof methods. Among
different methods in Table 3, the temporal features are uti-
lized in a Long Short-Term Memory (LSTM) CNN [43], the
holistic features are extracted for classification in [44] and,
CNN is used for the feature extraction in [27] and after ap-
plying PCA to the response of the last layer, SVM is utilized
for classification. According to the Table 3, our method out-
performs others in both EER and HTER. This shows the
combination of local and holistic features contain more dis-
criminative information. Note that even though depth-based
CNN alone has larger errors, its fusion with patch-based
CNN still improves the overall performance.

We also test our method on the MSU-USSA database.
Not many papers report results in this database because it
is relatively new. Table 4 compares our results with [32]
which analyzes the distortions in spoof images, and pro-
vides a concatenated representation of LBP and color mo-
ment. In comparison to [32], our patch-based CNN already
achieves 89% reduction of EER. The complementariness of
depth-based CNN further reduce both the EER and HTER.

On the Replay-Attack database [11], we compare the
proposed method with three prior methods in Table 5. Al-
though our EER is similar to the prior methods, the HTER
of our method is much smaller, which means we have fewer
false acceptance and rejection. Moreover, though the fusion
does not reduce the EER and HTER over the patch-based
CNN, we do observe an improvement on the AUC from
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Figure 7: Frame-based ROC curves on CASIA-FASD comparing the fusion method with the patch-based and depth-based CNNs.

Table 3: EER (%) and HTER (%) on CASIA-FASD.

Method EER (%) HTER (%)
Fine-tuned VGG-Face [27] 5.20 -

DPCNN [27] 4.50 -
[44] 4.92 -

CNN [43] 6.20 7.34

[5] 6.2 -
[37] 3.14 -
[7] 2.8 -

[43] 5.17 5.93

Haralick features [2] - 1.1

Moire pattern [33] - 0

Our patch-based CNN 4.44 3.78

Our depth-based CNN 2.85 2.52

Our fusion 2.67 2.27

Table 4: EER (%) and HTER (%) on MSU-USSA.

Method EER (%) HTER (%)
[32] 3.84 -

Our patch-based CNN 0.55± 0.26 0.41± 0.32

Our depth-based CNN 2.62± 0.73 2.22± 0.66

Our fusion 0.35± 0.19 0.21± 0.21

0.989 in patch-based CNN to 0.997 in the fusion.

5. Conclusions
This paper introduces a novel face anti-spoofing method

based on fusing two CNN streams. Unlike the most prior
methods in face anti-spoofing that use the full face to detect
presentation attacks, we leverage both the full face image
and patches extracted from the same face to distinguish the
spoof from live faces. The first CNN stream is based on
patch appearance extracted from face regions. This stream

Table 5: EER (%) and HTER (%) on Replay-Attack.

Method EER (%) HTER (%)
Fine-tuned VGG-Face [27] 8.40 4.30

DPCNN [27] 2.90 6.10

[44] 2.14 -
[5] 0.4 2.9

[7] 0.1 2.2

Moire pattern [33] - 3.3

Our patch-based CNN 2.50 1.25

Our depth-based CNN 0.86 0.75

Our fusion 0.79 0.72

demonstrates its robustness across all presentation attacks,
especially on lower-resolution face images. The second
CNN stream is based on face depth estimation using the
full face image. The experiments of this CNN show that our
depth estimation can achieve promising results specifically
on higher-resolution images. Therefore, fusing these two
complementary CNN streams result in an overall approach
that is compared favorably to the state of the art.
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