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A B S T R A C T

This article presents FRCSyn-onGoing, an ongoing challenge for face recognition where researchers can easily
benchmark their systems against the state of the art in an open common platform using large-scale public
databases and standard experimental protocols. FRCSyn-onGoing is based on the Face Recognition Challenge
in the Era of Synthetic Data (FRCSyn) organized at WACV 2024. This is the first face recognition international
challenge aiming to explore the use of real and synthetic data independently, and also their fusion, in order
to address existing limitations in the technology. Specifically, FRCSyn-onGoing targets concerns related to
data privacy issues, demographic biases, generalization to unseen scenarios, and performance limitations in
challenging scenarios, including significant age disparities between enrollment and testing, pose variations,
and occlusions. To enhance face recognition performance, FRCSyn-onGoing strongly advocates for information
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fusion at various levels, starting from the input data, where a mix of real and synthetic domains is proposed for
specific tasks of the challenge. Additionally, participating teams are allowed to fuse diverse networks within
their proposed systems to improve the performance. In this article, we provide a comprehensive evaluation of
the face recognition systems and results achieved so far in FRCSyn-onGoing. The results obtained in FRCSyn-
onGoing, together with the proposed public ongoing benchmark, contribute significantly to the application of
synthetic data to improve face recognition technology.
1. Introduction

Facial images are the predominant data for biometric recognition
nowadays, widely employed in various fields such as surveillance,
government offices, and smartphone authentication [1], among oth-
ers. Numerous studies in the literature have played a crucial role in
advancing state-of-the-art (SOTA) Face Recognition (FR) technologies,
demonstrating remarkable performance on established benchmarks [2,
3]. The success of these technologies can be attributed to the emer-
gence of Deep Learning (DL) and the development of highly effective
loss functions based on margin loss, capable of producing exception-
ally discriminative features [4]. Consequently, FR systems have made
significant advances, achieving impressive results on well-recognized
databases, such as LFW [5].

Nevertheless, FR continues to deal with numerous challenges, stem-
ming from factors such as variations in facial images related to pose,
aging, expressions, and occlusions. These challenges cause significant
issues within the field [1,6,7]. The integration of DL brings forth
additional concerns, including limited training data, noisy labeling, im-
balanced data pertaining to diverse identities and demographic groups,
and low resolution, among other issues [8]. Numerous studies indicate
that DL models, even when trained on extensive databases, experience
notable performance drops when confronted with previously unseen
conditions [9,10]. Deploying FR systems that can effectively overcome
these challenges and generalize well to unforeseen conditions remains
a difficult task. Notably, training data often exhibit significant imbal-
ances across demographic groups [4], and they may fail to adequately
represent the full range of possible occlusions in real-world scenar-
ios [11]. Various limitations associated with established databases and
benchmarks are extensively discussed in [12]. For instance, LFW [5] is
considered to have a limited number of images per subject for SOTA
challenges such as illumination, pose, and occlusion invariants.

In recent years, the literature has introduced various approaches
for generating synthetic face content [13–15] intended for different
applications, including FR [16–18] and digital face manipulations, com-
monly known as DeepFakes [19–21]. Additionally, synthetic content
has been created for other biometric modalities [22–24]. The utilization
of synthetic data presents several advantages compared to real-world
databases. Firstly, synthetic databases offer a promising solution to
address privacy concerns associated with real data, which are often
collected from individuals without their knowledge or consent through
various online sources [25]. Secondly, synthetic face generators have
the capacity to generate large amounts of data, a particularly valu-
able property following the discontinuation of established databases
due to privacy concerns [26] and the implementation of regulations
such as the EU-GDPR, which mandates informed consent for collecting
and using personal data [27]. Finally, when the synthesis process is
controllable, it becomes relatively straightforward to create databases
with specific characteristics (e.g., demographic groups, age, pose, etc.)
nd their corresponding labels, without requiring additional human
fforts [16,28]. This is in contrast to real-world databases, which
ay not comprehensively represent diverse demographic groups [29],

mong various other aspects.
These advantages have motivated an initial exploration into the ap-

lication of synthetic face data in current FR systems. Furthermore, syn-
hetic data have proven successful when combined with domain adap-
2

ation techniques across various image applications, such as semantic
segmentation [30], super-resolution [31], and image dehazing [32].
Innovative generative frameworks, including Generative Adversarial
Networks (GANs) [33,34] and 3D models [14], have been introduced
to synthesize databases suitable for training FR systems. While these
synthetic databases propel advancements in the field, some exhibit lim-
itations that impact the performance of FR systems compared to those
trained with real data. Specifically, databases synthesized with GANs
offer limited representations of intra-class variations [33], and those
synthesized with 3D models lack realism. Recently, Diffusion models
have been employed to generate synthetic databases with enhanced
intra-class variations, effectively addressing some limitations observed
in prior synthetic databases [16,28]. This is also supported by various
recent works involving Diffusion models [15,35,36].

To evaluate the effectiveness of novel synthetic databases generated
using Diffusion models for training FR systems, this article describes
the experimental framework and results of FRCSyn-onGoing, which is
based on the ‘‘Face Recognition Challenge in the Era of Synthetic Data
(FRCSyn)’’ organized at WACV 2024.1 This challenge is designed to
comprehensively analyze the following research questions:

1. To what degree can synthetic data effectively replace real data
for training FR systems, and what are the limits of FR technology
exclusively trained with synthetic data?

2. Can the fusion of real and synthetic data be beneficial in address-
ing and mitigating the existing limitations within FR technology?

These research questions have gained significant relevance, especially
in light of the discontinuation of FR databases due to privacy con-
cerns [26] and the observed limitations in FR technology across demo-
graphic groups [17,37] and challenging conditions [8]. In this study,
we comprehensively evaluate the performance provided by SOTA FR
systems for different demographic groups, utilizing diverse databases
to also represent challenging conditions such as pose variations, aging,
and presence of occlusions.

In FRCSyn-onGoing, we have designed specific tasks and sub-tasks
to address the aforementioned questions. This enables the investigation
of using synthetic data to train FR systems, incorporating domain gener-
alization techniques and synthetic-to-real transfer learning as discussed
in [9]. Some of the proposed sub-tasks specifically focus on analyzing
the benefits provided by the fusion of databases belonging to the real
and synthetic domain when training FR systems, a strategy similar to
the domain mixup proposed in [33] and further explored in subsequent
studies [14] to bridge the gap between synthetic and real face domains.
In addition, we have released to the participants two novel synthetic
databases created using two SOTA Diffusion methods: DCFace [16]
and GANDiffFace [28]. These databases have been generated with
a particular focus on tackling common challenges in FR, including
imbalanced demographic distributions, pose variation, expression di-
versity, and the presence of occlusions (see Fig. 1). FRCSyn-onGoing
offers valuable insights into the future of FR and the use of synthetic
data, with a particular focus on quantifying the performance disparity
between training FR systems with real and synthetic data. Additionally,
FRCSyn-onGoing introduces standardized benchmarks that are readily
reproducible for the wider research community.

A preliminary version of this article was previously published
in [38]. The present article significantly enhances [38] in the following

1 https://frcsyn.github.io/

https://frcsyn.github.io/
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Fig. 1. Examples of synthetic identities (one for each row) and their intra-class variations provided by two generative frameworks: (a) DCFace and (b) GANDiffFace. The synthetic
identities represent different demographic groups considered in the FRCSyn Challenge.
ways: (i) offering a more detailed overview of the context of FR and
synthetic data, including the new Section 2 Related Works to compre-
hensively discuss the current SOTA, (ii) providing a more extensive
description of the top FR systems presented so far in FRCSyn-onGoing,
including key graphical representations of the proposed systems to
improve the understanding, (iii) incorporating additional metrics in the
evaluation of the proposed FR systems in order to analyze different
operational scenarios, and (iv) presenting an in-depth analysis of the
performance achieved for various demographic groups and databases
used for evaluation, accompanied by novel figures and tables.

The remainder of the article is organized as follows. In Section 2,
we provide an overview of the limitations of current FR technology
in the literature and the current role of synthetic data. In Section 3,
we delve into the databases considered in FRCSyn-onGoing. Following
that, Section 4 provides an overview of the proposed tasks and sub-
tasks, detailing the experimental protocol and metrics employed in
the challenge. In Section 5, we provide a comprehensive description
of the top-5 FR systems proposed so far in FRCSyn-onGoing for each
sub-task. Section 6 presents the results achieved in the different tasks
and sub-tasks of the challenge, accompanied by a thorough analysis of
the FR system performance across demographic groups and challeng-
ing conditions. Finally, in Section 7, we draw the conclusions from
FRCSyn-onGoing and highlight potential future research directions in
the field.

2. Related works

2.1. Limitations in current face recognition technology

The main limitations in current FR technology have been thor-
oughly explored in extensive surveys [4,8,12,39]. Notably, pose vari-
ation emerges as a major challenge, with algorithms experiencing a
performance degradation of over 10% when verifying faces from a
frontal-profile perspective compared to frontal-frontal verification [40].
In fact, the variability between two images of the same individual in
different poses can be greater than between two images of different
individuals [12]. In unconstrained scenarios, such as surveillance, faces
captured may exhibit large pose variations. Images of the same indi-
vidual should ideally be captured in various poses at earlier times to
facilitate recognition [41,42]. However, training data typically contain
far more frontal faces than profiles. Aging is also considered as another
significant challenge for FR systems, given the changes in unique facial
characteristics over time. DL methods have been studied to learn age-
invariant features and distinguish them from age-related factors in the
representation of facial images [43,44]. According to [45], a significant
loss in face recognition accuracy for SOTA FR systems occurs beyond
a time lapse of 8.5 years. Facial occlusion presents a challenge, as
there is often no prior knowledge available about the obstructed part
of the face, whether intentionally or unintentionally obscured by items
like hats, sunglasses, hands, scarves, masks, or makeup. A systematic
categorization of methods for occluded FR is provided in [11]. The
3

occluded facial part is frequently treated as noise and subtracted from
the provided face image, enabling a comparison of the remaining
information with the stored images [12]. An interesting approach in
this line was presented in [46], where the authors designed a novel
GAN for natural de-occlusion, ensuring that resulting faces can retain
the attributes of the input faces. Since training data typically fail to rep-
resent challenging conditions, generative models have been proposed
to synthesize identity-preserving faces with various poses [47–49],
occlusions [50], and aging images [51], with identity preservation
providing a significant challenge. Particularly for pose variations, gen-
erative framework composed of 3D model and GAN refiners to improve
the realism of the generated images have been proposed in [52,53],
featuring identity perception loss to preserve identity information.

In addition to these limitations, FR systems often exhibit biases
linked to the demographic attributes of individuals [29,37]. These
biases primarily come from training databases that inadequately repre-
sent diverse demographic groups. In popular large-scale databases [54–
56], male, white, and middle-aged individuals are disproportionately
over-represented compared to other demographic groups. FR systems
trained on such data unintentionally replicate these biases, resulting in
significant performance disparities among demographic groups [4,17].
The magnitude of this issue becomes even more pronounced when
examining the intersectionality of certain demographic attributes [57].
Efforts to correct these biases have primarily concentrated on bal-
ancing training databases [58]. However, additional disparities may
exist among demographic groups [59]. Certain groups may need more
extensive data representation than others, and identifying the optimal
representation for each demographic group to prevent biases is a
challenging task [17].

2.2. Synthetic data in face recognition

Several approaches have been introduced to create synthetic
databases for training FR systems. Their applicability has been in-
vestigated in [60], to compensate for the lack of publicly available
large-scale test databases, and in [18], to provide a taxonomy and
further discussion. Several synthetic databases for training have been
synthesized using generative frameworks relying on GANs. The ad-
vantageous property of linear separability offered by StyleGAN net-
works [61] has been widely employed to generate databases with
desired demographic distributions [28,62] and obtain multiple images
of the same individuals while modifying attributes such as pose, illumi-
nation, and expression [63]. Other databases created using alternative
generative frameworks based on GANs include SYNFace [33], which
generates face images by sampling random noise from multiple normal
distributions to control different facial attributes, and SFace [34], a
privacy-friendly database based on StyleGAN2-ADA [64] and identity
labels. However, these databases present limitations in terms of intra-
class variations in the former and unrealistic mated score distributions
in the latter. A large-scale synthetic database, named DigiFace-1M, has
been recently presented by rendering digital faces through a computer
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Table 1
Details of the databases considered in FRCSyn-onGoing. Id = Identities, Img = Images.

Database Framework Use # Id # Img/Id

DCFace [16] DCFace Train 10K 50
GANDiffFace [28] GANDiffFace Train 10K 50

CASIA-WebFace [54] Real-world Train 10.5K 47
FFHQ [65] Real-world Train 70K 1

BUPT-BalancedFace [58] Real-world Eval 24K 45
AgeDB [66] Real-world Eval 570 29
CFP-FP [40] Real-world Eval 500 14
ROF [67] Real-world Eval 180 31
graphics pipeline [14]. Identities in DigiFace-1M are defined as unique
combinations of facial geometry, texture, eye color, and hair style,
while other parameters (i.e. pose, expression, environment, and camera
istance) are adjusted to render multiple images. Although DigiFace-
M notably diminishes the synthetic-to-real domain gap in training
R systems with synthetic data, it produces images with unrealistic
extures compared to real images and lacks an analysis of demographic
istributions.

More recently, Diffusion models have emerged for synthesizing
ore realistic databases for FR, with the first generative frameworks

eing DCFace [16] and GANDiffFace [28]. Examples of face images
synthesized with both DCFace and GANDiffFace are included in Fig. 1.
DCFace offers improved intra-class variations compared to previous
databases and achieves SOTA performance in training FR systems,
surpassing DigiFace-1M. On the other hand, GANDiffFace is specifically
designed to target demographic distributions and approximate the
similarity score distributions provided by real databases. The synthetic
database created using GANDiffFace have proven to be successful in
mitigating demographic bias in FR by fine-tuning existing systems [17].
Both DCFace and GANDiffFace databases are used in the proposed
FRCSyn-onGoing, and additional details about them are provided in
Section 3. For completeness, we would like to highlight also other
synthesis approaches recently presented in the literature [15,35,36].
One of them, named IDiff-Face [35], relies on conditional latent Dif-
fusion models for the synthetic generation of identities with realistic
variations. FR systems trained with IDiff-Face achieve a benchmark
accuracy of 88.20%, not far from the accuracy of 89.56% provided by
DCFace [16]. Inclusive text-to-image models generate images based on
human-written prompts and ensure the resulting images are uniformly
distributed across attributes of interest have been proposed in [15].
Finally, the stochastic nature of the denoising diffusion process is lever-
aged in [36] to produce high-quality, identity-preserving face images
with various backgrounds, lighting, poses, and expressions.

3. FRCSyn-onGoing: Databases

Table 1 provides the details of the public databases considered in
FRCSyn-onGoing. Participants are instructed to download all neces-
sary databases for FRCSyn-onGoing upon registration. Permission for
redistributing these databases was obtained from the owners.

3.1. Synthetic databases

For the training of the proposed FR systems, we provide access to
two synthetic databases generated using recent frameworks based on
Diffusion models:

• DCFace [16]. This framework comprises: (i) a sampling stage
for generating synthetic identities, and (ii) a mixing stage for
generating images with the same identities from the sampling
stage and styles selected from a ‘‘style bank’’ of images.

• GANDiffFace [28]. This framework combines GANs and Diffusion
models to generate fully-synthetic FR databases with desired
properties such as human face realism, controllable demographic
distributions, and realistic intra-class variations.
4

Fig. 1 provides examples of the synthetic face images created us-
ing DCFace and GANDiffFace approaches. These synthetic databases
represent a diverse range of demographic groups, including variations
in ethnicity, gender, and age. The synthesis process considers typical
variations in FR, including pose, facial expression, illumination, and
occlusions. In FRCSyn-onGoing, synthetic data are exclusively utilized
in the training stage, replicating realistic operational scenarios.

3.2. Real databases

For the training of FR systems (depending on the sub-task, please
see Section 4), participants are allowed to use two real databases:
(i) CASIA-WebFace [54], a database containing face images of real
identities collected from the web, and (ii) FFHQ [65], a database
designed for face applications, containing high-quality face images with
considerable variation in terms of age, ethnicity and image background.
These real databases are chosen as they are used to train the generative
frameworks of DCFace and GANDiffFace, respectively. This strategy en-
ables a direct comparison between the traditional approach of training
FR systems using only real data and the novel approach explored in this
challenge, using only synthetic data or fusion of both real and synthetic
data. Despite not being specifically designed for FR, the FFHQ database
can be considered in the proposed challenge for various purposes,
such as training a model for feature extraction and applying domain
adaptation, among other possibilities.

For the final evaluation of the proposed FR systems, we consider
four real databases: (i) BUPT-BalancedFace [58], (ii) AgeDB [66], (iii)
CFP-FP [40], and (iv) ROF [67]. BUPT-BalancedFace [58] is designed
to address performance disparities across different ethnic groups. We
relabel it according to the FairFace classifier [68], which provides la-
bels for ethnicity and gender. We then consider the eight demographic
groups obtained from all possible combinations of four ethnic groups
(Asian, Black, Indian, and White) and two genders (Female and Male).
We recognize that these groups do not comprehensively represent the
entire spectrum of real world ethnic diversity. The selection of these
categories, while imperfect, is primarily driven by the need to align
with the demographic categorizations used in BUPT-BalancedFace [58]
for facilitating easier and more consistent evaluation. A list of 8,000
random comparison pairs is generated from identities in the BUPT-
BalancedFace database to evaluate the proposed FR systems, with 1,000
comparisons equally divided into matching and non-matching pairs
representing each of the eight demographic groups considered.

The other three databases, i.e., AgeDB [66], CFP-FP [40], and
ROF [67], are real-world databases widely employed to benchmark FR
systems in terms of age variations, pose variations, and presence of
occlusions. It is important to highlight that, as different real databases
are considered for training and evaluation, we also intend to analyze
the generalization ability of the proposed FR systems. For AgeDB,
we consider all the comparisons outlined in the original evaluation
protocol, comprising 6,000 comparisons for each of the four age in-
tervals considered, i.e., 5, 10, 20, and 30 years. This results in a total
of 24,000 comparison pairs. For CFP-FP, we exclusively consider the
frontal-profile comparisons specified in the original evaluation proto-

col, excluding all frontal-frontal comparisons. This results in a total of
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Table 2
Tasks and sub-tasks proposed in FRCSyn-onGoing with their respective metrics and databases. AVG
= Average, SD = Standard Deviation, FNMR = False Non-Match rate, FMR = False Match Rate,
AUC = Area Under Curve, GAP = Gap to Real.
Task 1: synthetic data for demographic bias mitigation

Baseline: training only with CASIA-WebFace [54] and FFHQ [65];
Metrics: accuracy, FNMR@FMR = %, AUC, GAP;
Ranking: AVG (across demographic groups) vs SD of accuracy, see Section 4.3 for more details.

Sub-Task 1.1: training exclusively with synthetic databases
Train: DCFace [16] and GANDiffFace [28];
Eval: BUPT-BalancedFace [58].

Sub-Task 1.2: training with real and synthetic databases
Train: CASIA-WebFace, FFHQ, DCFace, and GANDiffFace;
Eval: BUPT-BalancedFace.

Task 2: synthetic data for overall performance improvement
Baseline: training only with CASIA-WebFace and FFHQ;
Metrics: accuracy, FNMR@FMR = 1%, AUC, GAP;
Ranking: AVG accuracy (across databases).

Sub-Task 2.1: training exclusively with synthetic databases
Train: DCFace and GANDiffFace;
Eval: BUPT-BalancedFace, AgeDB [66], CFP-FP [40], and ROF [67].

Sub-Task 2.2: training with real and synthetic databases
Train: CASIA-WebFace, FFHQ, DCFace, and GANDiffFace;
Eval: BUPT-BalancedFace, AgeDB, CFP-FP, and ROF.
7,000 comparison pairs. Finally, for ROF, we randomly generate 1,600
comparisons between individuals without occlusions and wearing a
mask, and 2,000 comparisons between individual without occlusions
and wearing sunglasses. This results in a total of 3,600 comparison
pairs. Comparisons for each database are equally divided into matching
and non-matching pairs.

4. FRCSyn-onGoing: Setup

FRCSyn-onGoing is hosted on Codalab,2 a robust open-source frame-
ork for running scientific competitions and benchmarks. The proposed

asks and sub-tasks, experimental protocol, and metrics are described
n the following.

.1. Tasks

FRCSyn-onGoing aims to explore the application of synthetic data
nto the training of FR systems, with a specific focus on addressing
wo critical aspects in current FR technology: (i) mitigating demo-
raphic bias, and (ii) enhancing overall performance under challenging
onditions that include variations in age and pose, the presence of
cclusions, and diverse demographic groups. To investigate these two
reas, in FRCSyn-onGoing we consider two distinct tasks, each compris-
ng two sub-tasks. Sub-tasks have been designed to consider different
pproaches for training FR systems: (i) utilizing solely synthetic data,

and (ii) involving a fusion of real and synthetic data. Consequently,
FRCSyn-onGoing comprises a total of four sub-tasks. A summary is pro-
vided in Table 2. For each sub-task, we specify the databases allowed
for training FR systems. Nevertheless, participants have the flexibility
to decide whether and how to utilize each database in the training
process.

4.1.1. Task 1
The first proposed task explores the use of synthetic data to address

demographic biases in FR systems. To evaluate the proposed systems,
we create lists of mated and non-mated comparisons derived from
individuals in the BUPT-BalancedFace database [58]. We consider the
eight demographic groups described in Section 3, obtained from the
combination of four ethnic groups with two genders. For non-mated
comparisons, we exclusively focus on pairs of individuals belonging

2 https://codalab.lisn.upsaclay.fr/competitions/15485
5

to the same demographic group, as these are more relevant than
non-mated comparisons between individuals of different demographic
groups.

4.1.2. Task 2
The second proposed task explores the application of synthetic data

to enhance overall performance in FR under challenging conditions.
To assess the proposed systems, we use lists of mated and non-mated
comparisons derived from individuals included in the four databases
indicated in Section 3, namely BUPT-BalancedFace [58], AgeDB [66],
CFP-FP [40], and ROF [67]. Each database allows the evaluation of
specific challenging conditions for FR, including diverse demographic
groups, aging, pose variations, and presence of occlusions.

4.2. Experimental protocol

4.2.1. Training
The four sub-tasks proposed in FRCSyn-onGoing are mutually inde-

pendent. This means that participants have the freedom to participate
in any number of sub-tasks of their choice. For each selected sub-task,
participants are expected to propose a FR system and train it twice:
(i) using authorized real databases only, i.e., CASIA-WebFace [54] and
FFHQ [65], and (ii) in accordance with the specific requirements of the
chosen sub-task, as summarized in Table 2. According to this protocol,
participants provide both the baseline system and the proposed system for
the specific sub-task. The baseline system plays a critical role in evalu-
ating the impact of synthetic data on training and serves as a reference
point for comparing against the conventional practice of training solely
with real databases. To maintain consistency, the baseline FR system,
trained exclusively with real data, and the proposed FR system, trained
according to the specifications of the selected sub-task, must have the
same architecture.

4.2.2. Evaluation
In each sub-task, participants are provided with comparison files

containing both mated and non-mated comparisons, which are used to
evaluate the performance of their proposed FR system. In Task 1 there
is a single comparison file containing balanced comparisons of different
demographic groups, while in Task 2 there are four comparison files,
one for each real database considered. The evaluation process occurs
twice for each sub-task to assess: (i) the baseline system trained ex-
clusively with real databases, and (ii) the proposed system trained in

accordance with the sub-task specifications. For the evaluation of each

https://codalab.lisn.upsaclay.fr/competitions/15485
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sub-task, participants must submit through Codalab platform two files
per database (one for the baseline and one for the proposed system), in-
cluding the score and the binary decision (mated/non-mated) for each
comparison listed in the comparison files. The organizers retain the
right to disqualify participants to uphold the integrity of the evaluation
process if anomalous results are detected or if participants fail to adhere
to the challenge’s rules.

4.2.3. Restrictions
Participants have the freedom to choose the FR system for each

task, provided that the system’s number of Floating Point Operations
Per Second (FLOPs) does not exceed 25 GFLOPs. This threshold has
been established to facilitate the exploration of innovative architec-
tures and encourage the use of diverse models while preventing the
dominance of excessively large models. Participants are also free to
utilize their preferred training modality, with the requirement that
only the specified databases are used for training. This means that no
additional databases can be employed during the training phase, such
as to establish verification thresholds. Generative models cannot be
utilized to generate supplementary data. Participants are allowed to
use non-face databases for pre-training purposes and employ traditional
data augmentation techniques using the authorized training databases.

4.3. Metrics

We evaluate FR systems using a protocol based on lists of mated
and non-mated comparisons for each sub-task and database. From the
binary decisions provided by participants, we calculate verification
accuracy. This approach is straightforward and allows participants
to choose the preferred threshold for their systems. From the scores
provided by participants, we can compute other interesting metrics.
Specifically, we calculate False Non-Match Rate (FNMR) at a fixed False
Match Rate (FMR) of 1% (FNMR@FMR=1%) and Area Under Curve
(AUC). These metrics are widely used for the analysis of FR systems in
real-world applications. In the Face Recognition Technology Evaluation
(FRTE) 1:1 Verification by NIST [69], FR algorithms are ranked based
on FNMR@FMR=10−4%. This metric involves a substantial number of
comparisons to provide a statistically significant value of FMR=10−4%,
with FR algorithms tested against multiple face images of more than
8 million people. In the context of FRCSyn-onGoing, we consider a
number of comparisons for each demographic group and database in
the order of 103. This approach enables participating teams with less
resources to carry out a streamlined evaluation process by facilitating
the download of selected public databases for evaluation and execut-
ing a significantly reduced number of comparisons. Consequently, we
consider a fixed operational point at FMR=1% to calculate statistically
significant metrics. We calculate accuracy, FNMR@FMR=1%, and AUC
for each of the eight demographic groups defined in Section 3 in Sub-
Tasks 1.1 and 1.2, as well as for each of the four evaluation databases
described in Section 3 in Sub-Tasks 2.1 and 2.2. Furthermore, all
these metrics are averaged across demographic groups or databases,
respectively, to provide summarized metrics for each participating
team.

Additionally, we calculate the gap to real (GAP) metric as follows:
GAP = (REAL − SYN) ∕SYN, where REAL represents a metric computed
on the baseline system, and SYN represents the same metric computed
on the proposed system trained with synthetic (or real + synthetic)
data. The GAP metric, introduced in [16], quantifies the difference in
verification accuracy between a FR system trained with synthetic and
real data. In this study, we extend the calculation of the GAP to metrics
beyond accuracy while maintaining the same underlying concept. In
the following, we explain how participants are ranked in the different
tasks.

4.3.1. Task 1
To rank participants and determine the winners of Sub-Tasks 1.1

and 1.2, we closely examine the trade-off between the average (AVG)
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and standard deviation (SD) of the verification accuracy across the
eight demographic groups defined in Section 3. We define the trade-
off metric (TO) as follows: TO = AVG − SD. This metric corresponds to
plotting the average accuracy on the 𝑥-axis and the standard deviation
on the 𝑦-axis in 2D space. We draw multiple 45-degree parallel lines
to find the winning team whose performance falls to the far right
side of these lines. With this proposed metric, we reward FR systems
that achieve good levels of performance and fairness simultaneously,
unlike common benchmarks based only on recognition performance.
The standard deviation of verification accuracy across demographic
groups is a common metric for assessing bias and should be reported
by any work addressing demographic bias mitigation.

4.3.2. Task 2
To rank participants and determine the winners of Sub-Tasks 2.1

and 2.2, we consider the average verification accuracy across the four
databases used for evaluation, described in Section 3. This approach
allows us to evaluate simultaneously four challenging aspects of FR sys-
tems: (i) pose variations, (ii) aging, (iii) presence of occlusions, and (iv)
diverse demographic groups, providing a comprehensive evaluation of
FR systems in real operational scenarios.

5. FRCSyn-onGoing: Description of systems

FRCSyn-onGoing has received so far significant interest, with 67 in-
ternational teams correctly registered, comprising research groups from
both industry and academia. These teams work in various domains,
including FR, generative AI, and other aspects of computer vision,
such as demographic fairness and domain adaptation. Until now, we
have received submissions from 15 teams, receiving all sub-tasks high
attention. The submitting teams are geographically distributed, with six
teams from Europe, five teams from Asia, and four teams from America.
Table 3 provides a comprehensive overview of the top-5 best teams for
each sub-task, showcasing their performance across all the sub-tasks
in which they participated. Next, we provide a description of the FR
systems proposed by each of these teams.

5.1. CBSR

This team comprises members of the IIE, CAS; School of Cyber
Security, UCAS; MAIS, CASIA; School of Artificial Intelligence, UCAS;
and CAIR, HKISI, CAS. They participated in Sub-Tasks 1.2 and 2.2.
The proposed architecture is described in Fig. 2. They first trained
a FR system using CASIA-WebFace [54]. They extracted features for
images in FFHQ [65] and clustered them using the DBSCAN [70] for
pseudo labels since the FFHQ is unlabeled. Then, they removed the
samples in FFHQ that are similar to CASIA-WebFace with a cosine
similarity of 0.6 and merged the two as the training database to train
a new recognition model 𝐹 . Subsequently, they utilized 𝐹 to extract
the features for DCFace [16] and GANDiffFace [28], and de-overlapped
the images that are similar to CASIA-WebFace and FFHQ using a
similarity threshold of 0.6. They conducted the intra-class clustering
for the training database using DBSCAN with a similarity threshold
of 0.3 and removed the samples that were separate from the class
center. Next, they merged all cleansed data and trained IResNet-100
with AdaFace loss [3]. For data augmentation, they adopted mask
occlusion augmentation via the methods introduced in [71], consisting
of surgical-style and N95-style masks, with colors blue, black and white.
In addition, they also added sunglasses via detected face landmarks.
Note that the face landmarks were detected via FaceX-Zoo [72]. Also,
they used random flipping with a probability of 50% on the images.
They trained two recognition models by adding occlusion augmentation
with 10% and 30% probability, respectively. They finally used the
average similarity prediction of the two models as the final prediction
and verified the pairs in the test set with the 10-fold optimal threshold
determined in the validation set.
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Table 3
Description of the top-5 best teams ordered by the affiliation letters. The letters reported in the column ‘affiliations’ refer to the ones provided in the title page. For each team,
we report the ranking metric across all the sub-tasks. The top-3 results of each sub-task are remarked in bold. TO = Trade-off, AVG = average accuracy.

Team Affiliations Country Task 1.1
TO

Task 1.2
TO

Task 2.1
AVG

Task 2.2
AVG

CBSR d, e, f, g, h China – 95.25 (1) – 94.95 (1)
LENS i USA 92.25 (1) 95.24 (2) 88.18 (2) 92.40 (2)
BOVIFOCR-UFPR j, k, l Brazil 90.51 (3) 93.15 (4) 90.50 (1) 91.34 (4)
Idiap m, n, o Switzerland 91.88 (2) 87.22 (6) 86.39 (3) 91.74 (3)
MeVer p, q Greece 87.51 (4) 93.97 (3) 83.45 (5) 87.50 (5)
BioLab r Italy – – 83.93 (4) –
Aphi s Spain 82.24 (5) – 80.53 (6) –
UNICA-FRAUN-HOFER IGD t, u, v Italy,Germany – 91.03 (5) – 84.86 (6)
Fig. 2. Architecture proposed by the CBSR team.
They constructed different validation sets for different evaluation
tasks. For AgeDB [66], they randomly sampled image pairs from the
training data since the training databases consist of facial images
with plenty of age variations. For CFP-FP [40], they added randomly
positioned vertical bar occlusions to the images to simulate the self-
occlusion problem due to pose. For ROF [67], they detected face
keypoints by FaceX-Zoo [72] and added mask occlusions to images as
in [71]. Also, they filled the eye regions with rectangular and elliptical
occlusions to simulate an image of a face with sunglasses. For BUPT-
BalancedFace [58], they randomly sampled image pairs from DCFace
with GANDiffFace because they have balanced demographic groups.
All validation sets consisted of 12,000 image pairs containing 6,000
positive pairs and 6,000 negative pairs. Code available.3

5.2. LENS

This team comprises members of LENS, Inc. They participated in
all the proposed sub-tasks. The proposed architecture is described in
Fig. 3. Keeping in mind the challenges of all the sub-tasks and the
databases that can be used for training, they adopted the architecture
of ResNet-50 [73] (R50) backbone for all the sub-tasks, due to less
number of parameters and suitability when the size of the databases
is limited. For sub-tasks using only synthetic data, they observed that
since the test data are real databases, they needed an architecture that
increased the robustness to domain shifts between synthetic training
data and real test data. To this end, they incorporated various augmen-
tation techniques and the AdaFace loss [3]. Augmentation techniques
included cropping, rescaling, and photometric jittering (each selected
with a probability of 0.2). Database augmentation aided in bringing
synthetic images closer to the real image distribution. This (i) reduced
the effect of synthetic noises, (ii) reduced the domain gap between
synthetic training data and the real test data, and (iii) significantly
improved recognition rates. They further improved the performance
by using a fusion of two models with the same R50 architecture.
The second model was trained with a different style of augmenting
databases, inspired by [35]. For each image, they chose four ran-
dom augmentations from the following set: Identity, ShearX, ShearY,

3 https://github.com/zws98/wacv_frcsyn
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TranslateX, TranslateY, Rotate, Brightness, Color, Contrast, Sharpness,
Posterize, Solarize, AutoContrast, Equalize, Grayscale, ResizedCrop.
The experiments conducted in [14,33,35] evaluated the impact of data
augmentation on the performance of their FR model. The features of
the two models were then combined to create a feature set length of
1,024. In addition, incorporating AdaFace loss helped create robust
embeddings. The same method was repeated for Sub-Tasks 1.2 and 2.2.

All the databases were first cropped and aligned using the land-
marks detected by Retinaface [74], resulting in a size of 112 × 112.
For training, they divided their total data (respective of sub-tasks) in
the ratio 80 ∶ 20 where 80% of the data was a training set and the
rest was validation. For training the baseline model and Sub-Tasks
1.2 and 2.2, they utilized CASIA-WebFace [54] for the real database
and skipped FFHQ [65]. They adopted the training hyperparameters
of [3] with 𝑙𝑟 = 0.1 and trained for 30 epochs from scratch. The
AdaFace loss function [3] approximates image quality using feature
norms and assigns different importance to easy or hard samples based
on their image quality. This adaptive margin function enhanced the
discriminability of learned features and achieved SOTA performance
on multiple FR databases.

5.3. BOVIFOCR-UFPR

This team comprises members of the Federal University of Paraná,
Federal Institute of Mato Grosso, and unico - idTech. They participated
in all the proposed sub-tasks and provided a description of the systems
proposed for Sub-Tasks 1.1 and 2.1, in which they ranked in top-3. The
proposed architecture is described in Fig. 4. To reduce demographic
bias, in Sub-Task 1.1, they proposed to enforce a FR model to in-
crease similarities between people from the same ethnic group while
learning to discriminate between different subjects. Inspired by Zhang
et al. [75], they created a multi-task collaborative model composed of
two backbones 𝐵(𝑥) and 𝑅(𝑒), which produced the embeddings 𝑒 ∈
𝑅512 and 𝑔 ∈ 𝑅256, respectively, containing the subject and its ethnic
group features. This schema is shown on the top of Fig. 4 and forces
the main backbone 𝐵(𝑥) to learn less biased features. ResNet100 and
ResNet18 [73] architectures were used as 𝐵(𝑥) and 𝑅(𝑒), respectively.
Training databases were organized as 𝑋 = 𝑥𝑖, 𝑦𝑖, 𝑤𝑖, where 𝑥𝑖 is the
input face image, 𝑦𝑖 is the subject label used to compute the subject
classification loss 𝐿 [2] and 𝑤 is the ethnic group label used to
𝑆 𝑖

https://github.com/zws98/wacv_frcsyn
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Fig. 3. Architecture proposed by the LENS team.
Fig. 4. Architecture proposed by the BOVIFOCR-UFPR team.
compute the ethnic group classification loss 𝐿𝐸 [2]. The total loss
𝐿𝑇 was computed as 𝐿𝑇 = 𝜆𝑆𝐿𝑆 + 𝜆𝐸𝐿𝐸 . Experiments using their
strategy on the synthetic databases DCFace [16] and GANDiffFace [28]
increased the average verification accuracy in the database BUPT-
BalancedFace [58] while reducing the standard deviation between
demographic groups.

For Sub-Task 2.1, they normalized and preprocessed the images by
cropping and aligning the database images using Retina Face [74].
Then, they employed ArcFace [2] as their loss function and ResNet-100,
which is one of the top-performing methods for deep FR [76]. They
trained the network using the InsightFace library for 26 epochs. All
images from the training set were augmented using Random Flip with
a probability of 0.5. For this task, they used DCface as the training set,
which has 10,000 identities and 550,000 images, and was the database
that provided the most accurate feature vectors on the validation set.
The validation consisted of a training database subsample, with genuine
and impostor pairs. Using the validation set, they selected the best
threshold to classify the output scores for the validation set.
8

5.4. Idiap

This team comprises members of the Idiap Research Institute, École
Polytechnique Fédérale de Lausanne, and Université de Lausanne. They
participated in all the proposed sub-tasks. The proposed architecture is
described in Fig. 5. For all tasks and sub-tasks, the main architecture
chosen is the fusion of features of two models, as the ensemble of
models can lead to improved accuracy and bias mitigation. In this
case, the ensemble was composed of two models, based on the iResNet-
50 and iResNet-101 architectures [2], which were used jointly with a
linear mapping [77]. The linear mapping was performed on the em-
bedding 𝐞𝐼𝑅50 from the iResNet-50 model, arbitrarily selected, followed
by a feature fusion approach [78] by embedding averaging, to com-
pute a mean feature vector. Both models underwent slightly different
training processes to allow for differences to emerge and improve the
feature fusion. Preprocessing was performed for training, validation,
and testing as follows [79]: the face landmarks were detected using
RetinaFace [74] for all the evaluation sets. Then, five facial points
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Fig. 5. Architecture proposed by the Idiap team.
Fig. 6. Architecture proposed by the MeVer team.
(both eyes, nose tip, and both mouth corners) were used to compute
an alignment with a predefined template. The images were cropped
and resized to 112 × 112 afterward. Each pixel was normalized in
the range [−1, 1]. Additionally, specific to the training step, additional
data augmentation was performed. It involved randomized cropping,
resolution augmentation, and adjustments to brightness, contrast, and
saturation.

The models were trained on all permitted task-specific databases:
DCFace [16] and GANDiffFace [28] for the synthetic tracks and CASIA-
WebFace [54], DCFace, and GANDiffFace for the mixed tracks. For
the iResNet-101, the models were trained using the CosFace loss func-
tion [79], whereas for the iResNet-50, the AdaFace [3] loss function
was used. The training was performed for around 60,000 batches, of
size 256, with MultiStepLR and learning-rate 0.1, with a reduction
factor of 10 at 24,000, 40,000, and 48,000 steps. The checkpoint se-
lected was the last checkpoint after the training of their model reached
the maximum number of steps. No other database than those detailed
above could be used, so the entirety of the databases (corresponding
to each sub-task) was dedicated to training in order to maximize the
training set. The threshold was determined on a split of DCFace for
the synthetic track, or CASIA-WebFace for the mixed track. The split
involved 150 identities chosen at random and with approximately
10,000 genuine and 10,000 zero-effort impostors comparisons thereof.
The threshold was set such as to maximize the verification accuracy in
a 10-fold cross-validation setup from those selected comparisons.

Regarding the linear mapping, it was composed of a linear layer,
with input and output dimensions set to the dimension of 𝐞𝐼𝑅50 and
𝐞 respectively. The layer was independently trained using FFHQ
9

𝐼𝑅101
with both models trained, with 𝐞𝐼𝑅101 as labels and 𝐞𝐼𝑅50 as input.
Notably, no identity labels are required for training the linear layer.
The loss function was set to be the mean cosine distance between
�̂�50, the output of the linear layer, and 𝐞101. In effect, this linear layer
allows for an estimated projection of the embedding from the iResNet-
50 embedding space into the iResNet-101 embedding space, allowing
both embeddings to be evaluated in a common embedding space.
The average of these embeddings 𝐞𝑚𝑒𝑎𝑛 provides for a better common
estimate of an ideal embedding.

5.5. MeVer

This team comprises members of the Centre for Research and Tech-
nology Hellas and the Harokopio University of Athens. They partici-
pated in all the proposed sub-tasks. The proposed architecture is de-
scribed in Fig. 6. The MeVer team utilized the sub-center ArcFace [80]
loss as a pivotal methodology to mitigate the impact of label noise that
often arises in large-scale databases [81]. Specifically, the methodology
considers 𝐾 sub-centers for each identity, allowing the training samples
to closely align with any 𝐾 positive sub-center, rather than exclusively
with a single positive center. This approach encourages the dominance
of one primary sub-class housing the majority of clean faces, alongside
non-dominant sub-classes that contain noisier or more challenging
facial data. In scenarios involving synthetic data, errors in generative
models can cause some of the generated images to be different from
each other, even though they should be similar. Using a less strict form
of margin-based losses, like the sub-center ArcFace, can help address
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Fig. 7. Architecture proposed by the BioLab team.
the problem by allowing the model to create clusters of similar identi-
ties for each synthetic identity without being penalized. Furthermore,
the proposed system includes three CNNs, using different margins in the
ArcFace loss, aligning with the relevant literature [58,82] highlighting
that distinct demographic groups exhibit varying margin requisites for
effective and fair FR systems. In particular, it consists of three ResNet-
50 [73] models (19.05 GFLOPs in total), each trained separately with 4,
5, and 5 sub-centers 𝐾 per identity and margins 𝑚 equal to 0.45, 0.47,
and 0.50, respectively. These hyperparameters were tuned through a
grid search on 𝐾 = {3, 4, 5, 6} and 𝑚 = {0.40, 0.43, 0.45, 0.47, 0.50, 0.52}.
Notably, relevant research [82] also suggests margin values less than
0.5 for specific demographic groups.

The final embeddings were derived by concatenating the three
backbones’ outputs and the predictions were made by comparing the
Euclidean distance between the feature vectors with thresholds 1.5
and 1.35 for the tasks considering synthetic-only and mixed synthetic-
real training data, respectively. During training, a batch size of 256
was employed. The initial learning rate was 0.1 and decayed by a
factor of 10 at training steps 75k, 127.5k, and 165k, while the total
training steps were 180k. Furthermore, the stochastic gradient descent
(SGD) optimizer, with 0.9 momentum and 0.0005 weight decay was
employed. Concerning data preprocessing, face crops (112 × 112) were
derived from MTCNN [83] predictions, and color jittering and random
horizontal flip augmentations were applied. Both synthetic databases
were used for all tasks, while additionally the CASIA-WebFace [54]
database was considered for Sub-Tasks 1.2 and 2.2. 800 identities from
the synthetic databases and 1000 from the CASIA-WebFace were used
for validation for the sub-tasks involving synthetic-only and mixed
synthetic-real databases, respectively. The experiments were conducted
on two RTX 3090-ti GPUs using the MXNet framework. Code available.4

5.6. BioLab

This team comprises members of the University of Bologna. They
participated in Sub-Task 2.1. The proposed architecture is described in
Fig. 7. The model selected for the Sub-Task 2.1 is a ResNet-101 [73]
customized as indicated in [2], which has been trained using the
margin-based AdaFace loss [3]. One notable advantage of this loss is
its resilience when training data contains low-quality images with un-
recognizable faces. According to their assumption, this feature ensured
that the model’s performance remained unaffected when exposed to
GAN-related visual glitches and artifacts that usually affect classifier
performance [84]. Their baseline model was trained employing the
CASIA-WebFace database [54]; the proposed model employed both
DCFace [16] and GANDiffFace [28]. They built the validation set

4 https://github.com/gsarridis/fair-face-verification-with-synthetic-data
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Fig. 8. Architecture proposed by the Aphi team.

by generating matching and non-matching couples from the first 100
classes of CASIA-WebFace, or the first 4 of each ethnicity/gender
combination in DCFace and GANDiffFace. The selected classes were
excluded from training.

They applied data augmentation on the training set. Following the
findings in [3], the resulting pipeline consisted of random horizon-
tal flips, random crop-and-resize, and random color jittering on the
saturation and value channels. Each transformation had a probability
of 20% of being applied. The model was optimized with SGD using
cross entropy loss with batch size of 128. The initial learning rate of
0.05 was divided by a factor of 10 at prefixed epochs to ensure better
training stability. For face verification, the dissimilarity between the
embeddings was measured employing the cosine distance. Its threshold
was computed to maximize the mean accuracy on 10 separate folds of
the validation set (i.e., using a non-overlapping partition of the training
databases), following the same idea described in the LFW protocol [5].
Code available.5

5.7. Aphi

This team comprises members of Facephi. They participated in Sub-
Tasks 1.1 and 2.1. The proposed architecture is described in Fig. 8.
In their approach, they used an EfficientNetV2-S [85] architecture
to produce a 512-D deep embedding trained with ArcFace [2] loss
function. They modified the backbone network by reducing the first
layer’s stride from 2 to 1 to enhance the preservation of spatial features.
The output of the backbone network was projected with a 1 × 1
convolutional layer and normalized with batch normalization. These
features were flattened and fed into a fully connected layer which
produces the deep embedding. The weights of the model were op-
timized through the SGD algorithm with a momentum of 0.9 and a
weight decay of 1𝑒−4 during 20 epochs and a learning rate starting
at 0.1 and decayed through a polynomial scheduler. The model was

5 https://github.com/ndido98/frcsyn

https://github.com/gsarridis/fair-face-verification-with-synthetic-data
https://github.com/ndido98/frcsyn


Information Fusion 107 (2024) 102322P. Melzi et al.
Fig. 9. Architecture proposed by the UNICA-FRAUNHOFER IGD team.
trained with the images aligned using a proprietary algorithm, resized
to 112 × 112, and normalized in the range of −1 to 1. To prevent
overfitting, they applied data augmentation techniques during training,
including Gaussian Blur, Random Scale, Hue-Saturation adjustments,
and Horizontal Flip transformations as well as dropout with a rate of
0.2 before the deep embedding projection. To train the baseline model,
they made use of CASIA-WebFace [54] and for their proposed model,
they employed the synthetic database DCFace [16].

5.8. UNICA-FRAUNHOFER IGD

This team comprises members of the University of Cagliari, Fraun-
hofer IGD, and TU Darmstadt. They participated in Sub-Task 1.2 and
2.2. The proposed architecture is described in Fig. 9. The presented
solution utilized ResNet100 [73] as network architecture as it is one of
the most widely used architectures in SOTA FR approaches [86]. The
training and validation images were aligned and cropped to 112 × 112
using five landmark points extracted with MTCNN. The outputs of the
network were 512-D feature representations.

The presented solution was based on training the ResNet100 net-
work [73] with a margin-penalty softmax loss. Specifically, the pre-
sented solution used CosFace as a loss function with a margin penalty
value of 0.35, and a scale parameter of 64 [79]. The model was trained
for 40 epochs with a batch size of 512 and an initial learning rate
of 0.1. The learning rate was divided by 10 after 10, 22, 30 and 40
training iterations. During the training phase the training databases,
CASIA-Webface [54] and DCFace [16], provided by the competition
organizers, were merged into one database with a total number of
identities equal to 20.572. During the training phase, an extensive
set of data augmentation operations based on RandAugment [87,88]
was applied only to the synthetic samples. The real samples were only
augmented with horizontal flipping. Code available.6

6. FRCSyn-onGoing: Results

In Table 4, we present the current rankings for the four different
sub-tasks considered in FRCSyn-onGoing, determined according to the
criteria outlined in Section 4.3. The metrics reported for accuracy
(named AVG), FNMR@FMR=1%, and AUC represent the average met-
rics calculated across the eight demographic groups (for Sub-Tasks
1.1 and 1.2) and the four databases (for Sub-Tasks 2.1 and 2.2). For
completeness, in Table 4, we also provide alternative rankings based
on FNMR@FMR=1% and AUC, enclosed in brackets in the respective
columns. SD is the standard deviation of accuracy calculated across the
eight demographic groups, and GAP quantifies the difference between
AVG of the baseline and proposed systems.

In general, the rankings for Sub-Tasks 1.1 and 1.2 (bias mitigation),
corresponding to the descending order of TO, closely align with the

6 https://github.com/atzoriandrea/FRCSyn
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ascending order of SD (i.e., from less to more biased FR systems). In
Fig. 10, we visually represent the trade-off between average (AVG) and
standard deviation (SD) of the accuracy obtained for the eight demo-
graphic groups in both Sub-Tasks 1.1 and 1.2. The trend observed in
Fig. 10 suggests that a higher accuracy usually comes with lower stan-
dard deviation. The top-ranked FR systems are predominantly located
in the lower right corner of the graph. Unlike accuracy, which depends
on the threshold selected by each team, FNMR@FMR=1% measures the
performance of FR systems at a fixed operational point that remains
unchanged across teams. Additionally, AUC measures the performance
of FR systems across all possible thresholds, offering a comprehensive
evaluation of system performance. For completeness, we also analyze
next the alternative rankings considering these popular metrics. No-
tably, Idiap is the team that achieves the best FNMR@FMR=1% in
Sub-Tasks 1.1 and 1.2 (13.97% and 5.50%, respectively), along with
the highest AUC in Sub-Task 1.1 (98.30%). This suggests that their
proposed systems achieve superior performance at thresholds different
from the ones selected. In Sub-Task 1.2, LENS achieves the best AUC
(99.38%), but all the top six teams demonstrate similar AUCs, ranging
from 99% to 99.38%.

In Sub-Task 1.1, the top two classified teams, LENS (92.25% TO)
and Idiap (91.88% TO), exhibit negative GAP values (−0.74% and
−3.80%, respectively), indicating higher accuracy when training the FR
system with synthetic data compared to real data. These results high-
light the potential of DCFace [16] and GANDiffFace [28] synthetic data
to reduce bias in current FR technology. As shown in Fig. 10, adding
real data to the training process (i.e., Sub-Task 1.2) generally causes
the AVG and SD to increase and decrease respectively simultaneously.
The CBSR team is the winner with a 95.25% TO (i.e., 3% TO general
improvement between Sub-Tasks 1.1 and 1.2). In addition, and as it
happens in Sub-Task 1.1, we can observe in Sub-Task 1.2 negative GAP
values for the top teams (e.g., −2.10% and −5.67% for the CBSR and
LENS teams, respectively), evidencing that the combination of synthetic
and real data (proposed system) outperforms FR systems trained only
with real data (baseline system).

For Task 2, it is evident that the average accuracy across databases
in Sub-Tasks 2.1 and 2.2 is lower than the accuracy achieved for
BUPT-BalancedFace [58] in Sub-Tasks 1.1 and 1.2, emphasizing the
additional challenges introduced by the other real databases considered
for evaluation. Also, although good results are achieved in Sub-Task 2.1
when training only with synthetic data (90.50% AVG for BOVIFOCR-
UFPR), the positive GAP values provided by the top teams indicate
that synthetic data alone currently struggles to completely replace real
data for training FR systems in challenging conditions. Nevertheless,
the negative GAP values provided by the top-2 teams in Sub-Task 2.2
(−3.69% and −1.63%, respectively) also suggest that synthetic data
combining with real data can mitigate existing limitations within FR
technology. Unlike Task 1, for both Sub-Tasks 2.1 and 2.2, the winning
teams (i.e., BOVIFOCR-UFPR and CBSR, respectively) are also the ones
that provide the best FNMR@FMR=1% (20.83% and 10.82%, respec-

tively) and AUC (96.04% and 97.92%, respectively). This suggests that

https://github.com/atzoriandrea/FRCSyn
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Table 4
Ranking for the four sub-tasks proposed in FRCSyn-onGoing. GAP quantifies the difference between AVG of the baseline and proposed systems.
For each sub-task, we highlight in bold the best team according to the ranking metric (i.e., TO for Sub-Tasks 1.1 and 1.2, AVG for Sub-Tasks
2.1 and 2.2). For completeness, we also highlight in bold the best results achieved according to the other metrics. TO = Trade-Off, AVG =
Average accuracy, SD = Standard Deviation of accuracy, FNMR = False Non-Match Rate, FMR = False Match Rate, AUC = Area Under Curve,
GAP = Gap to Real.

Sub-Task 1.1 (Bias mitigation): Synthetic data

Pos. Team TO [%] AVG [%] SD [%] FNMR@FMR = % AUC [%] GAP [%]

1 LENS 92.25 93.54 1.28 15.25 (2) 98.01 (2) −0.74
2 Idiap 91.88 93.41 1.53 13.97 (1) 98.30 (1) −3.80
3 BOVIFOCR 90.51 92.35 1.84 16.35 (3) 97.98 (3) 4.23
4 MeVer 87.51 89.62 2.11 32.57 (5) 96.06 (5) 5.68
5 Aphi 82.24 86.01 3.77 23.80 (4) 97.06 (4) 0.84

Sub-Task 1.2 (Bias mitigation): Synthetic + Real data

Pos. Team TO [%] AVG [%] SD [%] FNMR@FMR = % AUC [%] GAP [%]

1 CBSR 95.25 96.45 1.20 8.68 (4) 99.33 (3) −2.10
2 LENS 95.24 96.35 1.11 6.35 (2) 99.38 (1) −5.67
3 MeVer 93.87 95.44 1.56 9.50 (5) 99.00 (5) −0.78
4 BOVIFOCR 93.15 95.04 1.89 10.00 (6) 99.14 (4) 1.28
5 UNICA 91.03 94.06 3.03 6.85 (3) 99.36 (2) −10.62
6 Idiap 87.22 91.54 4.32 5.50 (1) 99.33 (3) −0.65

Sub-Task 2.1 (Overall improvement): Synthetic data

Pos. Team AVG [%] FNMR@FMR = % AUC [%] GAP [%]

1 BOVIFOCR 90.50 20.83 (1) 96.04 (1) 2.66
2 LENS 88.18 33.25 (3) 93.55 (3) 3.75
3 Idiap 86.39 30.73 (2) 93.96 (2) 6.39
4 BioLab 83.93 49.51 (5) 91.78 (4) 6.88
5 MeVer 83.45 50.05 (6) 91.47 (5) 3.20
6 Aphi 80.53 46.09 (4) 88.14 (6) 9.12

Sub-Task 2.2 (Overall improvement): Synthetic + Real data

Pos. Team AVG [%] FNMR@FMR = % AUC [%] GAP [%]

1 CBSR 94.95 10.82 (1) 97.92 (1) −3.69
2 LENS 92.40 17.67 (4) 96.58 (5) −1.63
3 Idiap 91.74 23.27 (5) 96.87 (4) 0.00
4 BOVIFOCR 91.34 16.51 (2) 97.03 (3) 1.77
5 MeVer 87.60 17.10 (3) 97.40 (2) −1.57
6 UNICA 84.86 39.35 (6) 91.46 (6) −27.43
Fig. 10. Graphical representation of the trade-off metric (TO) between average accuracy (AVG) and standard deviation (SD) across the eight demographic groups, calculated for
the top-5 teams in both Sub-Tasks 1.1 and 1.2.
their proposed systems comprehensively obtain the best performance
in the overall improvement of FR under challenging conditions.

Finally, analyzing the description of the FR approaches proposed by
the eight top teams, a notable trend emerges, showing the prevalence
of well-established methodologies. ResNet backbones [73] were chosen
12
by seven teams, except for Aphi, which opted for EfficientNet [85].
The AdaFace [3] and ArcFace [2] loss functions were widely used,
featuring in the approaches of CBSR, LENS, Idiap, and BioLab for
the former, and BOVIFOCR-UFPR, MeVer, and Aphi for the latter.
Idiap and UNICA-FRAUNHOFER IGD also considered the CosFace loss



Information Fusion 107 (2024) 102322P. Melzi et al.

r
i
t
N
F
U
m
d

Fig. 11. Comparison of the DET curves provided for each demographic group of interest by top-5 teams in Sub-Task 1.1. DET = Detection Error Trade-off.
function [79]. Most of the teams integrated multiple networks into
their proposed architectures for different objectives, e.g., CBSR and
LENS trained different networks with distinct augmentation techniques,
while BOVIFOCR-UFPR and Idiap combined different loss functions.
In these proposed architectures, the features extracted by different
networks are fused before making a decision in the verification process,
indicating the validity of information fusion at both the feature and
score levels [89]. Some teams also addressed the challenges of domain
shift between synthetic and real data, e.g., LENS proposed solutions
obust to domain shifts with consistent data augmentation, while CBSR
mplemented a range of strategies, including advanced data augmenta-
ion, identity clustering, and distinct thresholds for different databases.
otably, CBSR utilized all available databases for training, including
FHQ [65], unlike other teams. Excluding BOVIFOCR-UFPR, Aphi, and
NICA-FRAUNHOFER IGD, which exclusively used DCFace [16], the
ajority of teams employed both DCFace [16] and GANDiffFace [28],
emonstrating the suitability of both generative frameworks.
13
6.1. Analysis of specific demographic groups and databases

Detection error trade-off curves. We plot the Detection Error Trade-off
(DET) curves of the best classified teams for each demographic group
(Figs. 11 and 12, associated with Sub-Tasks 1.1 and 1.2, respectively)
or database (Figs. 13 and 14, associated with Sub-Tasks 2.1 and 2.2,
respectively). This analysis offers a visual comparison of the proposed
FR systems across the different demographic groups and databases for
different operational points. For instance, analyzing Fig. 11 we can
observe that the FR system proposed by Idiap provides the best FNMR
at FMR ranging from 0.1% to 10% for the demographic groups of
Black Females and Indian Females in Sub-Task 1.1. Similarly, Idiap also
achieves the best FNMR at FMR ranging from 0.1% to 1% for the same
demographic groups in Sub-Task 1.2 (Fig. 12), while LENS achieves
the best FNMR at FMR ranging from 0.1% to 1% for the demographic
groups of Indian Males and White Males. DET curves consistently over-
lap in the graphs provided for Sub-Tasks 1.1 and 1.2, indicating that
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Fig. 12. Comparison of the DET curves provided for each demographic group of interest by top-6 teams in Sub-Task 1.2. DET = Detection Error Trade-off.
ranking the proposed FR systems without fixing an operational point
is challenging. On the other hand, it is easier to identify the best FR
systems in terms of FNMR for large intervals of FMR in Sub-Tasks 2.1
and 2.2 (Figs. 13 and 14, respectively). BUPT-BalancedFace [58] and
AgeDB [66] emerge as the databases that yield the highest performance
in evaluation. In Sub-Task 2.1 (Fig. 13), the winning team BOVIFOCR-
UFPR clearly outperforms the other teams when evaluated with the
CFP-FP [40] and ROF [67] databases, showing a better generalization
of the FR system against pose variations and occlusions. In Sub-Task 2.2
(Fig. 14), the winning team CBSR outperforms the other teams in the
evaluation of AgeDB (although the Idiap team achieves better FNMR
results around the operational point of FMR=0.1%) and ROF databases,
showing in general a more robust FR system against age variability and
occlusions.
14
Top-5 teams average metrics. To comprehensively quantify the trend of
FR performance for different demographic groups and databases, we
conduct an in-depth analysis focusing on the average metrics obtained
from the top-5 teams in each sub-task. In Table 5, we present the aver-
ages (and standard deviations) of accuracy, FNMR@FMR=1%, and AUC
computed using the values provided by the top-5 teams for each sub-
task. We analyze both the baseline and proposed systems, presenting
the average metrics for each demographic group in Sub-Tasks 1.1 and
1.2, and for each evaluation database in Sub-Tasks 2.1 and 2.2. Finally,
for each of the considered metrics (i.e., accuracy, FNMR@FMR=1%,
and AUC), we compute the GAP between the average values obtained
for the baseline and proposed systems. It is worth noting that we cal-
culate the GAP for FNMR@FMR=1% with the opposite sign compared
to the GAP calculated for the other metrics, following the formula de-
scribed in Section 4.3. This is because improvements in FR systems are



Information Fusion 107 (2024) 102322P. Melzi et al.

r
v

f
l
F
t
m
e
D
t
t
w

Fig. 13. Comparison of the DET curves provided for each evaluation database of interest by top-6 teams in Sub-Task 2.1. DET = Detection Error Trade-off.
Fig. 14. Comparison of the DET curves provided for each evaluation database of interest by top-6 teams in Sub-Task 2.2. DET = Detection Error Trade-off.
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epresented by increasing values for accuracy and AUC, and decreasing
alues for FNMR.

In both Sub-Tasks 1.1 and 1.2, we observe that the average per-
ormance for the two demographic groups representing the Asian popu-
ation is consistently lower across all metrics (i.e., accuracy,
NMR@FMR=1%, and AUC), both in the baseline and proposed sys-
ems, compared to the other demographic groups. The lower perfor-
ance within the Asian population is a known issue, and previous

fforts to mitigate this bias involved databases generated with GAN-
iffFace [17,28]. Remarkably, analyzing the results of Sub-Task 1.1,

he four demographic groups with the lowest average accuracy across
he baseline systems (i.e., Asian and Indian populations of both genders,
ith average accuracy between 87.30% and 91.36%), benefit from the
15

F

se of synthetic data alone for training. This results in an improve-
ent in average accuracy of the proposed systems, quantified with
AP values between −0.25% and −3.09%. Conversely, for the other
emographic groups representing the Black and White populations, the
verage accuracy across the top-5 teams decreases from the baseline to
he proposed systems, quantified with GAP values between 2.31% and
.22%. To consistently achieve a negative GAP value for each demo-
raphic group and each metric, indicating therefore a comprehensive
erformance improvement, a combination of synthetic and real data
s necessary for training, as can be seen in the results of Sub-Task
.2. GAP values ranging from −1.57% to −4.94% are observed for
ccuracy across the various demographic groups. These results prove
he potential of combining real and synthetic data to reduce the bias in
R technology.
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Table 5
Analysis of specific demographic groups and databases for both baseline and proposed systems, averaged across the top-5 teams of each sub-task. GAP values are calculated for
each metric (i.e., accuracy, FNMR@FMR = %, and AUC) according to the average values of the baseline and proposed systems reported in the table. The GAP of FNMR@FMR = %
has the opposite sign compared to the GAP of the other metrics, because improvements in FR systems are represented by increasing values for accuracy and AUC, and decreasing
values for FNMR. All values are expressed in percentage. Acc. = Accuracy, FNMR = False Non-Match Rate, FMR = False Match Rate, AUC = Area Under Curve, GAP = Gap to
Real.

Sub-Task 1.1 (Bias mitigation): Synthetic data

Demographic
group

Average of baseline systems Average of proposed systems GAP

Acc. FNMR@FMR = % AUC Acc. FNMR@FMR = % AUC Acc. FNMR@FMR = % AUC

Black female 93.24 ± 2.43 9.76 ± 2.96 99.26 ± 0.30 90.14 ± 3.71 22.48 ± 8.70 97.19 ± 1.54 3.44 56.58 2.12
Black male 95.10 ± 2.66 5.96 ± 2.05 99.61 ± 0.06 90.38 ± 3.87 19.80 ± 10.32 97.75 ± 0.73 5.22 69.90 1.90
Asian female 87.30 ± 5.46 16.44 ± 3.02 97.93 ± 0.52 88.06 ± 2.99 31.56 ± 8.28 95.46 ± 1.34 −0.86 47.91 2.59
Asian male 89.32 ± 5.12 14.80 ± 4.14 98.12 ± 0.49 89.54 ± 3.06 27.76 ± 5.98 96.33 ± 0.81 −0.25 46.69 1.86
Indian female 87.84 ± 6.94 8.20 ± 1.91 99.32 ± 0.34 90.64 ± 3.92 16.68 ± 7.41 98.20 ± 0.65 −3.09 50.84 1.15
Indian male 91.36 ± 4.97 6.40 ± 2.16 99.15 ± 0.23 91.82 ± 3.14 17.48 ± 6.38 97.74 ± 0.61 −0.50 63.39 1.44
White female 96.00 ± 1.33 4.80 ± 1.82 99.64 ± 0.16 92.92 ± 2.06 16.28 ± 5.79 98.29 ± 0.75 3.31 70.52 1.37
White male 96.58 ± 0.91 4.64 ± 1.64 99.70 ± 0.12 94.40 ± 1.62 11.08 ± 5.57 98.88 ± 0.55 2.31 58.12 0.82

Sub-Task 1.2 (Bias mitigation): Synthetic + Real Data

Demographic
group

Average of baseline systems Average of proposed systems GAP

Acc. FNMR@FMR = % AUC Acc. FNMR@FMR = % AUC Acc. FNMR@FMR = % AUC

Black female 92.44 ± 4.90 13.92 ± 2.78 98.61 ± 0.83 95.90 ± 0.74 10.60 ± 4.03 99.42 ± 0.17 −3.61 −31.32 −0.81
Black male 92.70 ± 5.55 10.56 ± 4.12 98.29 ± 2.04 97.52 ± 0.58 4.44 ± 1.68 99.72 ± 0.11 −4.94 −137.84 −1.43
Asian female 90.36 ± 3.32 22.68 ± 4.74 96.60 ± 1.57 92.28 ± 1.73 16.32 ± 3.14 98.10 ± 0.57 −2.08 −38.97 −1.53
Asian male 90.66 ± 4.34 19.84 ± 4.53 97.12 ± 1.73 94.10 ± 1.19 13.68 ± 3.62 98.50 ± 0.37 −3.66 −45.03 −1.41
Indian female 93.04 ± 2.75 12.00 ± 4.27 98.04 ± 2.10 94.52 ± 2.14 7.88 ± 1.37 99.42 ± 0.16 −1.57 −52.28 −1.39
Indian male 92.56 ± 4.19 11.72 ± 6.67 96.75 ± 3.99 95.78 ± 1.81 5.24 ± 1.08 99.31 ± 0.08 −3.36 −123.66 −2.59
White female 92.20 ± 5.96 7.56 ± 3.01 98.72 ± 1.40 96.84 ± 0.53 3.92 ± 0.41 99.71 ± 0.07 −4.79 −92.86 −0.99
White male 92.26 ± 6.22 7.80 ± 2.86 98.68 ± 1.45 96.80 ± 0.61 4.12 ± 0.92 99.75 ± 0.09 −4.69 −89.32 −1.07

Sub-Task 2.1 (Overall improvement): Synthetic data

Database Average of baseline systems Average of proposed systems GAP

Acc. FNMR@FMR = % AUC Acc. FNMR@FMR = % AUC Acc. FNMR@FMR = % AUC

BUPT 91.98 ± 2.01 12.40 ± 3.14 98.82 ± 0.30 91.55 ± 1.84 23.54 ± 8.53 97.13 ± 1.02 0.47 47.31 1.74
AgeDB 94.58 ± 1.39 9.75 ± 3.00 98.57 ± 0.41 89.44 ± 3.97 33.63 ± 17.38 95.34 ± 2.51 5.75 71.00 3.39
CFP-FP 90.37 ± 5.28 15.79 ± 8.04 96.85 ± 2.51 85.12 ± 4.32 39.00 ± 14.88 93.08 ± 3.01 6.17 59.50 4.05
ROF 84.31 ± 4.70 30.40 ± 3.45 92.10 ± 1.49 79.84 ± 3.47 51.33 ± 10.03 87.88 ± 2.23 5.59 40.77 4.80

Sub-Task 2.2 (Overall improvement): Synthetic + Real Data

Database Average of baseline systems Average of proposed systems GAP

Acc. FNMR@FMR = % AUC Acc. FNMR@FMR = % AUC Acc. FNMR@FMR = % AUC

BUPT 92.81 ± 1.63 13.14 ± 3.90 97.97 ± 1.88 94.48 ± 1.74 10.72 ± 2.93 99.02 ± 0.32 −1.77 −22.59 −1.06
AgeDB 94.96 ± 1.31 9.30 ± 2.25 98.70 ± 0.20 95.33 ± 0.97 8.74 ± 1.88 98.75 ± 0.30 −0.39 −6.43 −0.05
CFP-FP 90.77 ± 5.28 15.04 ± 7.47 96.96 ± 2.48 91.54 ± 4.65 13.19 ± 5.91 97.89 ± 1.24 −0.85 −13.99 −0.94
ROF 84.11 ± 4.67 31.65 ± 4.64 91.86 ± 1.61 85.08 ± 4.54 35.65 ± 17.75 92.98 ± 1.35 −1.14 11.22 −1.20
Analyzing Sub-Task 2.1, we observe that synthetic data alone are
nsufficient to improve the average performance of baseline systems
or any of the four considered databases. The combination of synthetic
nd real databases (Sub-Task 2.2) is necessary to achieve improve-
ents between the averages of the metrics provided by baseline and
roposed systems. Consistent with our previous discussion, the aver-
ge performance of the top-5 teams in both Sub-Tasks 2.1 and 2.2
mphasizes that BUPT-BalancedFace [58] and AgeDB [66] are the
atabases yielding the highest performance during evaluation, in both
he baseline and proposed systems, and across all metrics (i.e., ac-

curacy, FNMR@FMR=1%, and AUC). BUPT-BalancedFace [58] also
stands out as the database with the lowest GAP values for accuracy
in both Sub-Tasks 2.1 and 2.2 (0.47% and −1.77%, respectively), for
AUC in Sub-Task 2.1 (1.74%), and for FNMR@FMR=1% in Sub-Task
2.2 (−22.59%). This confirms that using DCFace [16] and GANDiff-
Face [28] for FR system training, particularly when fused with real
data, enhances performance across diverse demographic groups. Simi-
lar results are observed for the GAP values calculated for the three other
databases (i.e., AgeDB [66], CFP-FP [40], and ROF [67]) and across
all metrics (i.e., accuracy, FNMR@FMR=1%, and AUC). The results
16

rovide positive GAP values in Sub-Task 2.1 and negative GAP values
in Sub-Task 2.2, except for the GAP in FNMR@FMR=1% calculated for
the ROF database, indicating that the fusion of real and synthetic data
also enhances performance in presence of pose variations, aging, and
occlusions.

7. Conclusion

The proposed FRCSyn-onGoing represents a significant step forward
in evaluating the application of synthetic data to FR, addressing current
limitations in the field. Information fusion played a crucial role in this
study at various levels. Notably, the fusion of synthetic and real data
emerged as the optimal configuration for training, resulting in the pro-
posed FR systems outperforming baseline systems exclusively trained
with real-world databases. Additionally, numerous participating teams
adopted an approach that involved fusing information from different
networks to enhance FR performance. These networks were trained
with diverse loss functions or differently augmented data, allowing the
extraction of distinct features from input images that could be fused
before conducting face verification.

Within FRCSyn-onGoing, various approaches from different res-

earch groups were proposed and compared across different sub-tasks.
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A detailed analysis of the performance across demographic groups and
databases representing different challenges revealed notable findings.
Specifically, the proposed FR systems exhibited lower performance
when evaluated on demographic groups representing the Asian pop-
ulation, compared to other groups, in both the baseline and proposed
systems of Sub-Tasks 1.1 and 1.2. Nevertheless, the BUPT-BalancedFace
database [58] substantially benefits from the training of FR systems
with the proposed synthetic databases, i.e., DCFace [16] and GANDiff-
Face [28]. It is important to observe that BUPT-BalancedFace eval-
uates FR performance in presence of demographic diversity within
the test population, utilizing comparisons between individuals of the
same demographic group, considered more challenging compared to
comparisons between individuals of different demographic groups.

FRCSyn-onGoing provides a reproducible ongoing benchmark ac-
cessible to all researchers in the field for evaluating their deployed
FR systems. The material provided by many participating teams hold
promise for advancing the application of synthetic data to enhance
FR technology. Future work will focus on maintaining the ongoing
competition and introducing new tasks to evaluate additional aspects
of interest. Potential new tasks may involve exploring the feasibility
of training FR systems with additional synthetic databases, to evaluate
their applicability in the field.
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