
Dense Face Alignment

Yaojie Liu1, Amin Jourabloo1, William Ren2, and Xiaoming Liu1

1Department of Computer Science and Engineering, Michigan State University, MI
2Monta Vista High School, Cupertino, CA

1{liuyaoj1,jourablo,liuxm}@msu.edu, 2
williamyren@gmail.com

Abstract

Face alignment is a classic problem in the computer vi-

sion field. Previous works mostly focus on sparse alignment

with a limited number of facial landmark points, i.e., fa-

cial landmark detection. In this paper, for the first time,

we aim at providing a very dense 3D alignment for large-

pose face images. To achieve this, we train a CNN to esti-

mate the 3D face shape, which not only aligns limited fa-

cial landmarks but also fits face contours and SIFT feature

points. Moreover, we also address the bottleneck of train-

ing CNN with multiple datasets, due to different landmark

markups on different datasets, such as 5, 34, 68. Exper-

imental results show our method not only provides high-

quality, dense 3D face fitting but also outperforms the state-

of-the-art facial landmark detection methods on challeng-

ing datasets. Our model can run at real time during testing

and it’s available at http:///cvlab.cse.msu.edu/

project-pifa.html.

1. Introduction

Face alignment is a long-standing problem in the com-

puter vision field, which is the process of aligning facial

components, e.g., eye, nose, mouth, and contour. An accu-

rate face alignment is an essential prerequisite for many face

related tasks, such as face recognition [8], 3D face recon-

struction [22, 21] and face animation [37]. There are fruit-

ful previous works on face alignment, which can be catego-

rized as either generative methods such as the early Active

Shape Model [17] and Active Appearance Model (AAM)

based approaches [13], or discriminative methods such as

regression-based approaches[38, 28].

Most previous methods estimate a sparse set of land-

marks, e.g., 68 landmarks. As this field is being developed,

we believe that Dense Face Alignment (DeFA) is highly de-

sirable. Here, DeFA denotes that it’s doable to map any

face-region pixel to the pixel in other face images, which

has the same anatomical position in human faces. For ex-

ample, given two face images from the same individual
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Figure 1. A pair of images with their dense 3D shapes obtained

by imposing landmark fitting constraint, contour fitting constraint

and sift pair constraint.

but with different poses, lightings or expressions, a perfect

DeFA can even predict a mole (i.e. darker pigment) on two

faces as the same position. Moreover, DeFA should offer

dense correspondence not only between two face images,

but also between the face image and the canonical 3D face

model. This level of detailed geometry interpretation of a

face image is invaluable to many conventional facial analy-

sis problems mentioned above.

Since this interpretation has gone beyond the sparse set

of landmarks, fitting a dense 3D face model to the face im-

age is a reasonable way to achieve DeFA. In this work, we

choose to develop the idea of fitting a dense 3D face model

to an image, where the model with thousands of vertexes

makes it possible for face alignment to go very “dense”.

3D face model fitting is well studied in the seminal work

of 3D Morphorbal Model (3DMM) [4]. We see its recent

surge in poplarith when it is applied to problems such as

large-pose face alignment [10, 41], 3D reconstruction [5],

and face recognition [1], especially using the convolutional

neural network (CNN) architecture.

However, most prior works on 3D-model-fitting-based

face alignment only utilize the sparse landmarks as super-

vision. There are two main challenges that need to be ad-

dressed in 3D face model fitting, in order to enable high-

quality DeFA. First of all, to the best of our knowledge, no

public face dataset has dense face shape labeling. All of the

in-the-wild face alignment datasets have no more than 68
landmarks in the labeling. To provide a high-quality align-

ment for face-region pixels, we need a greater amount of in-

formation than just the landmark labeling. Hence, the first

challenge is to seek valuable information for additional su-
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pervision and integrate them in the learning framework.

In addition, similar to many other data-driven problems

and solutions, it is preferred for multiple datasets to be in-

volved for solving face alignment task since a single dataset

has limited types of variations. However, many face align-

ment methods can not leverage multiple datasets, because

each dataset either is labeled differently. For instance,

AFLW dataset [23] contains a significant variation of poses,

but has a few number of visible landmarks. In contrast,

300W dataset [23] contains a large number of faces with

68 visible landmarks, but all faces are in a near-frontal

view. Therefore, the second challenge requires the proposed

method to leverage multiple face datasets.

With the objective of addressing both challenges, we

train a CNN to fit a 3D face model to the face image. While

the proposed method works for any face image, we mainly

pay attention to faces with large poses. Large-pose face

alignment is a relatively new topic, and the performances in

[10, 41] still have room to improve. To tackle the first chal-

lenge of limited landmark labeling, we propose to employ

additional constraints. We include both contour constraint

where the contour of the predicted shape should match the

detected 2D face boundary, and SIFT constraint where the

SIFT key points detected on two face images of the same

individual should map to the same vertexes on the 3D face

model. Both constraints are integrated into the CNN train-

ing as additional loss function terms, where the end-to-end

training results in an enhanced CNN for 3D face model

fitting. For the second challenge of leveraging multiple

datasets, the 3D face model fitting approach has an inher-

ent advantage in handling multiple training databases. Re-

gardless of the landmark labeling number in a particular

dataset, we can always define the corresponding 3D ver-

texes to guide the training.

Generally, our main contributions can be summarized as:

1. We identify and define a new problem of dense face

alignment, seeking the alignment of face-region pixels be-

yond the sparse set of landmarks.

2. To achieve dense face alignment, we develop a novel

3D face model fitting algorithm that adopts multiple con-

straints and leverages multiple datasets.

3. Our dense face alignment algorithm outperforms

the SOTA on challenging large-pose face alignment, and

achieves competitive results on near-frontal face alignment.

The model runs at real time.

2. Related Work

We review papers in three relevant areas: 3D face align-

ment from a single image, using multiple constraints in face

alignment, and using multiple datasets for face alignment.

3D model fitting in face alignment Recently, there are

increasingly attentions in conducting face alignment by fit-

ting a 3D face model to a single 2D image [10, 41, 15, 16,

35, 11]. In [4], Blanz and Vetter proposed the 3DMM to

represent the shape and texture of a range of individuals.

The analysis-by-synthesis based methods are utilized to fit

the 3DMM to the face image. In [41, 10] a set of cascade

CNN regressors with the extracted 3D features is utilized to

estimate the parameters of 3DMM and the projection ma-

trix directly. Liu et al. [15] proposed to utilize two sets of

regressors, one set for estimating update of 2D landmarks

and the other set estimate update of dense 3D shape by us-

ing the 2D landmarks update. They apply these two sets

of regressors alternatively. Compared to prior work, our

method imposes additional constraints, which is the key to

dense face alignment.

Multiple constraints in face alignment Other than land-

marks, there are other features that are useful to describe the

shape of a face, such as contours, pose and face attributes.

Unlike landmarks, those features are often not labeled in the

datasets. Hence, the most crucial step of leveraging those

features is to find the correspondence between the features

and the 3D shape. In [20], multiple features constraints

in the cost function is utilized to estimate the 3D shape and

texture of a 3D face. 2D edge is detected by Canny detector,

and the corresponding 3D edges’ vertices are matched by It-

erative Closest Point (ICP) to use this information. Further-

more, [24] provides statistical analysis about the 2D face

contours and the 3D face shape under different poses.

There are few works that use constraints as separate side

tasks to facilitate face alignment. In [31], they set a pose

classification task, predicting faces as left, right profile or

frontal, in order to assist face alignment. Even with such

a rough pose estimation, this information boosts the align-

ment accuracy. Zhang et al. [34] jointly estimates 2D land-

marks update with the auxiliary attributes (e.g., gender, ex-

pression) in order to improve alignment accuracy. The “mir-

rorability” constraint is used in [32] to force the estimated

2D landmarks update be consistent between the image and

its mirror image. In contrast, we integrate a set of con-

straints in an end-to-end trainable CNN to perform 3D face

alignment.

Multiple datasets in face alignment Despite the huge ad-

vantages (e.g., avoiding dataset bias), there are only a few

face alignment works utilizing multiple datasets, owing to

the difficulty of leveraging different types of face landmark

labeling. Zhu et al. [39] propose a transductive supervised

descent method to transfer face annotation from a source

dataset to a target dataset, and use both datasets for training.

[25] ensembles a non-parametric appearance model, shape

model and graph matching to estimate the superset of the

landmarks. Even though achieving good results, it suffers

from high computation cost. Zhang et al. [33] propose a

deep regression network for predicting the superset of land-

marks. For each training sample, the sparse shape regres-

sion is adopted to generate the different types of landmark
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Figure 2. Architecture of CNN in the proposed DeFA method. The structure of each ConvBlock is shown in yellow area in the left bottom

corner. Each convolution layer and fully connected layer is followed with one batch normalization layer (BN) and one leaky ReLU layer.

The output dimension of each convolution layer is shown in the bottom of each unit, such as conv1: 32, which means the output has 32

channels. pool: 2 denotes the pooling layer adopts a stride of 2.

annotations. In general, most of the mentioned prior work

learn to map landmarks between two datasets, while our

method can readily handle an arbitrary number of datasets

since the dense 3D face model can bridge the discrepancy

of landmark definitions in various datasets.

3. Dense Face Alignment

In this section, we explain the details of the proposed

dense face alignment method. We train a CNN for fitting

the dense 3D face shape to a single input face image. We

utilize the dense 3D shape representation to impose multiple

constraints, e.g., landmark fitting constraint, contour fitting

constraint and SIFT pairing constraint, to train such CNN.

3.1. 3D Face Representation

We represent the dense 3D shape of the face as, S, which

contains the 3D locations of Q vertices,

S =





x1 x2 · · · xQ

y1 y2 · · · yQ
z1 z2 · · · zQ



 . (1)

To compute S for a face, we follow the 3DMM to repre-

sent it by a set of 3D shape bases,

S = S̄ +

Nid
∑

i=1

piidSi
id +

Nexp
∑

i=1

piexpSi
exp, (2)

where the face shape S is the summation of the mean

shape S̄ and the weighted PCA shape bases Sid and Sexp

with corresponding weights of pid, pexp. In our work, we

use 199 shape bases Si
id, i = {1, ..., 199} for representing

identification variances such as tall/short, light/heavy, and

male/female, and 29 shape bases Si
exp, i = {1, ..., 29} for

representing expression variances such as mouth-opening,

smile, kiss and etc. Each basis has Q = 53, 215 vertices,

which are corresponding to vertices over all the other bases.

The mean shape S̄ and the identification bases Sid are from

Basel Face Model [18], and the expression bases Sexp are

from FaceWarehouse [7].

A subset of N vertices of the dense 3D face U corre-

sponds to the location of 2D landmarks on the image,

U =

(

u1 u2 · · · uN

v1 v2 · · · vN

)

. (3)

By considering weak perspective projection, we can es-

timate the dense shape of a 2D face based on the 3D face

shape. The projection matrix has 6 degrees of freedom and

can model changes w.r.t. scale, rotation angles (pitch α, yaw

β, roll γ), and translations (tx, ty). The transformed dense

face shape A ∈ R
3×Q can be represented as,

A =





m1 m2 m3 m4

m5 m6 m7 m8

m9 m10 m11 m12





[

S

1⊺

]

(4)

U = Pr · A, (5)

where A can be orthographically projected onto 2D plane to

achieve U. Hence, z-coordinate translation (m12) is out of

our interest and assigned to be 0. The orthographic projec-

tion can be denoted as matrix Pr =

[

1 0 0
0 1 0

]

.

Given the properties of projection matrix, the normalized

third row of the projection matrix can be represented as the

outer product of normalized first two rows,

[m̄9, m̄10, m̄11] = [m̄1, m̄2, m̄3]× [m̄4, m̄5, m̄6]. (6)

Therefore, the dense shape of an arbitrary 2D face can

be determined by the first two rows of the projection pa-

rameters m = [m1, · · · ,m8] ∈ R
8 and the shape basis



coefficients p = [p1id, ..., p
199

id , p1exp, ...p
29

exp] ∈ R
228. The

learning of the dense 3D shape is turned into the learning

of m and p, which is much more manageable in term of the

dimensionality.

3.2. CNN Architecture

Due to the success of deep learning in computer vision,

we employ a convolutional neural network (CNN) to learn

the nonlinear mapping function f(Θ) from the input image

I to the corresponding projection parameters m and shape

parameters p. The estimated parameters can then be utilized

to construct the dense 3D face shape.

Our CNN network has two branches, one for predicting

m and another for p, shown in Fig. 2. Two branches share

the first three convolutional blocks. After the third block,

we use two separate convolutional blocks to extract task-

specific features, and two fully connected layers to transfer

the features to the final output. Each convolutional block

is a stack of two convolutional layers and one max pool-

ing layer, and each conv/fc layer is followed by one batch

normalization layer and one leaky ReLU layer.

In order to improve the CNN learning, we employ a loss

function including multiple constraints: Parameter Con-

straint (PC) Jpr minimizes the difference between the es-

timated parameters and the ground truth parameters; Land-

mark Fitting Constraint (LFC) Jlm reduces the alignment

error of 2D landmarks; Contour Fitting Constraint (CFC)

Jc enforces the match between the contour of the estimated

3D shape and the contour pixels of the input image; and

SIFT Pairing Constraint (SPC) Js encourages that the SIFT

feature point pairs of two face images to correspond to the

same 3D vertices.

We define the overall loss function as,

argmin
m̂,p̂

J = Jpr + λlmJlm + λcJc + λsJs, (7)

where the parameter constraint (PC) loss is defined as,

Jpr =

∥

∥

∥

∥

[

m⊺

p⊺

]

−

[

m̂
⊺

p̂
⊺

]∥

∥

∥

∥

2

. (8)

Landmark Fitting Constraint (LFC) aims to minimize

the difference between the estimated 2D landmarks and the

ground truth 2D landmark labeling Ulm ∈ R
2×N . Given

2D face images with a particular landmark labeling, we first

manually mark the indexes of the 3D face vertices that are

anatomically corresponding to these landmarks. The col-

lection of these indexes is denoted as ilm. After the shape

A is computed from Eqn. 4 with the estimated m̂ and p̂, the

3D landmarks can be extracted from A by A(:, ilm). With

projection of A(:, ilm) to 2D plain, the LFC loss is defined

as,

Jlm =
1

L
· ‖PrA(:, ilm)− Ulm‖2F , (9)

(a) (b) (c)
Figure 3. The CFC fitting process. Ac is computed from estimated

3D face shape and Uc is computed from the off-the-shelf edge

detector. Contour correspondence is obtained via Closest Pair Al-

gorithm, and loss Jc is calculated based on Eqn. 10

where the subscript F represents the Frobenius Norm, and

L is the number of pre-defined landmarks.

3.3. Contour Fitting Constraint (CFC)

Contour Fitting Constraint (CFC) aims to minimize the

error between the projected outer contour (i.e., silhouette)

of the dense 3D shape and the corresponding contour pixels

in the input face image. The outer contour can be viewed

as the boundary between the background and the 3D face

while rendering 3D space onto a 2D plane. On databases

such as AFLW where there is a lack of labeled landmarks

on the silhouette due to self-occlusion, this constraint can

be extremely helpful.

To utilize this contour fitting constraint, we need to fol-

low these three steps: 1) Detect the true contour in the 2D

face image; 2) Describe the contour vertices on the esti-

mated 3D shape A; and 3) Determine the correspondence

between true contour and the estimated one, and back-

propagate the fitting error.

First of all, we adopt an off-the-shelf edge detector,

HED [29], to detect the contour on the face image, Uc ∈
R

2×L. The HED has a high accuracy at detecting signifi-

cant edges such as face contour in our case. Additionally, in

certain datasets, such as 300W [23] and AFLW-LPFA [10],

additional landmark labelings on the contours are available.

Thus we can further refine the detected edges by only re-

taining edges that are within a narrow band determined by

those contour landmarks, shown in Fig 3.a. This prepro-

cessing step is done offline before the training starts.

In the second step, the contour on the estimated 3D

shape A can be described as the set of boundary vertices

A(:, ic) ∈ R
3×L. A is computed from the estimated m̂ and

p̂ parameters. By utilizing the Delaunay triangulation to

represent shape A, one edge of a triangle is defined as the

boundary if the adjacent faces have a sign change in the z-

values of the surface normals. This sign change indicates a

change of visibility so that the edge can be considered as a

boundary. The vertices associated with this edge are defined

as boundary vertices, and their collection is denoted as ic.

This process is shown in Fig 3.b.

In the third step, the point-to-point correspondences be-

tween Uc and A(:, ic) are needed in order to evaluate the
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Figure 4. The illustration of the SIFT Matching process.

constraint. Given that we normally detect partial contour

pixels on 2D images while the contour of 3D shape is typ-

ically complete, we match the contour pixel on the 2D im-

ages with closest point on 3D shape contour, and then cal-

culate the minimun distance. The sum of all minimum dis-

tances is the error of CFC, as shown in the Eqn. 10. To

make CFC loss differentiable, we rewrite Eqn. 10 to com-

pute the vertex index of the closest contour projection point,

i.e., k0 = argmink∈ic
‖PrA(:, k) − Uc(:, j)‖

2. Once k0 is

determined, the CFC loss will be differentiable, similar to

Eqn. 9.

Jc =
1

L

∑

j

min
k∈ic

‖PrA(:, k)− Uc(:, j)‖
2

=
1

L

∑

j

‖PrA(:, argmin
k∈ic

‖PrA(:, k)− Uc(:, j)‖
2)

− Uc(:, j)‖
2. (10)

Note that while ic depends on the current estimation of

{m, p}, for simplicity ic is treated as constant when per-

forming back-propagation w.r.t. {m, p}.

3.4. SIFT Pairing Constraint (SPC)

SIFT Pairing Constraint (SPC) regularizes the predic-

tions of dense shape to be consistent on the significant fa-

cial points other than pre-defined landmarks, such as edges,

wrinkles, and moles. The Scale-invariant feature transform

(SIFT) descriptor is a classic local representation that is

invariant to image scaling, noise, and illumination. It is

widely used in many regression-based face alignment meth-

ods [30, 26] to extract the local information.

In our work, the SIFT descriptors are used to detect and

represent the significant points within the face pair. The

face pair can either come from the same people with differ-

ent poses and expressions, or the same image with differ-

ent augmentation, e.g., cropping, rotation and 3D augmen-

tation, shown in Fig. 4. The more face pairs we have, the

stronger this constraint is. Given a pair of faces i and j, we

first detect and match SIFT points on two face images. The

matched SIFT points are denoted as Ui
s and Uj

s ∈ R
2×Lij .

With a perfect dense face alignment, the matched SIFT

points would overlay with exactly the same vertex in the es-

timated 3D face shapes, denoted as Ai and Aj . In practices,

to verify how likely this ideal world is true and leverage it

as a constraint, we first find the 3D vertices iis whose pro-

jections overlay with the 2D SIFT points, Ui
s.

iis = arg min
i∈{1,...,Lij}

‖Ai{iis} − Ui
s‖

2

F , (11)

Similarly, we find jjs based on Uj
s. Now we define the

SPC loss function as

Js(m̂
j
, p̂

j
, m̂

i
, p̂

i) =

1

Lij

(

‖Ai{ijs} − Ui
s‖

2

F + ‖Aj{iis} − Uj
s‖

2

F

)

(12)

where Ai is computed using {mi, pi}. As shown in Fig. 4,

we map SIFT points from one face to the other and compute

their distances w.r.t. the matched SIFT points on the other

face. With the mapping from both images, we have two

terms in the loss function of Eqn. 12.

4. Experimental Results

4.1. Datasets

We evaluate our proposed method on four bench-

mark datasets: AFLW-LFPA [9], AFLW2000-3D [41],

300W [23] and IJBA [12]. All datasets used in our train-

ing and testing phases are listed in Tab. 1.

AFLW-LFPA: AFLW contains around 25, 000 face images

with yaw angles between ±90◦, and each image is labeled

with up to 21 visible landmarks. In [9], a subset of AFLW

with a balanced distribution of the yaw angle is introduced

as AFLW-LFPA. It consists of 3, 901 training images and

1, 299 testing images. Each image is labeled with 13 addi-

tional landmarks.

AFLW2000-3D: Prepared by [41], this dataset contains

2, 000 images with yaw angles between ±90◦ of the AFLW

dataset. Each image is labeled with 68 landmarks. Both

this dataset and AFLW-LFPA are widely used for evaluat-

ing large-pose face alignment.

IJBA: IARPA Janus Benchmark A (IJB-A) [12] is an in-

the-wild dataset containing 500 subjects and 25, 795 im-

ages with three landmark, two landmarks at eye centers and

one on the nose. While this dataset is mainly used for face



Table 1. The list of face datasets used for training and testing.

Database Landmark Pose Images

Training

300W [23] 68 Near-frontal 3, 148
300W-LP [41] 68 [−90◦, 90◦] 96, 268
Caltech10k [2] 4 Near-frontal 10, 524

AFLW-LFPA [9] 21 [−90◦, 90◦] 3, 901
COFW [6] 29 Near-frontal 1, 007

Testing

AFLW-LFPA [9] 34 [−90◦, 90◦] 1, 299
AFLW2000-3D [41] 68 [−90◦, 90◦] 2, 000

300W [23] 68 Near-frontal 689
IJB-A [12] 3 [−90◦, 90◦] 25, 795
LFW [14] 0 Near-frontal 34, 356

recognition, the large dataset size and the challenging vari-

ations (e.g., ±90◦ yaw and images resolution) make it suit-

able for evaluating face alignment as well.

300W: 300W [23] integrates multiple databases with stan-

dard 68 landmark labels, including AFW [43], LFPW [3],

HELEN [36], and IBUG [23]. This is the widely used

database for evaluating near-frontal face alignment.

COFW [6]: This dataset includes near-frontal face images

with occlusion. We use this dataset in training to make the

model more robust to occlusion.

Caltech10k [2]: It contains four labeled landmarks: two on

eye centers, one on the top of the nose and one mouth center.

We do not use the mouth center landmark since there is no

corresponding vertex on the 3D shape existing for it.

LFW [14]: Despite having no landmark labels, LFW can be

used to evaluate how dense face alignment method performs

via the corresponding SIFT points between two images of

the same individual.

4.2. Experimental setup
Training sets and procedures : While utilizing multiple

datasets is beneficial for learning an effective model, it also

poses challenges to the training procedure. To make the

training more manageable, we train our DeFA model in

three stages, with the intention to gradually increase the

datasets and employed constraints. At stage 1, we use

300W-LP to train our DeFA network with parameter con-

straint (PL). At stage 2, we additionally include samples

from the Caltech10K [2], and COFW [6] to continue the

training of our network with the additional landmark fit-

ting constraint (LFC). At stage 3, we fine-tune the model

with SPC and CFC constraints. For large-pose face align-

ment, we fine-tune the model with AFLW-LFPA training

set. For near-frontal face alignment, we fine-tune the model

with 300W training set. All samples at the third stage are

augmented 20 times with up to ±20◦ random in-plain rota-

tion and 15% random noise on the center, width, and length

of the initial bounding box. Tab. 2 shows the datasets and

Table 2. The list of datasets used in each training stage, and

the employed constraints for each dataset: Parameter Constraint

(PC); Landmark Fitting Constraint (LFC); SIFT Pairing Constraint

(SPC); Contour Fitting Constraint (CFC).

Dataset Stage 1 Stage 2 Stage 3

300W-LP [41] PC
PC

LFC -

Caltech10k [2] - LFC -

COFW [6] - LFC -

AFLW-LFPA [9] - -
LFC
SPC
CFC

300W [23] - -
LFC
SPC
CFC

constraints that are used at each stage.

Implementation details: Our DeFA model is implemented

with MatConvNet [27]. To train the network, we use 20,

10, and 10 epochs for stage 1 to 3. We set the initial global

learning rate as 1e−3, and reduce the learning rate by a fac-

tor of 10 when the training error approaches a plateau. The

minibatch size is 32, weight decay is 0.005, and the leak

factor for Leaky ReLU is 0.01. In stage 2, the regulariza-

tion weights λpr for PC is 1 and λlm for LFC is 5; In stage

3, the regularization weights λlm, λs, λc for LFC, SPC and

CFC are set as 5, 1 and 1, respectively.

Evaluation metrics: For performance evaluation and com-

parison, we use two metrics for normalizing the MSE.

We follow the normalization method in [10] for large-pose

faces, which normalizes the MSE by using the bounding

box size. We term this metric as “NME-lp”. For the near-

frontal view datasets such as 300W, we use the inter-ocular

distance for normalizing the MSE, termed as “NME-nf”.

4.3. Experiments on Largepose Datasets

To evaluate the algorithm on large-pose datasets, we

use the AFLW-LFPA, AFLW2000-3D, and IJB-A datasets.

The results are presented in Tab. 3, where the performance

of the baseline methods is either reported from the pub-

lished papers or by running the publicly available source

code. For AFLW-LFPA, our method outperforms the best

methods with a large margin of 17.8% improvement. For

AFLW2000-3D, our method also shows a large improve-

ment. Specifically, for images with yaw angle in [60◦, 90◦],
our method improves the performance by 28% (from 7.93
to 5.68). For the IJB-A dataset, even though we are able to

only compare the accuracy for the three labeled landmarks,

our method still reaches a higher accuracy. Note that the

best performing baselines, 3DDFA and PAWF, share the

similar overall approach in estimating m and p, and also

aim for large-pose face alignment. The consistently supe-

rior performance of our DeFA indicates that we have ad-

vanced the state of the art in large-pose face alignment.



Table 3. The benchmark comparison (NME-lp) on three large-pose face alignment datasets.

Baseline CFSS [38] PIFA [9] CCL [40] 3DDFA [41] PAWF [10] Ours

AFLW-LFPA 6.75 6.52 5.81 - 4.72 3.86

AFLW2000-3D - - - 5.42 - 4.50

IJB-A - - - - 6.76 6.03

Table 4. The benchmark comparison (NME-nf) on 300W dataset.

The top two performances are in bold.

Method Common set Challenging set Full set

RCPR [6] 6.18 17.26 7.58
SDM [30] 5.57 15.40 7.50
LBF [19] 4.95 11.98 6.32

CFSS [38] 4.73 9.98 5.76

RAR [28] 4.12 8.35 4.94

3DDFA [41] 6.15 10.59 7.01
3DDFA+SDM 5.53 9.56 6.31

DeFA 5.37 9.38 6.10

4.4. Experiments on Nearfrontal Datasets

Even though the proposed method can handle large-

pose alignment, to show its performance on the near-frontal

datasets, we evaluate our method on the 300W dataset. The

result of the state-of-the-art method on the both common

and challenging sets are shown in Tab. 4. To find the cor-

responding landmarks on the cheek, we apply the landmark

marching [42] algorithm to move contour landmarks from

self-occluded location to the silhouette. Our method is the

second best method on the challenging set. In general, the

performance of our method is comparable to other meth-

ods that are designed for near-frontal datasets, especially

under the following consideration. That is, most prior face

alignment methods do not employ shape constraints such as

3DMM, which could be an advantage for near-frontal face

alignment, but might be a disadvantage for large-pose face

alignment. The only exception in Tab. 4 in 3DDFA [41],

which attempted to overcome the shape constraint by us-

ing the additional SDM-based finetuning. It is a strong

testimony of our model in that DeFA, without further fine-

tuning, outperforms both 3DDFA and its fine tuned version

with SDM.

4.5. Ablation Study

To analyze the effectiveness of the DeFA method, we

design two studies to compare the influence of each part in

the DeFA and the improvement by adding each dataset.

Tab. 5 shows the consistent improvement achieved by

utilizing more datasets in different stages and constraints

according to Tab. 2 on both testing datasets. It shows the

advantage and the ability of our method in leveraging more

datasets. The accuracy of our method on the AFLW2000-

3D consistently improves by adding more datasets. For the

AFLW-PIFA dataset, our method achieves 9.5% and 20%
relative improvement by utilizing the datasets in the stage

Table 5. The NME-lp when utilizing more datasets.

Training Stages AFLW2000-3D AFLW-LFPA

stage1 6.23 5.24
stage1 + stage2 5.68 4.74
stage1 + stage3 4.85 4.15

stage1 + stage2 + stage3 4.50 3.86
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Figure 5. Left: The effect of constraints in enhancing the accu-

racy on the AFLW-LPFA testing set. The NME-lp of each set-

ting is shown in legend. Right: The influence of the SIFT pairing

constraint (SPC) in improving the performance for selected 5, 000

pairs from IJB-A.

2 and stage 3 over the first stage, respectively. If includ-

ing the datasets from both the second and third stages, we

can have 26% relative improvement and achieve NME of

3.86%. Comparing the second and third rows in Tab. 5

shows that the effectiveness of CFC and SPC is more than

LFC. This is due to the utilization of more facial matching

in the CFC and SPC.

The second study shows the performance improvement

achieved by using the proposed constraints. We train mod-

els with different types of active constraints and test them

on the AFLW-PIFA test set. Due to the time constraint, for

this experiment, we did not apply 20 times augmentation of

the third stage’s dataset. We show the results in the left of

Fig. 5. Comparing LFC+SPC and LFC+CFC performances

shows that the CFC is more helpful than the SPC. The rea-

son is that CFC is more helpful in correcting the pose of the

face and leads to more landmark error reduction. Using all

constraints achieves the best performance.

Finally, to evaluate the influence of using the SIFT pair-

ing constraint (SPC), we use all of the three stages datasets

to train our method. We select 5, 000 pairs of images from

the IJB-A dataset and compute the NME-lp of all matched

SIFT points according to Eqn. 12. The right plot in Fig. 5 il-

lustrates the CED diagrams of NME-lp, for the trained mod-

els with and without the SIFT pairing constraint. This result

shows that for the images with NME-lp between 5% and

15% the SPC is helpful.

Part of the reason DeFA works well is that it receives



Figure 6. The estimated dense 3D shape and their landmarks with visibility labels for different datasets. From top to bottom, the results

on AFLW-LPFA, IJB-A and 300W datasets are shown in two rows each. The green landmark are visible and the red landmarks show the

estimated locations for invisible landmarks. Our model can fit to diverse poses, resolutions, and expressions.

“dense” supervision. To show that, we take all matched

SIFT points in the 300W-LP dataset, find their correspond-

ing vertices, and plot the log of the number of SIFT points

on each of the 3D face vertex. As shown in Fig. 7, SPC uti-

lizes SIFT points to cover the whole 3D shape and the points

in the highly textured areas are substantially used. We can

expect that these SIFT constraints will act like anchors to

guild the learning of the model fitting process.

5. Conclusion

We propose a large-pose face alignment method which

estimates accurate 3D face shapes by utilizing a deep neural

network. In addition to facial landmark fitting, we propose

to align contours and the SIFT feature point pairs to extend

the fitting beyond facial landmarks. Our method is able to

leverage from utilizing multiple datasets with different land-

Figure 7. The log plot of the number of matched SIFT points in

the 300W-LP training set. It shows that the SIFT constraints cover

the whole face, especially the highly textured area.

mark markups and numbers of landmarks. We achieve the

state-of-the-art performance on three challenging large pose

datasets and competitive performance on hard medium pose

datasets.
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