
Unified Detection of Digital and Physical Face Attacks

Debayan Deb, Xiaoming Liu, Anil K. Jain
Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI, 48824

{debdebay, liuxm, jain}@cse.msu.edu

Adversarial Faces Digital Manipulation Spoofs

Gradient Learning Warping Id. Swp Expr. 
Swp

Face 
Synth.

Print Replay Wearable
Mask

Makeup PartialAttr.
Manip.

FGSM

PGD AdvFaces

DeepFool Semantic GFLM

DeepFake

FaceSwapFace2Face

StarGAN

STGAN StyleGAN

Half

Paper

Transparent

Mannequin

Silicone

Cosmetic

Obfusc.

Imperson.

PaperCut

FunnyEy
e

PaperGlas
s

Print Replay

3D
Mask

Digital Attacks Physical Attacks

Fig. 1: Face attacks against AFR systems are continuously evolving in both digital and physical spaces. Given the diversity of the face attacks, prevailing
methods fall short in detecting attacks across all three categories (i.e., adversarial, digital manipulation, and spoofs). This work is among the first to define
the task of face attack detection on the 25 attack types across 3 categories shown here.

Abstract— State-of-the-art defense mechanisms against face
attacks achieve near perfect accuracies within one of three
attack categories, namely adversarial, digital manipulation, or
physical spoofs, however, they fail to generalize well when
tested across all three categories. Poor generalization can
be attributed to learning incoherent attacks jointly. To over-
come this shortcoming, we propose a unified attack detection
framework, namely UniFAD, that can automatically cluster
25 coherent attack types belonging to the three categories.
Using a multi-task learning framework along with k-means
clustering, UniFAD learns joint representations for coherent
attacks, while uncorrelated attack types are learned separately.
Proposed UniFAD outperforms prevailing defense methods and
their fusion with an overall TDR = 94.73% @ 0.2% FDR on a
large fake face dataset consisting of 341K bona fide images and
448K attack images of 25 types across all 3 categories. Proposed
method can detect an attack within 3 milliseconds on a Nvidia
2080Ti. UniFAD can also identify the attack categories with
97.37% accuracy. Code and dataset will be publicly available.

I. INTRODUCTION

Automated face recognition (AFR) systems have been
projected to grow to USD 3.35B by 20241. It is estimated
that over a billion smartphones today unlock via face au-
thentication2. However, the foremost challenge facing AFR
systems is their vulnerability to face attacks. For instance,

1https://bwnews.pr/2OqY0nD
2https://bit.ly/30vYBHg

an attacker can hide his identity by wearing a 3D mask [29],
or intruders can assume a victim’s identity by digitally
swapping their face with the victim’s face image [13].
With unrestricted access to the rapid proliferation of face
images on social media platforms, launching attacks against
AFR systems has become even more accessible. Given the
growing dissemination of “fake news” and “deepfakes” [3],
the research community and social media platforms alike are
pushing towards generalizable defense against continuously
evolving and sophisticated face attacks.

In literature, face attacks can be broadly classified into
three attack categories: (i) Spoof attacks: artifacts in the
physical domain (e.g., 3D masks, eye glasses, replaying
videos) [38], (ii) Adversarial attacks: imperceptible noises
added to probes for evading AFR systems [64], and (iii)
Digital manipulation attacks: entirely or partially modified
photo-realistic faces using generative models [13]. Within
each of these categories, there are different attack types. For
example, each spoof medium, e.g., 3D mask and makeup,
constitutes one attack type, and there are 13 common types
of spoof attacks [38]. Likewise, in adversarial and digital
manipulation attacks, each attack model, designed by unique
objectives and losses, may be considered as one attack type.
Thus, the attack categories and types form a 2-layer tree
structure encompassing the diverse attacks (see Fig. 1). Such
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a tree will inevitably grow in the future.
In order to safeguard AFR systems against these attacks,

numerous face attack detection approaches have been pro-
posed [13], [14], [17]–[20], [34], [39], [47], [49], [59].
Despite impressive detection rates, prevailing research efforts
focus on a few attack types within one of the three attack
categories. Since the exact type of face attack may not be
known a priori, a generalizable detector that can defend an
AFR system against any of the three attack categories is of
utmost importance.

Due to the vast diversity in attack characteristics, from
glossy 2D printed photographs to imperceptible perturbations
in adversarial faces, we find that learning a single unified
network is inadequate. Even when prevailing state-of-the-art
(SOTA) detectors are trained on all 25 attack types, they
fail to generalize well during testing. Via ensemble training,
we comprehensively evaluate the detection performance on
fusing decisions from three SOTA detectors that individually
excel at their respective attack categories. However, due to
the diversity in attack characteristics, decisions made by
each detector may not be complementary and result in poor
detection performance across all 3 categories.

This research is among the first to focus on detecting all
25 attack types known in literature (6 adversarial, 6 digital
manipulation, and 13 spoof attacks). Our approach consists
of (i) automatically clustering attacks with similar charac-
teristics into distinct groups, and (ii) a multi-task learning
framework to learn salient features to distinguish between
bona fides and coherent attack types, while early sharing
layers learn a joint representation to distinguish bona fides
from any generic attack.

This work makes the following contributions:
• Among the first to define the task of face attack de-

tection on 25 attack types across 3 attack categories:
adversarial faces, digital face manipulation, and spoofs.

• A novel unified face attack detection framework,
namely UniFAD, that automatically clusters similar at-
tacks and employs a multi-task learning framework to
detect digital and physical attacks.

• Proposed UniFAD achieves SOTA detection perfor-
mance, TDR = 94.73% @ 0.2% FDR on a large fake
face dataset, namely GrandFake. To the best of our
knowledge, GrandFake is the largest face attack dataset
studied in literature in terms of the number of diverse
attack types.

• Proposed UniFAD allows for further identification of the
attack categories, i.e., whether attacks are adversarial,
digitally manipulated, or contains physical spoofing
artifacts, with a classification accuracy of 97.37%.

II. RELATED WORK

Individual Attack Detection. Early work on face attack
detection primarily focused on one or two attack types in
their respective categories. Studies on adversarial face de-
tection [21], [23] primarily involved detecting gradient-based
attacks, such as FGSM [22], PGD [42], and DeepFool [48].

Study Year # BonaFides # Attacks # Types

A
dv

er
sa

ri
al

UAP-D [1] 2018 9, 959 29, 877 1

Goswami et al. [23] 2019 16, 685 50, 055 3

Agarwal et al. [2] 2020 24, 042 72, 126 3

Massoli et al. [44] 2020 169, 396 1M 6

FaceGuard [15] 2020 507, 647 3M 6

D
ig

ita
l

M
an

ip
.

Yang et al. [62] 2018 241(I)/49(V ) 252(I)/49(V ) 1

DeepFake [32] 2018 − 620(V ) 1

FaceForensics++ [32] 2019 1, 000(V ) 3, 000(V ) 3

FakeSpotter [60] 2019 6, 000 5, 000 2

DFFD [13] 2020 58, 703 240, 336 7

Ph
ys

.S
po

of
s Replay-Attack [9] 2012 200(V ) 1, 000(V ) 3

MSU MFSD [61] 2015 160(V ) 280(V ) 3

OuluNPU [7] 2017 990(V ) 3, 960(V ) 4

SiW [37] 2018 1, 320(V ) 3, 158(V ) 6

SiW-M [38] 2019 660(V ) 960(V ) 13

GrandFake (ours) 2022 341, 738 447, 674 25

TABLE I: Face attack datasets with no. of bona fide images, no. of attack
images, and no. of attack types. Here, I denotes images and V refers to
videos. GrandFake will be publicly available.

DeepFakes were among the first studied digital attack manip-
ulation [32], [62], however, generalizability of the proposed
methods to a larger number of digital manipulation attack
types is unsatisfactory [33]. Majority of face anti-spoofing
methods focus on print and replay attacks [5], [7], [37], [43],
[52], [55], [61], [63].

Over the years, a clear trend in the increase of attack
types in each category can be observed in Tab. I. Since a
community of attackers dedicate their efforts to craft new
attacks, it is imperative to comprehensively evaluate existing
solutions against a large number of attack types.

Joint Attack Detection. Recent studies have used multiple
attack types in order to defend against face attacks. For e.g.,
FaceGuard [15] proposed a generalizable defense against
6 adversarial attack types. The Diverse Fake Face Dataset
(DFFD) [13] includes 7 digital manipulation attack types. In
the spoof attack category, recent studies focus on detecting
13 spoof types.

Majority of the works tackling multiple attack types pose
detection as a binary classification problem with a single net-
work learning a joint feature space. For simplicity, we refer
to such a network architecture as JointCNN. For instance, it
is common in adversarial face detection to train a JointCNN
with bona fide faces and adversarial attacks synthesized on-
the-fly by a generative network [15], [28], [36], [50]. On
the other hand, majority of the proposed defenses against
digital manipulation, fine-tune a pre-trained JointCNN (e.g.,
Xception) on bona fide faces and all available digital ma-
nipulation attacks [4], [8], [13], [53], [60]. Due to the
availability of a wide variety of physical spoof artifacts in
face anti-spoofing datasets (e.g., eyeglasses, print and replay
instruments, masks, etc) along with evident cues for detecting
them, studies on anti-spoofs are more sophisticated. The
associated JointCNN employs either auxiliary cues, such as
depth map and heart pulse signals (rPPG) [37], [56], [66],
or a “compactness” loss to prevent overfitting [20], [45].

While jointly detecting multiple attack types is promising,
detecting attack types across different categories is of the
utmost importance. An early attempt proposed a defense
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Fig. 2: (a) Detection performance (TDR @ 0.2% FDR) in detecting each attack type by the proposed UniFAD (purple) and the difference in TDR from
the best fusion scheme, LightGBM [31] (pink). (b) Cosine similarity between mean features for 25 attack types extracted by JointCNN. (c) Examples of
attack types from 4 different clusters via k-means clustering on JointCNN features. Attack types in purple, blue, and red denote spoofs, adversarial, and
digital manipulation attacks, respectively.

against 4 attack types on 2 categories, 3 spoofs and 1 digital
manipulation [45]. On the other hand, Ibsen et al. [27]
proposes a JointCNN trained on face identity embeddings
for 2 categories, 3 spoofs and 3 digital manipulation attacks,
to achieve the same. To the best of our knowledge, we are the
first to attempt detecting 25 attack types across 3 categories.
Multi-task Learning. In multi-task learning (MTL), a task,
Ti is usually accompanied by a training dataset, Dtr consist-
ing of Nt training samples, i.e., Dtr = {xtr

i , y
tr
i }

Ntr
i=1, where

xtr
i ∈ R is the ith training sample in Ti and yti is its label.

Most MTL methods rely on well-defined tasks [41], [46].
Crawshaw et al. [11] summarize various works on MLT
with CNNs. In this work, we propose a MTL framework
in an extreme situation where only a single task is available
(bona fide vs. 25 attack types) and utilize k-means clustering
to construct new auxiliary tasks from Dtr. A recent study
also utilized k-means for constructing new tasks, however,
their approach utilizes a meta-learning framework where the
groups themselves can alter throughout training [24]. Instead,
we propose a new unified attack detection framework that
first utilizes k-means to partition the 25 attacks types, and
then learns shared and attack-specific representations to
distinguish them from bona fides.

III. DISSECTING PREVAILING DEFENSE
SYSTEMS

A. Datasets
In order to detect 25 attack types (6 adversarial, 6 digital

manipulation, and 13 spoofs), we propose the GrandFake
dataset, an amalgamation of multiple face attack datasets
from each category. We provide additional details of Grand-
Fake in Sec. V-A.

B. Drawback of JointCNN
Consider the diversity in the available attacks: from im-

perceptible adversarial perturbations to digital manipulation
attacks, both of which are entirely different from physical
print attacks (hard surface, glossy, 2D). Even within the spoof

category, characteristics of mask attacks are quite different
from replay attacks. In addition, discriminative cues for some
attack types may be observed in high-frequency domain
(e.g., defocused blurriness, chromatic moment), while others
exhibit low-frequency cues (e.g., color diversity and specular
reflection). For these reasons, learning a common feature
space to discriminate all attack types from bona fides is
challenging and a JointCNN may fail to generalize well even
on attack types seen during training.

We demonstrate this by first training a JointCNN on the 25
attack types in GrandFake dataset. We then compute an at-
tack similarity matrix between the 25 types (see Fig. 2(b)).
The mean feature for each attack type is first computed
on a validation set composed of 1, 000 images per attack.
We then compute the pairwise cosine similarity between
mean features from all attack pairs. From Fig. 2, we note
that physical attacks have little correlation with adversarial
attacks and therefore, learning them jointly within a common
feature space may degrade detection performance.

Although prevailing JointCNN-based defense achieve near
perfect detection when trained and evaluated on the respec-
tive attack types in isolation, we observe a significantly
degraded performance when trained and tested on all 3
attack categories together (see Tab. II). In other words, even
when a prevailing SOTA defense system is trained on all 3
categories, it may lead to degraded performance on testing.
C. Unifying Multiple JointCNNs

Another possible approach is to consider ensemble tech-
niques; instead of using a single JointCNN detector, we can
fuse decisions from multiple individual detectors that are
already experts in distinguishing between bona fides and
attacks from their respective attack category. Given three
SOTA detectors, one per attack category, we perform a
comprehensive evaluation on parallel and sequential score-
level fusion schemes.

In our experiments, we find that, indeed, fusing score-level
decisions from single-category detectors outperforms a single
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SOTA defense system trained on all attack types. Note that
efforts in utilizing prevailing defense systems rely on the
assumption that attack categories are independent of each
other. However, Fig. 2 shows that some digital manipulation
attacks, such as STGAN and StyleGAN, are more closely
related to some of the adversarial attacks (e.g., AdvFaces,
GFLM, and Semantic) than other digital manipulation types.
This is likely because all five methods utilize a GAN to
synthesize their attacks and may share similar attack charac-
teristics. Therefore, a SOTA adversarial detector and a SOTA
digital manipulation detector may individually excel at their
respective categories, but may not provide complementary
decisions when fused. Instead of training detectors on groups
with manually assigned semantics (e.g., adversarial, digital
manipulation, spoofs), it is better to train JointCNNs on
coherent attacks. In addition, utilizing decisions from pre-
trained JointCNNs may tend to overfit to the attack categories
used for training.

IV. PROPOSED METHOD: UNIFAD

We propose a new multi-task learning framework for Uni-
fied Attack Detection, namely UniFAD, by training an end-
to-end network for improved physical and digital face attack
detection. In particular, a k-means augmentation module is
utilized to automatically construct auxiliary tasks to enhance
single task learning (such as a JointCNN). Then, a joint
model is decomposed into a feature extractor (shared layers)
F that is shared across all tasks, and task-specific branches
for each auxiliary task. Fig. 3 illustrates the auxiliary task
creation and the training process of UniFAD.

A. Problem Definition
Let the “main task” be defined as the overall objective

of a unified attack detector: given an input image, x, assign
a score close to 0 if x is bona fide or close to 1 if x is
any of the available face attack types. We are also given a
labeled training set, Dtr. Prevailing defenses follow a single
task learning approach where the main task is adopted to
be the ultimate training objective. In order to avoid the
shortcomings of a JointCNN and unification of multiple
JointCNNs, we first use Dtr to automatically construct
multiple auxiliary tasks {Tt}Tt=1, where Ti is the ith cluster of
coherent attack types. If the auxiliary tasks are appropriately
constructed, jointly learning these tasks along with the main
task should improve unified attack detection compared to a
single task learning approach.

B. Automatic Construction of Auxiliary Tasks

One way to construct auxiliary tasks is to train a separate
binary JointCNN on each attack type. Such partitioning
massively increases computational burden (e.g., training and
testing 25 JointCNNs). Other simple partitioning methods,
such as randomly partition are likely to cluster uncorrelated
attacks. On the other hand, clustering in the pixel-space
is also unappealing due to poor correlation between the
distances in the pixel-space, and clustering in the high-
dimensional space is challenging [25]. Therefore, we require
a reasonable alternative to manual inspection of the attack
similarity matrix in Fig. 2 to partition the attack types into
appropriate clusters.

Fortunately, we already have a JointCNN trained via a
single task learning framework that can extract salient repre-
sentations. Thus, we can map the data {x} into JointCNN’s
embedding space Z , producing {z}. We can then utilize a
traditional clustering algorithm, k-means, which takes a set
of feature vectors as input, and clusters them into k distinct
groups based on a geometric constraint. Specifically, for each
attack type, we first compute the mean feature. We then
utilize k-means clustering to partition the L features into
T (≤ L) sets, P = {P1,P2, . . . ,PT } such that within-cluster
sum of squares (WCSS) is minimized,

arg min
P

T∑
i=1

∑
z̄∈Pi

||z̄− µi||2, (1)

where, z̄ represents a mean feature for an attack type and µi

is the mean of the features in Pi. Fig. 2(c) shows an example
on clustering the 25 attack types of GrandFake.

C. Multi-Task Learning with Constructed Tasks

With a multi-task learning framework, we learn coherent
attack types jointly, while uncorrelated attacks are learned
in their own feature spaces. We construct T “branches”
where each branch is a neural network trained on a binary
classification problem (i.e., aux. task). The learning objective
of each branch, Bt, is to minimize,

Lauxt
= Ex [logBt(xbf )] + Ex

[
log
(

1− Bt(xPt

fake)
)]
.

(2)

where xbf denotes bona fide images and xPt

fake is face attacks
corresponding to the attack types in the partition Pt.



D. Parameter Sharing
Early Sharing. We adopt a hard parameter sharing module

which learns a common feature representation for distin-
guishing between bona fides and attacks prior to aux. task
learning branches. Baxter [6] demonstrated the shared pa-
rameters have a lower risk of overfitting than the task-specific
parameters.

Therefore, adopting early convolutional layers as a pre-
processing step prior to branching can help UniFAD in its
generalization to all 3 categories. We construct hidden layers
between the input and the branches to obtain shared features,
h = F(x), while the auxiliary learning branches output
Bt(h).

Late Sharing. Each branch Bt is trained to output a
decision score where scores closer to 0 indicate that the input
image is a bona fide, whereas, scores closer to 1 correspond
to attack types pertaining to the branch’s partition. The scores
from all T branches are then concatenated and passed to a fi-
nal decision layer. For simplicity, we define the final decision
output as, FC(x) := FC(B1(h),B2(h), . . . ,BT (h)).

The early shared layers and the final decision layer are
learned via a binary cross-entropy loss,

Lshared = Ex [logFC(xbf )] + Ex [log (1− FC(xfake))] ,
(3)

between bona fides and all available attack types.
E. Training and Testing

The entire network is trained in an end-to-end manner by
minimizing the following composite loss,

LUniFAD = Lshared +

T∑
t=1

Lauxt
. (4)

The Lshared loss is backpropagated throughout UniFAD,
while Lauxt is only responsible for updating the weights
of the branch, Bt, and the final classification layer. For the
forward and backward passes of Lshared, an equal number
of bona fide and attack samples are used for training. On the
other hand, for training each branch, Bt, we sample the equal
number of bona fides and equal number of attack images
from the attack partition Pt.

Attack Detection. During testing, an image passes through
the shared layers and then each branch of UniFAD outputs
a decision whether the image is bona fide (values close to
0) or an attack (close to 1). The final decision layer outputs
the final decision score. Unless stated otherwise, we use the
final decision scores to report performance.

Attack Classification. Once an attack is detected, UniFAD
can automatically classify the attack type and category. For
all L attack types in the training set, we extract intermediate
128-dim feature vectors from T branches. The features are
then concatenated and the mean feature across all L attack
types is computed, such that, we have L feature vectors of
size T × 128. For a detected attack, Cosine similarity is
computed between the testing sample’s feature vector and
the mean training features for L types. The predicted attack
type is the one with the highest similarity score.

V. EXPERIMENTAL RESULTS
A. Experimental Settings

Dataset. GrandFake consists of 25 face attacks from 3 attack
categories. Both bona fide and fake faces are of varying
quality due to different capture conditions.
Bona Fide Faces. We utilize faces from CASIA-
WebFace [65], LFW [26], CelebA [40], SiW-M [38], and
FFHQ [30] datasets since the faces therein cover a broad
variation in race, age, gender, pose, illumination, expression,
resolution, and acquisition conditions.
Adversarial Faces. We craft 6 SOTA adversarial faces
from CASIA-WebFace [65] and LFW [26]: FGSM [22],
PGD [42], DeepFool [48], AdvFaces [16], GFLM [12], and
SemanticAdv [51].
Digital Manipulation. There are four broad types of dig-
ital face manipulation: identity swap, expression swap, at-
tribute manipulation, and entirely synthesized faces [13]. We
use all clips from FaceForensics++ [53], including identity
swap by FaceSwap and DeepFake, and expression swap by
Face2Face [57]. We utilize two SOTA models, StarGAN [10]
and STGAN [35], to generate attribute manipulated faces
in Celeba [40] and FFHQ [30]. We use the pretrained
StyleGAN2 model3 to synthesize 100K fake faces.
Physical Spoofs. We utilize the publicly available SiW-M
dataset [38], comprising 13 spoof types. Compared with
other spoof datasets (Tab. I), SiW-M is diverse in spoof attack
types, environmental conditions, and face poses.
Protocol. As is common practice in face recognition litera-
ture, bona fides and attacks from CASIA-WebFace [65] are
used for training, while bona fides and attacks for LFW [26]
are sequestered for testing.
Implementation. UniFAD is trained with a constant learning
rate of 1e−3 and batch size of 180. LUniFAD, is minimized
using Adam optimizer for 100K iterations (see Supp.).
Metrics. Studies on different attack categories provide their
own metrics. Following the recommendation from IARPA
ODIN program, we report the TDR @ 0.2% FDR4 and the
overall detection accuracy (in Supp.).

B. Comparison with Individual SOTA Detectors
We compare the proposed UniFAD to detectors via pub-

licly available codes provided by the authors (see Supp.).
Without Re-training. In Tab. II, we first report the per-

formance of 4 pre-trained SOTA detectors. These baselines
were chosen since they report the best detection performance
in datasets with largest numbers of attack types in their
respective categories (see Tab. I). We find that pre-trained
methods indeed excel in their specific attack categories,
however, generalization performance across all 3 categories
deteriorates catastrophically.

With Re-training. After re-training the 4 SOTA detectors
on all 25 attack types, we find that they generalize better

3https://github.com/NVlabs/stylegan2
4https://www.iarpa.gov/index.php/

research-programs/odin



TDR (%) @ 0.2% FDR Year Proposed For Adv. Dig. Man. Phys. Overall Time (ms)

w
/o
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et

ra
in FaceGuard [15] 2020 Adversarial 99.91 22.28 00.58 29.64 01.41

FFD [13] 2020 Digital Manipulation 09.49 94.57 01.25 34.55 11.57
SSRFCN [14] 2020 Spoofs 00.25 00.76 93.19 22.71 02.22
MixNet [54] 2020 Spoofs 00.36 09.83 78.21 21.12 12.47

B
as

el
in

es
FaceGuard [15] 2020 Adversarial 99.86 41.56 04.35 56.69 01.41
FFD [13] 2020 Digital Manipulation 76.06 91.32 87.43 68.25 11.57
SSRFCN [14] 2020 Spoofs 08.23 27.67 89.19 43.26 02.22
One-class [20] 2020 Spoofs 04.81 45.96 79.32 39.40 07.92
MixNet-UniFAD 2022 All 82.33 91.59 94.60 90.07 12.47

Fu
si

on
Sc

he
m

es Cascade [58] − − 88.39 81.98 69.19 77.46 05.16
Min-score − − 03.65 11.08 00.43 07.22 16.14
Median-score − − 10.87 42.33 47.19 39.48 16.12
Mean-score − − 14.53 47.18 61.32 38.23 16.12
Max-score − − 85.32 61.93 56.87 73.89 16.13
Sum-score − − 74.93 58.01 50.34 69.21 16.11
LightGBM [31] − − 76.25 81.28 88.52 85.97 17.92

Proposed UniFAD 2022 All 92.56 97.21 98.76 94.73 02.59

TABLE II: Detection accuracy (TDR (%) @ 0.2% FDR) on GrandFake dataset. Results on fusing FaceGuard [15], FFD [13], and SSRFCN [14] are also
reported. We report time taken to detect a single image (on a Nvidia 2080Ti GPU). [Keys: Best, Second best]
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Fig. 4: Confusion matrix representing the classification accuract of UniFAD
in identifying the 25 attack types. Majority of misclassifications occur within
the attack category. Darker values indicate higher accuracy. Overall, UniFAD
achieves 75.81% and 97.37% classification accuracy in identifying attack
types and categories, respectively. Purple, blue, and red denote spoofs,
adversarial, and digital manipulation attacks, respectively.

across categories. FaceGuard [15], FFD [13], SSRFCN [14],
and One-Class [20] employ a JointCNN for detecting attacks.
Unsurprisingly, these defenses perform well on some attack
categories, while failing on others. We also modify MixNet,
namely MixNet-UniFAD such that clusters are assigned via k-
means with 4 branches. In contrast to MixNet-UniFAD, Uni-
FAD (i) employs early shared layers for generic attack cues,
and (ii) each branch learns to distinguish between bona fides
and specific attack types. MixNet, on the other hand, assigns
a bona fide label (0) to attack types outside a respective
branch’s partition. This negatively impacts network conver-
gence. Overall, we find that UniFAD outperforms MixNet-
UniFAD with TDR 90.07% −→ 94.73% @ 0.2% FDR.

C. Comparison with Fused SOTA Detectors
We also comprehensively evaluate detection performance

on fusing SOTA detectors. We utilize three best performing
detectors from each attack category, namely FaceGuard [15],
FFD [13], and SSRFCN [14]. Inspired by the Viola-Jones
object detection [58], we adopt a sequential ensemble tech-

nique, namely Cascade [58], where an input probe is passed
through each detector sequentially. We also evaluate 5 paral-
lel score fusion rules (min, mean, median, max, and sum) and
a SOTA ensemble technique, namely LightGBM [31]. More
details are provided in Supp. Indeed, we observe an overhead
in detection speed compared to the individual detectors in
isolation, however, cascade, max-score fusion and Light-
GBM [31] can enhance the overall detection performance
compared to the individual detectors at the cost of slower
inference speed. Since the individual detectors still train
with incoherent attack types, we find that proposed UniFAD
outperforms all the considered fusion schemes.

In Fig. 2(a), we show the performance degradation of
LightGBM [31], the best fusing baseline, w.r.t. UniFAD.
We observe that among 4 clusters, the last 2 have the
overall largest degradation. Interestingly, these 2 clusters are
the only ones including attack types across different attack
categories, learned via our k-mean clustering. In other words,
the cross-category attacks types within a branch benefit each
other, leading to the largest performance gain over [31].
This further demonstrates the necessity and importance of
a unified detection scheme — the more attack types the
detector sees, the more likely it would nourish among each
other and be able to generalize.

D. Attack Classification
We classify the exact attack type and categories using the

method described in Sec. IV-E. In Fig. 4, we find that Uni-
FAD can predict the attack type with 75.81% classification
accuracy. While predicting the exact type may be chal-
lenging, we highlight that majority of the misclassifications
occurs within attack’s category. Without human intervention,
once UniFAD is deployed in AFR pipelines, it can predict
whether an input image is adversarial, digitally manipulated,
or contains spoof artifacts with 97.37% accuracy.

E. Analysis of UniFAD
Ratio of Shared Layers. Our backbone network consists

of a 4-layer CNN. In Fig. 5a, we report the detection
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Fig. 5: Detection performance with respect to varying ratio of shared layers
(left) and number of branches (right). Our proposed architecture uses 50%
shared layers with 4 branches.
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Fig. 6: Detection performance on attack types within and outside a branch’s
partition. Performance drops on attacks outside partition as they may not
have any correlation with within-partition attack types.

performance when we incorporate 0, 1 (25%), 2 (50%), 3
(75%), and 4 (100%) layers for early sharing. We observe
a trade-off between detection performance and the number
of early layers: too many reduces the effects of learning
task-specific features via branching, whereas, less number
of shared layers inhibits the network from learning generic
features that distinguish any attack from bona fides. We find
that an even split results in superior detection performance.

Number of Branches. In Fig. 5b, we vary the number
of branches (aux. tasks constructed via kMeans) and report
the detection performance. Indeed, increasing the number of
branches via additional clusters enhances detection perfor-
mance. However, the performance saturates after 4 branches.
Thus, we choose T = 4 due to lower network complexity.

Branch Generalizability. In Fig. 6, scores from the 4
branches are used to compute the detection performance on
attack types within respective partitions and those outside a
branch’s partition (see Fig. 2(b)). Since attack types outside
a branch’s partition are purportedly incoherent, we see a
drop in performance; validating the drawback of JointCNN.
We find that the lowest performance branch, Branch 4, also
exhibits the best generalization performance across other
attack types. This is likely because learning to distinguish
bona fides from imperceptible perturbations from FGSM,
PGD, and minute synthetic noises from StyleGAN yields
a tighter decision boundary which may contribute to better
generalization across digital attacks. Anti-spoofing (Branch
1) itself does not directly aid in detecting digital attacks.
Ablation Study. In Tab. III, we conduct a component-wise
ablation study over UniFAD. We study different partitioning
techniques to group the 25 attack types. We employ semantic
partitioning, BSemantic where attack types are clustered

Model Modules Overall
Shared Layers Branching kMeans TDR (%) @ 0.2% FDR

JointCNN X 63.89
BSemantic X 86.17
BRandom X 53.95± 08.02
BkMeans X X 89.67
SharedSemantic X X 92.44
Proposed X X X 94.73

TABLE III: Ablation study over components of UniFAD. Branching via
“BSemantic”, “BRandom”, and “BkMeans” refer to partitioning attack
types by their semantic categories, randomly, and kMeans. “SharedSeman-
tic” includes shared layers prior to branching.

Fig. 7: Example cases where UniFAD fails to detect face attacks. Final
detection scores along with scores from each of the four branches (∈ [0, 1])
are given below each image. Scores closer 0 indicate bona fide. Branches
responsible for the respective cluster are highlighted in bold.

into the 3 categories. Another technique is to split the 25
attack types into 4 clusters randomly, BRandom. We report
the mean and standard deviation across 3 trials of random
splitting. We also report the performance of clustering via
kMeans. We find that both BSemantic and BkMeans outper-
forms JointCNN. Thus, learning separate feature spaces via
MTL for disjoint attack types can improve overall detection
compared to a JointCNN. We als find that incorporating
early shared layers into BSemantic, namely BSharedSemantic,
can further improve detection from 86.17% −→ 92.44%
TDR @ 0.2% FDR. However, as we observed in Fig. 2,
even within semantic categories, some attack types may be
incoherent. By automatic construction of auxiliary tasks with
k-means clustering and shared representation (Proposed), we
can further enhance the detection performance to TDR =
94.73% @ 0.2% FDR.
Failure Cases. Fig. 7 shows a few failure cases. Majority of
the failure cases for digital attacks are due to imperceptible
perturbations. In contrast, failure to detect spoofs can likely
be attributed to the subtle nature of transparent masks,
blurring, and illumination changes.

VI. CONCLUSIONS
With new and sophisticated attacks being crafted against

AFR systems in both digital and physical spaces, detectors
need to be robust across all 3 categories. Poor generalization
can be predominantly attributed towards learning incoherent
attacks jointly. With a new multi-task learning framework
along with k-means augmentation, the proposed UniFAD
achieved SOTA detection performance (TDR = 94.73% @
0.2% FDR) on 25 face attacks across 3 categories. UniFAD
can further identify categories with a 97.37% accuracy.
We are exploring whether an attention module can further
improve detection.
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