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Figure 1: Leonardo DiCaprio’s real face photo (a) enrolled in the gallery and (b) his probe image'; (c) Adversarial probe synthesized by a state-of-the-art
(SOTA) adversarial face generator, AdvFaces [1]; (d) Proposed adversarial defense framework, namely FaceGuard takes (c) as input, detects adversarial
images, localizes perturbed regions, and outputs a “purified” face devoid of adversarial perturbations. A SOTA face recognition system, ArcFace, fails to
match Leonardo’s adversarial face (c) to (a), however, the purified face can successfully match to (a). Cosine similarity scores (€ [—1,1]) obtained via
ArcFace [2] are shown below the images. A score above 0.36 (threshold @ 0.1% False Accept Rate) indicates that two faces are of the same subject.

Abstract

Prevailing defense schemes against adversarial face im-
ages tend to overfit to the perturbations in the training set
and fail to generalize to unseen adversarial attacks. We pro-
pose a new self-supervised adversarial defense framework,
namely FaceGuard, that can automatically detect, localize,
and purify a wide variety of adversarial faces without uti-
lizing pre-computed adversarial training samples. During
training, FaceGuard automatically synthesizes challenging
and diverse adversarial attacks, enabling a classifier to
learn to distinguish them from real faces. Concurrently, a
purifier attempts to remove the adversarial perturbations
in the image space. Experimental results on LFW, Celeb-
A, and FFHQ datasets show that FaceGuard can achieve
99.81%, 98.73%, and 99.35% detection accuracies, respec-
tively, on six unseen adversarial attack types. In addition,
the proposed method can enhance the face recognition per-
formance of ArcFace from 34.27% TAR @ 0.1% FAR under
no defense to 77.46% TAR @ 0.1% FAR. Code, pre-trained
models and dataset will be publicly available.

1. Introduction

With the advent of deep learning and availability of large
datasets, Automated Face Recognition (AFR) systems have
achieved impressive recognition rates [3]. The accuracy, us-
ability, and touchless acquisition of state-of-the-art (SOTA)
AFR systems have led to their ubiquitous adoption in a
plethora of domains. However, this has also inadvertently
sparked a community of attackers that dedicate their time
and effort to manipulate faces either physically [4,5] or dig-
itally [6], in order to evade AFR systems [7]. AFR sys-
tems have been shown to be vulnerable to adversarial at-
tacks resulting from perturbing an input probe [, 8—10].
Even when the amount of perturbation is imperceptible to
the human eye, such adversarial attacks can degrade the
face recognition performance of SOTA AFR systems [I].
With the growing dissemination of “fake news” and “deep-
fakes” [11], research groups and social media platforms
alike are pushing towards generalizable defense against
continuously evolving adversarial attacks.

A considerable amount of research has focused on syn-
thesizing adversarial attacks [1,9, 10, 12—14]. Obfuscation
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Figure 2: (Top Row) Adversarial faces synthesized via 6 adversarial attacks
used in our study. (Bottom Row) Corresponding adversarial perturbations
(gray indicates no change from the input). Notice the diversity in the per-
turbations. ArcFace scores between adversarial image and the unaltered
gallery image (not shown here) are given below each image. A score above
0.36 indicates that two faces are of the same subject. Zoom in for details.

attempts (faces are perturbed such that they cannot be iden-
tified as the attacker) are more effective [1], computation-
ally efficient to synthesize [12, | 3], and widely adopted [15]
compared to impersonation attacks (perturbed faces can au-
tomatically match to a target subject). Similar to prior
defense efforts [16, 17], this paper focuses on defending
against obfuscation attacks (see Fig. 1). Given an input
probe image, x, an adversarial generator has two require-
ments under the obfuscation scenario: (1) synthesize an ad-
versarial face image, X,4, = X + 9, such that SOTA AFR
systems fail to match x4, and x, and (2) limit the magni-
tude of perturbation ||d]|, such that x4, appears very sim-
ilar to x to humans.

A number of approaches have been proposed to de-
fend against adversarial attacks. Their major shortcoming
is generalizability to unseen adversarial attacks. Adversar-
ial face perturbations may vary significantly (see Fig. 2).
For instance, gradient-based attacks, such as FGSM [13]
and PGD [13], perturb every pixel in the face image,
whereas, AdvFaces [|] and SemanticAdv [10] perturb only
the salient facial regions, e.g., eyes, nose, and mouth. On
the other hand, GFLM [9] performs geometric warping to
the face. Since the exact type of adversarial perturbation
may not be known a priori, a defense system trained on a
subset of adversarial attack types may have degraded per-
formance on other unseen attacks.

To the best of our knowledge, we take the first step to-
wards a complete defense against adversarial faces by in-
tegrating an adversarial face generator, a detector, and a
purifier into a unified framework, namely FaceGuard (see
Fig. 3). Robustness to unseen adversarial attacks is im-
parted via a stochastic generator that outputs diverse per-
turbations evading an AFR system, while a detector contin-
uously learns to distinguish them from real faces. Concur-
rently, a purifier removes the adversarial perturbations from
the synthesized image.

This work makes the following contributions:

* A new self-supervised framework, namely FaceGuard,

for defending against adversarial face images. Face-
Guard combines benefits of adversarial training, detec-
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Figure 3: FaceGuard employs a detector (D) to compute an adversarial
score. Scores below detection threshold (7) passes the input to AFR, and
high value invokes a purifier and sends the purified face to the AFR system.

tion, and purification into a unified defense mechanism
trained in an end-to-end manner.

* With the proposed diversity loss, a generator is reg-
ularized to produce stochastic and challenging adver-
sarial faces. We show that the diversity in output per-
turbations is sufficient for improving FaceGuard’s ro-
bustness to unseen attacks compared to utilizing pre-
computed training samples from known attacks.

» Synthesized adversarial faces aid the detector to learn
a tight decision boundary around real faces. Face-
Guard’s detector achieves SOTA detection accuracies
of 99.81%, 98.73%, and 99.35% on 6 unseen attacks
on LFW [18], Celeb-A [19], and FFHQ [20].

e As the generator trains, a purifier concurrently re-
moves perturbations from the synthesized adversarial
faces. With the proposed bonafide loss, the detector
also guides purifier’s training to ensure purified images
are devoid of adversarial perturbations. At 0.1% False
Accept Rate, FaceGuard’s purifier enhances the True
Accept Rate of ArcFace [2] from 34.27% under no de-
fense to 77.46%.

2. Related Work

Defense Strategies. In literature, a common defense strat-
egy, namely robustness is to re-train the classifier we wish to
defend with adversarial examples [12,13,21,26]. However,
adversarial training has been shown to degrade classifica-
tion accuracy on real (non-adversarial) images [46,47].

In order to prevent degradation in AFR performance, a
large number of adversarial defense mechanisms are de-
ployed as a pre-processing step, namely detection, which
involves training a binary classifier to distinguish between
real and adversarial examples [16,17,29,30,48-58]. The at-
tacks considered in these studies [59-62] were initially pro-
posed in the object recognition domain and they often fail to
detect the attacks in a feature-extraction network setting, as
in face recognition. Therefore, prevailing detectors against
adversarial faces are demonstrated to be effective only in a
highly constrained setting where the number of subjects is
limited and fixed during training and testing [16, 17,30].

Another pre-processing strategy, namely purification, in-
volves automatically removing adversarial perturbations in
the input image prior to passing them to a face matcher [4 1,
42,44,63]. However, without a dedicated adversarial de-



Study Method Dataset Attacks Self-Sup.
@ | Adv. Training [21] (2017) Train with adv. ImageNet [22] FGSM [12] X
j_,é RobGAN [23] (2019) Train with generated adv. CIFARI0 [24], ImageNet [22] PGD [13] X
é Feat. Denoising [25] (2019) Custom network arch. ImageNet [22] PGD [13] X
&|LoL [26] (2019) Train with generated adv. MNIST [27], CIFARI10 [24] FGSM [12], PGD [13], C&W [28] v
Gong et al. [29] (2017) Binary CNN MNIST [27], CIFAR10 [24] FGSM [12] X
UAP-D [30] (2018) PCA+SVM MEDS [31], MultiPIE [32], PaSC [?] UAP [?] x
- SmartBox [17] (2018) Adaptive Noise Yale Face [?] DeepFool [14], EAD [33], FGSM [12] X
.2 | ODIN [34] (2018) Out-of-distribution Detection CIFARI0 [24], ImageNet [22] OOD samples X
% Goswami et al. [35] (2019) SVM on AFR Filters MEDS [31], PaSC [?], MBGC [36] Black-box, EAD [33] X
A | Steganalysis [37] (2019) Steganlysis ImageNet [22] FGSM [12], DeepFool [ 14], C&W [28] X
Massoli er al. [16] (2020) MLP/LSTM on AFR Filters VGGFace2 [38] BIM [39], FGSM [12], C&W [28] X
Agarwal et al. [40] (2020) Image Transformation ImageNet [22], MBGC [36] FGSM [12], PGD [13], DeepFool [14] X
MagNet [41] (2017) AE Purifier MNIST [27], CIFARI10 [24] FGSM [12], DeepFool [14], C&W [28] X
§ | DefenseGAN [42] (2018) GAN MNIST [27], CIFAR10 [24] FGSM [12], C&W [28] x
§ Feat. Distillation [43] (2019) JPEG-compression MNIST [27], CIFAR10 [24] FGSM [12], DeepFool [14], C&W [28] X
‘S | NRP [44] (2020) AE Purifier ImageNet [22] FGSM [12] v
& A-VAE [45] (2020) Variational AE | FGSM [12], PGD [13], C&W [28] X
FaceGuard (this study) Adyv. Generator + Detector + Purifier ], Celeb-A [19], FFHQ [20] FGSM [12], PGD [13], DeepFool [14], v

AdvFaces [ 1], GFLM [Y], Semantic [10]

Table 1: Related work in adversarial defenses used as baselines in our study. Unlike majority of prior work, FaceGuard is self-supervised where no

pre-computed adversarial examples are required for training.

tector, these defenses may end up “purifying” a real face
image, resulting in high false reject rates.

In Tab. 1, we summarize a few studies on adversarial
defenses that are used as baselines in our work.

Adversarial Attacks:. Numerous adversarial attacks have
been proposed in literature [12, 13, 28, 64, 65]. For exam-
ple, Fast Gradient Sign Method (FGSM) generates an ad-
versarial example by back-propagating through the target
model [12]. Other approaches optimize adversarial pertur-
bation by minimizing an objective function while satisfy-
ing certain constraints [13, 14,28]. We modify the objec-
tive functions of these attacks in order to craft adversarial
faces that evade AFR systems. We evaluate FaceGuard on
six unseen adversarial attacks that have high success rates
in evading ArcFace [2]: FGSM [12], PGD [13], Deep-
Fool [14], AdvFaces [ 1], GFLM [9], and SemanticAdv [10]
(see Tab. 2).

3. Limitations of State-of-the-Art Defenses

Robustness. Adversarial training is regarded as one of the
most effective defense method [12, 13,23] on small datasets
including MNIST and CIFAR10. Whether this technique
can scale to large datasets and a variety of different attack
types (perturbation sets) has not yet been shown. Adversar-
ial training is formulated as [12, 13]:

min (mﬁy)INEpdm max £ (fo (z+4),y)]|, (1)
where (z,y) ~ Pgatq is the (image, label) joint distribu-
tion of data, fy (x) is the network parameterized by 6, and
¢(fo(x),y) is the loss function (usually cross-entropy).
Since the ground truth data distribution, Py, is not known
in practice, it is later replaced by the empirical distribution.
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Figure 4: (a) Adversarial training degrades AFR performance of FaceNet
matcher [66] on real faces in LFW dataset compared to standard train-
ing. (b) A binary classifier trained to distinguish between real faces and
FGSM [12] attacks fails to detect unseen attack type, namely PGD [13].

Here, the network, fy is made robust by training with an
adversarial noise (§) that maximally increases the classifi-
cation loss. In other words, adversarial training involves
training with the strongest adversarial attack.

The generalization of adversarial training has been in
question [23, 26, 46,47, 67]. It was shown that adversar-
ial training can significantly reduce classification accuracy
on real examples [46,47]. In the context of face recog-
nition, we illustrate this by training two face matchers on
CASIA-WebFace: (i) FaceNet [66] trained via the stan-
dard training process, and (ii) FaceNet [66] by adversar-
ial training (FGSM?). We then compute face recognition
performance across training iterations on a separate testing
dataset, LFW [18]. Fig. 4a shows that adversarial training
drops the accuracy from 99.13% — 98.27%. We gain the
following insight: adversarial training may degrade AFR
performance on real faces.

Detection. Detection-based approaches employ a pre-
processing step to “detect” whether an input face is real

2With max perturbation hyperparameter as € = 8/256.
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Figure 5: Overview of training the proposed FaceGuard in a self-supervised manner. An adversarial generator, G, continuously learns to synthesize
challenging and diverse perturbations that evade a face matcher. At the same time, a detector, D, learns to distinguish between the synthesized adversarial
faces and real face images. Perturbations residing in the synthesized adversarial faces are removed via a purifier, Pur.

or adversarial [16, 29, 30, 50]. A common approach is
to utilize a binary classifier, D, that maps a face image,
x € REXWXC o {0, 1}, where 0 indicates a real and 1
an adversarial face. We train a binary classifier to distin-
guish between real and FGSM attack samples in CASIA-
WebFace [68]. In Fig. 4b, we evaluate its detection accuracy
on FGSM and PGD samples in LFW [18]. We find that pre-
vailing detection-based defense schemes may overfit to the
specific adversarial attacks utilized for training.

4. FaceGuard

Our defense aims to achieve robustness without sacrific-
ing AFR performance on real face images. We posit that
an adversarial defense trained alongside an adversarial gen-
erator in a self-supervised manner may improve robustness
to unseen attacks. The main intuitions behind our defense
mechanism are as follows:

» Since adversarial training may degrade AFR perfor-
mance, we opt to obtain a robust adversarial detector
and purifier to detect and purify adversarial attacks.

* Given that prevailing detection-based methods tend to
overfit to known adversarial perturbations (see Supp.), a
detector and purifier trained on diverse synthesized adver-
sarial perturbations may be more robust to unseen attacks.

 Sufficient diversity in synthesized perturbations can guide
the detector to learn a tighter boundary around real faces.
In this case, the detector itself can serve as a powerful
supervision for the purifier.

 Lastly, pixels involved in the purification process may
serve to indicate adversarial regions in the input face.

4.1. Adversarial Generator

The generalizability of an adversarial detector and puri-
fier relies on the quality of the synthesized adversarial face
images output by FaceGuard’s adversarial generator. We
propose an adversarial generator that continuously learns to
synthesize challenging and diverse adversarial face images.

The generator, denoted as G, takes an input real face
image, x € RF*WXC and outputs an adversarial per-
turbation G(x,z), where z ~ N(0,1I) is a random latent

vector. Inspired by prevailing adversarial attack genera-
tors [1, 12—14,28], we treat the output perturbation G(x, z)
as an additive perturbation mask. The final adversarial face
image, Xqdy, is given by Xq4, = X + G(X, 2).

In an effort to impart generalizability to the detector and
purifier, we emphasize the following requirements of G:

* Adversarial: Perturbatation, G(x,z), needs to be ad-
versarial such that an AFR system cannot identify the
adversarial face image x4, as the same person as the
input probe x.

* Visually Realistic: Perturbation G(x,z) should also
be minimal such that x4, appears as a legitimate face
image of the subject in the input probe x.

¢ Stochastic: For an input x, we require diverse adver-
sarial perturbations, G(x, z), for different latents z.

For satisfying all of the above requirements, we propose

multiple loss functions to train the generator.

Obfuscation Loss To ensure G(x, z) is indeed adversarial,
we incorporate a white-box AFR system, F, to supervise
the generator. Given an input face, x, the generator aims to
output an adversarial face, X,4, = X + G(x,2) such that
the face representations, F(x) and F(X44, ), do not match.
In other words, the goal is to minimize the cosine similarity
between the two face representations’:

F(x) - F(Xqdv)
 LIFGIHIF Geaan)l ]

Loy =E (2)
Perturbation Loss With the identity loss alone, the gener-
ator may output perturbations with large magnitudes which
will (a) be trivial for the detector to reject and (b) violate the
visual realism requirement of x,4,. Therefore, we restrict
the perturbations to be within [—e¢, €] via a hinge loss:

Lyt = Ex [max (e, [|G(x, 2)||,)] - 3)

Diversity Loss The above two losses jointly ensure that at
each step, our generator learns to output challenging adver-
sarial attacks. However, these attacks are deterministic; for
an input image, we will obtain the same adversarial image.

3For brevity, we denote Ex = Excp et



This may again lead to an inferior detector that overfits to a
few deterministic perturbations seen during training. Moti-
vated by studies of preventing mode collapse in GANs [69],
we propose maximizing a diversity loss to promote stochas-
tic perturbations per training iteration, ¢:

N . ,
1 K ||G(x,21)® — G(x,22)?

Laiv=—5—2_ | Hl, )
ite t7 |lz1 — 22|,

where Ny is the number of training iterations, G(x,z)®
is the perturbation output at iteration ¢, and (z1, z3) are two
i.i.d. samples from z ~ A/ (0, ). The diversity loss ensures
that for two random latent vectors, z; and z5, we will obtain
two different perturbations G(x, z;)(*) and G(x, z2)®.
GAN Loss Akin to prior work on GANSs [70,71], we intro-
duce a discriminator to encourage perceptual realism of the
adversarial images. The discriminator, Dsc, aims to distin-
guish between probes, x, and synthesized faces x,4, via a
GAN loss:

Laan = Ex [log Dse(x)] + Ex[log(1 — Dse(Xadw))]-
(@)

4.2. Adversarial Detector

Similar to prevailing adversarial detectors, the proposed
detector also learns a decision boundary between real and
adversarial images [16,29,30,50]. A key difference, how-
ever, is that instead of utilizing pre-computed adversarial
images from known attacks (e.g. FGSM and PGD) for train-
ing, the proposed detector learns to distinguish between real
images and the synthesized set of diverse adversarial at-
tacks output by the proposed adversarial generator in a self-
supervised manner. This leads to the following advantage:
our proposed framework does not require a large collection
of pre-computed adversarial face images for training.

We utilize a binary CNN for distinguishing between real
input probes, x, and synthesized adversarial samples, X4, -
The detector is trained with the Binary Cross-Entropy loss:

Lpcr = Ex [logD(x)] + Ex [log (1 — D(Xadv))] - (6)

4.3. Adversarial Purifier

The objective of the adversarial purifier is to recover the
real face image x given an adversarial face x,4,. We aim to
automatically remove the adversarial perturbations by train-
ing a neural network Pur, referred as an adversarial puri-
fier.

The adversarial purification process can be viewed as an
inverted procedure of adversarial image synthesis. Contrary
to the obfuscation loss in the adversarial generator, we re-
quire that the purified image, X, successfully matches
to the subject in the input probe x. Note that this can be

Attacks TAR (%) @ 0.1% FAR(].) SSIM(1)

FGSM [12] 26.23 0.83 +£0.24
PGD [13] 04.91 0.89 +0.12
DeepFool [14] 36.18 0.91 £ 0.09
AdvFaces [1] 00.17 0.89 £+ 0.02
GFLM [9] 68.03 0.55 +0.14
SemanticAdv [10] 70.05 0.71 £0.21
No Attack 99.82 1.00 £ 0.00

Table 2: Face recognition performance of ArcFace [2] under adversarial
attack and average structural similarities (SSIM) between probe and adver-
sarial images for obfuscation attacks on 485K genuine pairs in LFW [18].

achieved via a feature recovery loss, which is the opposite
to the obfuscation loss, i.e., Ly = —Lopy.

Note that an adversarial face image, X,q, = X + 6, is
metrically close to the real image, x, in the input space. If
we can estimate §, then we can retrieve the real face im-
age. Here, the perturbations can be predicted by a neural
network, Pur. In other words, retrieving the purified im-
age, Xpy involves: (1) subtracting the perturbations from
the adversarial image, Xpur = Xqdov — PUr(Xqedy) and (2)
ensuring that the purification mask, Pur(Xaqy), is small so
that we do not alter the content of the face image by a large
magnitude. Therefore, we propose a hybrid perceptual loss
that (1) ensures X, is as close as possible to the real im-
age, x via a /1 reconstruction loss and (2) a loss that mini-
mizes the amount of alteration, Pur(Xady):

Lpere = Ex pru'r - X||1 =+ ||PUT(XudU)||2 . @)

Finally, we also incorporate our detector to guide the
training of our purifier. Note that, due to the diversity in
synthesized adversarial faces, the proposed detector learns a
tight decision boundary around real faces. This can serve as
a strong self-supervisory signal to the purifier for ensuring
that the purified images belong to the real face distribution.
Therefore, we also incorporate the detector as a discrimina-
tor for the purifier via the proposed bonafide loss:

Lys = Ex [logD(Xpur)] - (8)

4.4. Training Framework

We train the entire FaceGuard framework in Fig. 5 in an
end-to-end manner with the following objectives:

mgin Lg = Lgan + Xovy - Lovf + Mpt - Lpt — Adiv - Laivs
mDiH Lp = LpcE,

glqg} Lpur = )\fr ’ Ef'r + /\pe'r'c : ['perc + )\bf : Ebf-

At each training iteration, the generator attempts to fool the
discriminator by synthesizing visually realistic adversarial
faces while the discriminator learns to distinguish between
real and synthesized images. On the other hand, in the
same iteration, an external critic network, namely detector



Detection Accuracy (%) Year FGSM[12] PGDIJ[13] DpFL[14] AdvF.[1] GFLM[Y9] Smnt.[10] Mean =+ Std.
= Gong et al. [29] 2017 98.94 97.91 95.87 92.69 99.92 99.92 97.54 + 02.82
2 | ODIN [34] 2018 83.12 84.39 71.74 50.01 87.25 85.68 77.03 +14.34
5 Steganalysis [37] 2019 88.76 89.34 75.97 54.30 58.99 78.62 74.33 £ 14.77
UAP-D [30] 2018 61.32 74.33 56.78 51.11 65.33 76.78 64.28 + 09.97
SmartBox [17] 2018 58.79 62.53 51.32 54.87 50.97 62.14 56.77 + 05.16
o | Goswami et al. [35] 2019 84.56 91.32 89.75 76.51 52.97 81.12 79.37 £ 14.04
E Massoli et al. [16] (MLP) 2020 63.58 76.28 81.78 88.38 51.97 52.98 69.16 + 15.29
Massoli et al. [16] (LSTM) 2020 71.53 76.43 88.32 75.43 53.76 55.22 70.11 £ 13.35
Agarwal et al. [40] 2020 94.44 95.38 91.19 74.32 51.68 87.03 87.03 + 16.86
Proposed FaceGuard 2021 99.85 99.85 99.85 99.84 99.61 99.85 99.81 £+ 00.10

Table 3: Detection accuracy of SOTA adversarial face detectors in classifying six adversarial attacks synthesized for the LFW dataset [18]. Detection
threshold is set as 0.5 for all methods. All baseline methods require training on pre-computed adversarial attacks on CASIA-WebFace [68]. On the other
hand, the proposed FaceGuard is self-guided and generates adversarial attacks on the fly. Hence, it can be regarded as a black-box defense system.

D, learns a decision boundary between real and synthesized
adversarial samples. Concurrently, the purifier Pur learns
to invert the adversarial synthesis process. Note that there is
a key difference between the discriminator and the detector:
the generator is designed to specifically fool the discrimi-
nator but not necessarily the detector. We will show in our
experiments that this crucial step prevents the detector from
predicting D(x) = 0.5 for all x (see Tab. 5).

5. Experimental Results
5.1. Experimental Settings

Datasets. We train FaceGuard on real face images in
CASIA-WebFace [68] dataset and then evaluate on real and
adversarial faces synthesized for LFW [18], Celeb-A [19]
and FFHQ [20] datasets. CASIA-WebFace [68] comprises
of 494,414 face images from 10, 575" different subjects.
LFW [18] contains 13, 233 face images of 5, 749 subjects.
Since we evaluate defenses under obfuscation attacks, we
consider subjects with at least two face images®. After
this filtering, 9, 164 face images of 1, 680 subjects in LFW
are available for evaluation. For brevity, experiments on
CelebA and FFHQ are provided in Supp.

Implementation. The adversarial generator and purifier
employ a convolutional encoder-decoder. The latent vari-
able z, a 128-dimensional feature vector, is fed as input
to the generator through spatial padding and concatenation.
The adversarial detector, a 4-layer binary CNN, is trained
jointly with the generator and purifier. Empirically, we set
Aobf = Apr = 10.0, A\pt = Apere = 1.0, Agiy = 1.0,
Aps = 1.0 and € = 3.0. Training and network architecture
details are provided in Supp.

Face Recognition Systems. In this study, we use two AFR
systems: FaceNet [66] and ArcFace [2]. Recall that the
proposed defense utilizes a face matcher, F, for guiding

4We removed 84 subjects in CASIA-WebFace that overlap with LFW.
SObfuscation attempts only affect genuine pairs (two face images per-
taining to the same subject).

the training process of the generator. However, the de-
ployed AFR system may not be known to the defense sys-
tem a priori. Therefore, unlike prevailing defense mecha-
nisms [16, 17,30], we evaluate the effectiveness of the pro-
posed defense on an AFR system different from F. We
highlight the effectiveness of our proposed defense: Face-
Guard is trained on FaceNet, while the adversarial attack
test set is designed to evade ArcFace. Obfuscation attempts
perturb real probes into adversarial ones. Ideally, deployed
AFR systems (say, ArcFace), should be able to match a
genuine pair comprised of an adversarial probe and a real
enrolled face of the same subject. Therefore, regardless
of real or adversarial probe, we assume that genuine pairs
should always match as ground truth. Tab. 2 provides AFR
performance of ArcFace under 6 SOTA adversarial attacks
for 484, 514 genuine pairs in LFW. It appears that some at-
tacks, e.g., AdvFaces [ 1], are effective in both low TAR and
high SSIM, while some are less capable in both metrics.

5.2. Comparison with State-of-the-Art Defenses

In this section, we compare the proposed FaceGuard to
prevailing defenses. We evaluate all methods via publicly
available repositories provided by the authors (see Supp.).
All baselines are trained on CASIA-WebFace [68].

SOTA Detectors. Our baselines include 9 SOTA detectors
proposed both for general objects [29, 34, 37] and adversar-
ial faces [16, 17,30, 35, 40]. The detectors are trained on
real and adversarial faces images synthesized via six adver-
sarial generators for CASIA-WebFace [68]. Unlike all the
baselines, FaceGuard’s detector does not utilize any pre-
computed adversarial attack for training. We compute the
classification accuracy for all methods on a dataset compris-
ing of 9, 164 real images and 9, 164 adversarial face images
per attack type in LFW.

In Tab. 3, we find that compared to the baselines, Face-
Guard achieves the highest detection accuracy. Even when
the 6 adversarial attack types are encountered in training, a
binary CNN [29], still falls short compared to FaceGuard.
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Figure 6: Examples where the proposed FaceGuard fails to correctly detect
(a) real faces and (b) adversarial faces. Detection scores € [0, 1] are given
below each image, where 0 indicates real and 1 indicates adversarial face.

This is likely because FaceGuard is trained on a diverse set
of adversarial faces from the proposed generator. While the
binary CNN has a small drop compared to FaceGuard in the
seen attacks (99.81% — 97.54%), it drops significantly on
unseen adversarial attacks in testing (see Supp.).

Compared to hand-crafted features, such as PCA+SVM
in UAP-D [30] and entropy detection in Smart-
Box [17], FaceGuard achieves superior detection results.
Some baselines utilize AFR features for identifying
adversarial inputs [16, 35]. We find that intermediate
AFR features primarily represent the identity of the input
face and do not appear to contain highly discriminative
information for detecting adversarial faces.

Despite the robustness, FaceGuard misclassifies 28 out
of 9,164 real images in LFW [18] and falsely predicts 46
out of 54,984 adversarial faces as real. From the latter,
44 are warped faces via GFLM [9] and the remaining two
are synthesized via AdvFaces [1]. We find that FaceGuard
tends to misclassify real faces under extreme poses and ad-
versarial faces that are occluded (e.g., hats) (see Fig. 6).

Comparison with Adversarial Training & Purifiers. We
also compare with prevailing defenses designing robust face
matchers [21, 23, 26] and purifiers [41,42,44]. We con-
duct a verification experiment by considering all possible
genuine pairs (two faces belonging to the same subject) in
LFW [18]. For one probe in a genuine pair, we craft six
different adversarial probes (one per attack type). In total,
there are 484,514 real pairs and ~ 30 adversarial pairs.
For a fixed match threshold®, we compute the True Accept
Rate (TAR) of successfully matching two images in a real
or adversarial pair in Tab. 4. In other words, TAR is defined
here as the ratio of genuine pairs above the match threshold.

ArcFace without any adversarial defense system
achieves 34.27% TAR at 0.1% FAR under attack. Adversar-

©We compute the threshold at 0.1% FAR on all possible image pairs in
LFW, e.g., threshold @ 0.1% FAR for ArcFace is set at 0.36.

Defenses Year Strategy Real Attacks
485K pairs 3 M pairs
No-Defense — - 99.82 34.27
Adyv. Training [21] 2017  Robustness 96.42 11.23
Rob-GAN [23] 2019  Robustness 91.35 13.89
Feat. Denoising [25] 2019  Robustness 87.61 17.97
L2L [26] 2019  Robustness 96.89 16.76
MagNet [41] 2017  Purification 94.47 38.32
DefenseGAN [42] 2018  Purification 96.78 39.21
Feat. Distillation [43] 2019  Purification 94.64 41.77
NRP [44] 2020  Purification 97.54 61.44
A-VAE [45] 2020  Purification 93.71 51.99

Proposed FaceGuard ~ 2021  Purification 99.81 77.46

Table 4: AFR performance (TAR (%) @ 0.1% FAR) of ArcFace under no
defense and when ArcFace is trained via SOTA robustness techniques [21,
23,26] or SOTA purifiers [41,42]. FaceGuard correctly passes majority of
real faces to ArcFace and also purifies adversarial attacks.

| Model | AdvFaces[1] | Mean + Std.
o | Without G 91.72 97.12 + 04.54
g Without L 44, 95.42 98.23 +01.33
O | With G and L 4;y 99.84 99.81 +£00.10
@ | D as Discriminator 50.00 75.25 +£21.19
% | D viaPre-Computed G 52.01 69.37 £19.91
A | D as Online Detector 99.84 99.81 +£00.10

Table 5: Ablating training schemes of the generator G and detector D.
All models are trained on CASIA-WebFace [68]. (Col. 3) We compute
the detection accuracy in classifying real faces in LFW [18] and the most
challenging adversarial attack in Tab. 2, AdvFaces []. (Col. 4) The avg.
and std. dev. of detection accuracy across all 6 adversarial attacks.

ial training [21,23,26] inhibits the feature space of ArcFace,
resulting in worse performance on both real and adversarial
pairs. On the other hand, purification methods [41,42,44]
can better retain face features in real pairs but their perfor-
mance under attack is still undesirable.

Instead, the proposed FaceGuard defense system first
detects whether an input face image is real or adversarial. If
input faces are adversarial, they are further purified. From
Tab. 4, we find that our defense system significantly out-
performs SOTA baselines in protecting ArcFace [2] against
attacks. Specifically, FaceGuard’s purifier enhances Arc-
Face’s average TAR at 0.1% FAR under all six attacks (see
Tab. 2) from 34.27% — 77.46%. In addition, FaceGuard
also maintains similar face recognition performance on real
faces (TAR on real pairs drop from 99.82% — 99.81%).
Therefore, our proposed defense system ensures that be-
nign users will not be incorrectly rejected while malicious
attempts to evade the AFR system will be curbed.

5.3. Analysis of Our Approach

Quality of the Adversarial Generator. In Tab. 5, we see
that without the proposed adversarial generator (“Without
G”), i.e., a detector trained on the six known attack types,
suffers from high standard deviation. Instead, training a
detector with a deterministic G (“Without L4;,”), leads to
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Figure 7: Adversarial faces synthesized by FaceGuard during training.
Note the diversity in perturbations (a) within and (b) across iterations.
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Figure 8: FaceGuard successtully purifies the adversarial image (red
regions indicate adversarial perturbations localized by our purification
mask). ArcFace [2] scores € [—1, 1] and SSIM € [0, 1] between an ad-
versarial/purified probe and input probe are given below each image.

ArcFace/SSIM:

0.62/0.91

better generalization across attack types, since the detector
still encounters variations in synthesized images as the gen-
erator learns to better generate adversarial faces. However,
such a detector is still prone to overfitting to a few determin-
istic perturbations output by G. Finally, FaceGuard with the
diversity loss introduces diverse perturbations within and
across training iterations (see Fig. 7).

Quality of the Adversarial Detector. The discriminator’s
task is similar to the detector; determine whether an input
image is real or fake/adversarial. The key difference is that
the generator is enforced to fool the discriminator, but not
the detector. If we replace the discriminator with an adver-
sarial detector, the generator continuously attempts to fool
the detector by synthesizing images that are as close as pos-
sible to the real image distribution. By design, such a de-
tector should converge to Disc(x) = 0.5 for all x (real
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Figure 9: (a) FaceGuard’s purification is correlated with its adversarial
synthesis process. (b) Trade-off between detection and purification with
respect to perturbation magnitudes. With minimal perturbation, detection
is challenging while purifier maintains AFR performance. Excessive per-
turbations lead to easier detection with greater challenge in purification.

or adversarial). As we expect, in Tab. 5, we cannot rely
on predictions made by such a detector (“D as Discrimina-
tor”). We try another variant: we first train the generator G
and then train a detector to distinguish between real and pre-
computed attacks via G (“D via Pre-Computed G”). As we
expect, the proposed methodology of training the detector
in an online fashion by utilizing the synthesized adversarial
samples output by G at any given iteration leads to a signif-
icantly robust detector (“‘D as Online Detector”). This can
likely be attributed to the fact that a detector trained on-line
encounters a much larger variation as the generator trains
alongside. “D via Pre-Computed G” is exposed only to
within-iteration variations (from random latent sampling),
however, ‘D as Online Detector” encounters variations both
within and across training iterations (see Fig. 7).

Quality of the Adversarial Purifier. Recall that we en-
forced the purified image to be close to the real face via
a reconstruction loss. Thus, the purification and perturba-
tion masks should be similar. In Fig. 9a, we shows that
the two masks are indeed correlated by plotting the Co-
sine similarity distribution (€ [—1, 1]) between G(x, z) and
Pur(x + G(x,2)) for all 9, 164 images in LFW.

Therefore, pixels in x4, involved in the purification pro-
cess should correspond to those that cause the image to be
adversarial in the first place. Fig. 8 highlights that per-
turbed regions can be automatically localized via construct-
ing a heatmap out of Pur(X,q4,). In Fig. 14, we investigate
the change in AFR performance (TAR (%) @ 0.1% FAR)
of ArcFace under attack (synthesized adversarial faces via
G(x,z)) when the amount of perturbation is varied. We find
that (a) minimal perturbation is harder to detect but the puri-
fier incurs minimal damage to the AFR, while, (b) excessive
perturbations are easier to detect but increases the challenge
in purification.

6. Conclusions
With the introduction of sophisticated adversarial at-

tacks on AFR systems, such as geometric warping and
GAN-synthesized adversarial attacks, adversarial defense



needs to be robust and generalizable. Without utilizing any
pre-computed training samples from known adversarial at-
tacks, the proposed FaceGuard achieved state-of-the-art de-
tection performance against 6 different adversarial attacks.
FaceGuard’s purifier also enhanced ArcFace’s recognition
performance under adversarial attacks. We are exploring
whether an attention mask predicted by the detector can fur-
ther improve adversarial purification.

A. Implementation Details

All the models in the paper are implemented us-
ing Tensorflow r1.12. A single NVIDIA GeForce GTX
2080Ti GPU is used for training FaceGuard on CASIA-
Webface [68] and evaluated on LFW [18], CelebA [19], and
FFHQ [20]. Code, pre-trained models and dataset will be
publicly available.

A.l. Preprocessing

All face images are first passed through MTCNN face
detector [72] to detect 5 facial landmarks (two eyes, nose
and two mouth corners). Then, similarity transformation is
used to normalize the face images based on the five land-
marks. After transformation, the images are resized to
160 x 160. Before passing into FaceGuard, each pixel in the
RGB image is normalized € [—1, 1] by subtracting 128 and
dividing by 128. All the testing images in the main paper
and this supplementary material are from the identities
in the test dataset.

A.2. Network Architectures

The generator, G takes as input an real RGB face im-
age, x € R60x160x3 and a 128-dimensional random latent
vector, z ~ N(0,I) and outputs a synthesized adversarial
face Xgq, € R160X160X3  Teot «7s1-k bea 7 x 7 con-
volutional layer with k filters and stride 1. dk denotes a
4 x 4 convolutional layer with k filters and stride 2. Rk de-
notes a residual block that contains two 3 x 3 convolutional
layers. uk denotes a 2x upsampling layer followed by a
5 X 5 convolutional layer with £ filters and stride 1. We
apply Instance Normalization and Batch Normalization to
the generator and discriminator, respectively. We use Leaky
ReLU with slope 0.2 in the discriminator and ReL.U activa-
tion in the generator. The architectures of the two modules
are as follows:

* Generator:

c7s1-64,d128,d256,R256,R256,R256,
ul28, u64, c7sl1-3,

* Discriminator:
d32,d64,d128,d256,d512.
A 1 x 1 convolutional layer with 3 filters and stride 1 is
attached to the last convolutional layer of the discriminator
for the patch-based GAN loss Lgan-

The purifier, Pur, consists of the same network archi-

tecture as the generator:

* Purifier:
c7sl-64,d128,d256,R256,R256,R256,
ul28, u64, c7s1-3.

We apply the tanh activation function on the last convo-
lution layer of the generator and the purifier to ensure that
the generated images are € [—1,1]. In the paper, we de-
noted the output of the tanh layer of the generator as an
“perturbation mask”, G(x,z) € [—1,1] and x € [-1,1].
Similarly, the output of the tanh layer of the purifier is
referred to an “purification mask”, Pur(Xedy) € [—1,1]
and X,q, € [—1,1]. The final adversarial image is com-

puted as X,q, = 2 X clamp [Q(x,z) + ("T'H)](I) — 1. This
ensures G(x,z) can either add or subtract pixels from z
when G(x,z) # 0. When G(x,2z) — 0, then X,4, — X.
Similarly, the final purified image is computed as x,,, =

2 x clamp [(X‘“ZTH) — ”Pur(xadv)}é - 1.
The external critic network, detector D, comprises of a
4-layer binary CNN:
¢ Detector:
d32,d64,d128,d256, fc64, fcl,
where fcN refers to a fully-connected layer with N neuron

outputs.

A.3. Training Details

The generator, detector, and purifier are trained in an
end-to-end manner via ADAM optimizer with hyperparam-
eters 81 = 0.5, B2 = 0.9, learning rate of 1le — 4, and batch
size 16. Algorithm 1 outlines the training algorithm.

Network Convergence. In Fig. 10, we plot the training
loss across iterations when an adversarial detector is trained
via pre-computed adversarial faces. In this case, the training
loss converges to a low value and remains consistent across
the remaining epochs. Such a detector may overfit to the
fixed set of adversarial perturbations encountered in training
(see Supp.). Instead of utilizing the pre-computed adver-
sarial attacks, utilizing an adversarial generator in training
(without L4;,), introduces challenging training samples.

FaceGuard with the diversity loss introduces diverse per-
turbations within a training iteration (see Fig. 7; main pa-
per). In Fig. 10, we also observe that the training loss signif-
icantly fluctuates (epochs 8 —40) until convergence (epochs
40 — 50). This indicates that throughout the training (within
and across training iterations), the proposed generator syn-
thesizes strong and diverse range of adversarial faces that
continuously regularizes the training of the adversarial de-
tector.

A.4. Baselines

We evaluate all defense methods via publicly available
repositories provided by the authors. Only modification



Detection Accuracy (%) Year LFW [12] CelebA [19] FFHQ [20]
= Gong et al. [29] 2017 97.54 + 02.82 94.38 + 04.48 96.89 4+ 02.07
2 | ODIN [34] 2018 77.03 +14.34 68.95 + 19.64 74.63 + 08.16
3 | Steganalysis [37] 2019 74.33 +14.77 72.53 +£11.30 71.09 4+ 09.86
UAP-D [30] 2018 64.28 + 09.97 63.19 + 16.49 68.65 + 08.73
SmartBox [17] 2018 56.77 + 05.16 54.85 4+ 09.33 57.19 + 09.55
o | Goswami et al. [35] 2019 79.37 +14.04 74.70 4+ 13.88 80.03 4+ 09.24
u% Massoli et al. [16] (MLP) 2020 69.16 + 15.29 61.78 +£11.34 66.26 + 10.06
Massoli et al. [16] (LSTM) 2020 70.11 +13.35 63.67 £+ 16.21 69.58 + 07.91
Agarwal et al. [40] 2020 87.03 + 16.86 85.81 + 15.64 86.70 +11.04
Proposed FaceGuard 2021 99.81 £00.10 98.73+00.92 99.35+00.09

Table 6: Average and standard deviation of detection accuracies of SOTA adversarial face detectors in classifying six adversarial attacks synthesized for the
LFW [18], CelebA [19], and FFHQ [20] datasets. Detection threshold is set as 0.5 for all methods. All baseline methods require training on pre-computed
adversarial attacks on CASIA-WebFace [68]. On the other hand, the proposed FaceGuard is self-guided and generates adversarial attacks on the fly. Hence,
it can be regarded as a black-box defense system.

Known Unseen

FGSM[12] PGD[13] DeepFool[14] | AdvFaces[I] GFLMI[9] SemanticAdv [10]
Gong et al. [29] 94.51 92.21 94.12 68.63 50.00 50.21
UAP-D [30] 63.65 69.33 56.38 60.81 50.12 50.28
SmartBox [17] 58.79 62.53 51.32 54.87 50.97 62.14
Massoli et al. [16] (MLP) 78.35 82.52 91.21 55.57 50.00 50.00
Massoli et al. [16] (LSTM) 74.61 86.43 94.73 62.43 50.00 50.00

(@
Known Unseen

AdvFaces[1] GFLM[9] SemanticAdv[10] | FGSM[12] PGD][13] DeepFool [14]
Gong et al. [29] 81.39 96.72 98.97 84.46 57.00 72.32
UAP-D [30] 68.78 54.31 77.46 51.64 50.32 52.01
SmartBox [17] 54.87 50.97 62.14 58.79 62.53 51.32
Massoli et al. [16] (MLP) 77.64 86.54 94.78 55.20 51.32 52.90
Massoli et al. [16] (LSTM) 81.42 92.62 96.76 52.74 65.43 54.84

(b)
Known

FGSM[12] PGD[13] DeepFool [14] AdvFaces[l] GFLM][9] SemanticAdv [10]
Gong et al. [29] 98.94 97.91 95.87 92.69 99.92 99.92
UAP-D [30] 61.32 74.33 56.78 51.11 65.33 76.78
SmartBox [17] 58.79 62.53 51.32 54.87 50.97 62.14
Massoli et al. [16] (MLP) 63.58 76.28 81.78 88.38 51.97 52.98
Massoli et al. [16] (LSTM) 71.53 76.43 88.32 75.43 53.76 55.22

Unseen

Proposed FaceGuard 99.85 99.85 99.85 99.84 99.61 99.85

(©)

Table 7: Detection accuracy of SOTA adversarial face detectors in classifying six adversarial attacks synthesized for the LFW dataset [
known and unseen attack scenarios. Detection threshold is set as 0.5 for all methods.

] under various
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Algorithm 1 Training FaceGuard. All experiments in this
work use oo = 0.0001, B; = 0.5, B2 = 0.9, Aopr = Apr =
10.0, Apt = Apere = Aaiw = 1.0, € = 3.0, m = 16. For
brevity, lg refers to log operation.

1: Input

2: X Training Dataset

3: F  Cosine similarity by AFR

4: G Generator with weights Gy

5: Dc Discriminator with weights Dcg
6: D  Detector with weights Dy

7: Pur Purifier with weights Purg

8: m  Batch size

9: a  Learning rate

10: for number of training iterations do
11 Sample a batch of probes {2V}, ~ X

12: Sample a batch of random latents {z(*) mLo~
N(0, 1)

13: 55) = G((a9, )

14: xi’;y =20 ¢ 5(1)

1. 68 = G((a® Z(z))

16: wf(”ZT = xt(z’gv - 5;32')11,7"

17: .

L= g [ max (e 15011

19: ‘Cgbf [Zz— F (CU( adv)]

. ¢ _ 1|y [ll96em) =G0z
200 Lgy =~ [Zi—l { (21 —z2[];
2 Ly =& Xl (1- Dete iin)}
22: Lp = % ZTZ {lgp(x(z)) + lg (1 - adv )j|
23: Lpe= LT, {lg (De(z™)) +1g (1 - Dc(x( ))}
24: E;);;lz = % Zi:l |:H'rpur JU||1 + ||PUT( adv)” :|
25: LPUT = —% [Zzil f (CC ),xpuT')]
26: Effur = % > e lg (1 = D(xpur))]
27: Lg = ‘CGAN + )\obfl:obf + Aptﬁpt + Adwl—:dw
28: E'pur = )\frﬁfr + >\pe7 cﬁperc + /\bfﬁbf
29: Go = Adam(VgLY, Gy, o, B, Ba)
30: Dcf) = adam(V pLP¢, Deg, v, 81, B2)
31: Dy = Adam(VpLP, Dy, , B1, B2)
32: PUT@ = Adam(V’Pur‘C’Pura PUTQa a, 617 /82)
33: end for

Attacks are also synthesized via publicly available author
codes:
¢ FGSM/PGD/DeepFool: https://github.com/
tensorflow/cleverhans
¢ AdvFaces: https://github.com/
ronny3050/AdvFaces
e GFLM: https://github.com/alldbi/FLM
¢ SemanticAdv: https://github.com/
Al-secure/SemanticAdv
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Figure 10: Training loss across iterations when an adversarial detection
network is trained via pre-computed adversarial faces (blue), the proposed
adv. generator but without the diversity (orange), and with the proposed
diversity loss (green). The diversity loss prevents the network from over-
fitting to adversarial perturbations encountered during training.

B. Additional Datasets

In Tab. 6, we report average and standard deviation of
detection rates of the proposed FaceGuard and other base-
lines on the 6 adversarial attacks synthesized on LFW [18],
CelebA [19], and FFHQ [20] (following the same protocol
as Tab. 3 in main paper). For CelebA, we synthesize a total
of 19,962 x 6 = 119, 772 adversarial samples for 19, 962
real samples in the CelebA testing split [19]. We also syn-
thesize 4,974 x 6 = 29, 844 adversarial samples for 4, 974
real faces in FFHQ testing split [20]. We find that the pro-
posed FaceGuard outperforms all baselines in all three face
datasets.

C. Overfitting in Prevailing Detectors

In Tab. 7, we provide the detection rates of prevail-
ing SOTA detectors in detecting six adversarial attacks in
LFW [18] when they are trained on different attack sub-
sets. We highglight the overfitting issue when (a) SOTA
detectors are trained on gradient-based adversarial attacks
(FGSM [12], PGD [13], and DeepFool [14]) and tested on
gradient-based and learning-based attacks (AdvFaces [I],
GFLM [9], and SemanticAdv [10]), and (b) vice-versa.
Tab. 7(c) reports the detection performance of SOTA de-
tectors when all six attacks are available for training.

We find that detection accuracy of SOTA detectors sig-
nificantly drops when tested on a subset of attacks not en-
countered during their training. Instead, the proposed Face-
Guard maintains robust detection accuracy without even
training on the pre-computed samples from any known at-
tacks.

D. Qualitative Results
D.1. Generator Results

Fig. 11 shows examples of synthesized adversarial faces
via the proposed adversarial generator G. Note that the
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generator takes the input prob x and a random latent z.
We show synthesized perturbation masks and correspond-
ing adversarial faces for three randomly sampled latents.
We observe that the synthesized adversarial images evades
ArcFace [2] while maintaining high structural similarity be-
tween adversarial and input probe.

D.2. Purifier Results

We show examples of purified images via FaceGuard
and baselines including MagNet [4 ] and Defense GAN [42]
in Fig. 12. We observe that, compared to baselines, puri-
fied images synthesized via FaceGuard are visually realis-
tic with minimal changes compared to the ground truth real
probe. In addition, compared to the two baselines, Face-
Guard’s purifier protects ArcFace [2] matcher from being
evaded by the six adversarial attacks.

E. Additional Results on Purifier

E.1. Perturbation and Purification Masks

In the main text, we found that the perturbation and pu-
rification masks are correlated with an average Cosine sim-
ilarity of 0.52. We show five pairs of perturbation and pu-
rification masks ranked by the Cosine similarity between
them (highest to lowest). We observe that purification
mask is better correlated when perturbations are more lo-
cal. Slightly perturbing entire faces poses to be challenging
for the proposed purifier.

E.2. Effect of Perturbation Amount

We also studied the effect of perturbation amount on de-
tection and purification results in the main text. We ob-
served a trade-off between detection and purification with
respect to perturbation magnitudes. With minimal perturba-
tion, detection is challenging while purifier maintains AFR
performance. Excessive perturbations lead to easier detec-
tion with greater challenge in purification. In Fig. 14, show
examples of synthesized adversarial faces for different per-
turbation amounts and their corresponding purified images.
We find that detection scores improve with larger pertur-
bation. Aligned with our earlier findings, due to the pro-
posed bonafide loss, Ly, purified faces are continuously
detected as real by the detector which explains why the pu-
rifier maintains AFR performance with increasing perturba-
tion amount.

E.3. Effect of Purification on ArcFace Embeddings

In order to investigate the effect of purification on a
matcher’s feature space, we extract face embeddings of real
images, their corresponding adversarial images via the chal-
lenging AdvFaces [] attack, and purified images, via the
SOTA ArcFace matcher. In total, we extract feature vec-
tors from 1,456 face images of 10 subjects in the LFW
dataset [18]. In Fig. 15, we plot the 2D t-SNE visualization
of the face embeddings for the 10 subjects. The identity
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clusterings can be clearly observed from real, adversarial,
and purified images. In particular, we observe that some
adversarial faces pertaining to a subject moves farther from
its identity cluster while the proposed purifier draws them
back. Fig. 15 illustrates that the proposed purifier indeed
enhances face recognition performance of ArcFace under
attack from 34.27% TAR @ 0.1% FAR under no defense to
77.46% TAR @ 0.1% FAR.



Enrolled Probex G(x,z1) G(x, 23) G(x,23) x+G(xz) x+G(x2;) x+G(x,23)

ArcFace / SSIM: 0.68 —0.02/094  _0.04/0093 —0.04/0.93

ArcFace / SSIM:

|
\ =

ArcFace / SSIM:

0.14/0.94 0.15/0.95 0.12/0.91

0.17/0.92

0.09/0.85

0.21/0.92 0.02/0.92

—0.12/0.83 -0.7/0.86

ArcFace / SSIM:

ArcFace / SSIM: 0.62 0.15/0.94 —0.13/0.89 —-0.11/0.88

Figure 11: Examples of generated adversarial images along with corresponding perturbation masks obtained via FaceGuard’s generator G for three randomly
sampled z. Cosine similarity scores via ArcFace [2] € [—1, 1] and SSIM € [0, 1] between synthesized adversarial and input probe are given below each
image. A score above 0.36 (threshold @ 0.1% False Accept Rate) indicates that two faces are of the same subject.
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Real Probe Adversarial MagNet DefenseGAN  FaceGuard
-

AdvFaces DeepFool PGD FGSM

GFLM

SemanticAdv

0.11 0.28 0.18 0.52

Figure 12: Examples of purified images via MagNet [4 1], DefenseGan [42], and proposed FaceGuard purifiers for six adversarial attacks. Cosine similarity
scores via ArcFace [2] € [—1, 1] are given below each image. A score above 0.36 (threshold @ 0.1% False Accept Rate) indicates that two faces are of the
same subject.

14



Input Probe Synthesized Adversarial ~ Perturbation Mask Purification Mask Purified Image

ArcFace: 0.33 ArcFace: 0.65

ArcFace: 0.21 ArcFace: 0.45

ArcFace: 0.27 ArcFace: 0.56

ArcFace: 0.38

ArcFace: 0.28 Cosine Similarity: -0.16 ArcFace: 0.42

Figure 13: Examples of synthesized adversarial images via the proposed adversarial generator and corresponding purified images. Cosine similarity between
perturbation and purification masks given below each row along with ArcFace scores between synthesized adversarial/purified image and real probe. A score
above 0.36 (threshold @ 0.1% False Accept Rate) indicates that two faces are of the same subject. Even with lower correlation between perturbation and

purification masks (rows 3-5), the purified images can still be identified as the correct identity. Notice that the purifier primarily alters the eye color, nose,
and subdues adversarial perturbations in foreheads. Zoom in for details.
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Probe € = 0.00 € =0.25 € =0.50 e =0.75 €=1.00 €=1.25

Synthesized Adv.

-/0.00 0.95/0.82 0.68/0.97 0.28/0.99 0.02/1.00 -0.09/1.00

Purified

0.67/0.66 0.66/0.65 0.78/0.56 0.51/0.48 0.47/0.41 0.42/0.49

Synthesized Adv.

0.84/0.89 0.29/0.95 -0.16/1.00

Purified

0.69/0.23 0.68/0.34 0.59/0.36 0.53/0.32 0.48/0.35 0.41/0.47

Figure 14: ArcFace € [—1,1] / Detection scores € [0, 1] when perturbation amount is varied (¢ = {0.25,0.50,0.75,1.00, 1.25}). Detection scores
above 0.5 are predicted as adversarial images while ArcFace scores above 0.36 (threshold @ 0.1% False Accept Rate) indicate that two faces are of the
same subject. FaceGuard is trained on ¢ = 1.00. The detection scores improve as perturbation amount increases, whereas, majority of purified images are
detected as real. Even when purified images fail to be classified as real by the detector, purification maintain high AFR performance.
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. Real
x  AdvFaces
+  Purified

Figure 15: 2D t-SNE visualization of face representations extracted via ArcFace from 1, 456 (a) real, (b) AdvFaces [1], and (c) purified images belonging
to 10 subjects in LFW [18]. Example AdvFaces [1] pertaining to a subject moves farther from its identity cluster while the proposed purifier draws them
back.
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