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ABSTRACT

Imaging photoplethysmography (iPPG) is the process of estimating
the waveform of a person’s pulse by processing a video of their face
to detect minute color or intensity changes in the skin. Typically,
iPPG methods use three-channel RGB video to address challenges
due to motion. In situations such as driving, however, illumination in
the visible spectrum is often quickly varying (e.g., daytime driving
through shadows of trees and buildings) or insufficient (e.g., night
driving). In such cases, a practical alternative is to use active illumi-
nation and bandpass-filtering from a monochromatic near-infrared
(NIR) light source and camera. Contrary to learning-based iPPG
solutions designed for multi-channel RGB, previous work in single-
channel NIR iPPG has been based on hand-crafted models (with only
a few manually tuned parameters), exploiting the sparsity of the PPG
signal in the frequency domain. In contrast, we propose a modular
framework for iPPG estimation of the heartbeat signal, in which the
first module extracts a time-series signal from monochromatic NIR
face video. The second module consists of a novel time-series U-net
architecture in which a GRU (gated recurrent unit) network has been
added to the passthrough layers. We test our approach on the chal-
lenging MR-NIRP Car Dataset, which consists of monochromatic
NIR videos taken in both stationary and driving conditions. Our
model’s iPPG estimation performance on NIR video outperforms
both the state-of-the-art model-based method and a recent end-to-
end deep learning method that we adapted to monochromatic video.

Index Terms— Human monitoring, vital signs, remote PPG,
imaging PPG, deep learning.

1. INTRODUCTION

Driver monitoring technology, including methods for monitoring
driver attention via gaze and pose estimation as well as monitoring
vital signs such as heart rate and breathing, has the potential to save
the lives of drivers and of others on the road.

In this paper, we focus on the problem of estimating the heart
rate (HR), and more generally the hearbeat waveform, of the driver
from a distance with the help of a camera installed inside the car.
Measuring the pulse signal remotely via a camera, known as imag-
ing PPG (iPPG), is more convenient and less intrusive than contact-
based methods. However, iPPG while driving presents a host of
challenges such as head pose variations, occlusions, and large vari-
ations in both illumination and motion. In recent work [1], we have
demonstrated that narrow-band active near-infrared (NIR) illumina-
tion can greatly reduce the adverse effects of lighting variation dur-
ing driving, such as sudden variation between sunlight and shadow
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or passing through streetlights and headlights, without impacting the
driver’s ability to see at night. However, NIR frequencies introduce
new challenges for iPPG, including low signal-to-noise ratio (SNR)
due to reduced sensitivity of camera sensors and weaker blood-flow-
related intensity changes in the NIR portion of the spectrum.

Previous work on iPPG estimation from monochromatic NIR
video uses straightforward linear signal processing or simple hand-
designed models with very few learned parameters, such as opti-
mizing sparsity of the PPG signal in the frequency domain [1]. In
contrast, we propose a deep-learning-based approach in a modular
framework. Our first module uses automatic facial landmark detec-
tion and signal processing to extract a multi-dimensional time-series
of average pixel-intensity variations from salient face regions. Our
second module is a deep neural network (DNN) with a U-net archi-
tecture that inputs the region-wise time series that were extracted by
the first module and outputs an estimate of the one-dimensional pul-
satile iPPG signal. Our U-net is unusual in that it processes a mul-
tidimensional time series rather than an image or image sequence,
and unique in that it introduces a network of gated recurrent units
(GRUs) to the passthrough (copy) connections of the U-net. The sys-
tem is trained on narrow-band single-channel NIR videos of multiple
subjects using our recently released MERL-Rice Near-Infrared Pulse
(MR-NIRP) Car Dataset [1], in which the ground-truth pulse signals
were provided by a contact PPG sensor (fingertip pulse oximeter).

Recent work on iPPG estimation from RGB videos has used
end-to-end DNNs [2, 3, 4, 5, 6]. In fewer cases, a modular approach
is used [7, 8]. Specifically, [7] uses an approach similar in spirit to
ours. However, previous DNN methods can’t handle NIR monochro-
matic videos and are not tested on real-world in-car data, which is
the focus of our work. The main contributions of this work include:

1. A modular approach for iPPG. Our first module uses face pro-
cessing and signal processing to extract region-wise time se-
ries from NIR facial video. For the second module, we de-
signed a time series U-net to estimate the heartbeat signal, by
recovering the PPG signal.

2. A novel time-series U-net architecture, with a GRU sub-
network included in the pass-through connections.

3. The proposed framework outperforms prior work on the chal-
lenging MR-NIRP Car Dataset, a public monochromatic NIR
dataset where lighting and motion are large nuisance factors.

2. RELATED WORK

Using one vs. multiple color channels for iPPG: Most recent
iPPG algorithms are designed for RGB cameras, and rely on com-
binations of the three color channels to isolate the PPG signal from



Fig. 1. Overview of the proposed modular approach for rPPG estimation from NIR videos. The first module extracts the 48 relevant facial
regions from each frame and computes the average of the pixel intensities for each region, thus generating a 48-dimensional time series. The
time series is fed into a time-series U-Net with GRUs which maps it to the desired PPG signal.

noise. Linear combinations of color channels can be used to sep-
arate the heart rate signal from noise [9, 10, 11], and using mul-
tiple color channels improves the robustness to lighting and mo-
tion [12, 13]. However, RGB cameras do not work well in the dark
(e.g., night driving) or when ambient light varies drastically. Van
Gastel et al. [14] used three NIR cameras, each fitted with a dif-
ferent narrow-band filter, to achieve robustness to both motion and
light, but such a system could be prohibitively expensive or unwieldy
for many applications.

There are a few algorithms for iPPG that use only one color
channel. Most of them use just the green channel of an RGB video,
since variations in skin appearance due to blood volume variation are
most pronounced in this channel [15, 16, 17]. Two recent algorithms
for monochromatic PPG, SparsePPG [18] and AutoSparsePPG [1],
perform well on single-channel NIR videos by leveraging the fact
that iPPG signals are sparse in the frequency domain and low-rank
across facial regions. These two methods show impressive results
when combined with face alignment and region-wise signal extrac-
tion, and we compare our method with them in Sec. 4.

Deep-learning based methods: Although iPPG estimation for
monochrome videos has not received much attention from deep
learning methods, several deep learning methods were recently
developed for RGB videos. Chen and McDuff [4] propose a two-
stream approach. Their motion model stream inputs a motion repre-
sentation obtained by normalized frame differencing. Their appear-
ance model stream processes video frames to obtain soft attention
masks per frame, which are then applied to feature maps in the other
stream. McDuff [8] presents a deep-learning based super-resolution
preprocessing step for iPPG estimation from low-resolution videos.
Yu et al. [3] design a two-stage, end-to-end method to counter video
compression loss in highly compressed videos.

PhysNet [5, 6] is an end-to-end learning framework using
a spatio-temporal DNN with three different versions: PhysNet-
3DCNN and PhysNetLSTM were introduced in [6]; the original
version of PhysNet [5], which we call PhysNet-ST, has spatio-
temporal (ST) blocks that contain alternating spatial and temporal
convolution layers. Recently, Niu et al. [7] propose an architecture
to disentangle non-physiological noise from the intensity variations
caused by blood flow. They first identify a small number of face
regions with facial landmarks, then extract a multi-dimensional time

series using multiple color channels from each region. Pairs of such
time-series are fed into the disentangling module, whose output is
fed to another DNN to determine the iPPG signal and the heart rate.

3. IPPG ESTIMATION FROM NIR VIDEOS

The main noise factors contaminating the signal are motion and il-
lumination changes. With this knowledge, we propose to divide the
method into two main components: a hand-crafted feature extraction
module that accounts for motion, and a deep network PPG estimator.
Figure 1 provides a graphical representation of the architecture.

3.1. Time series extraction module

From each monochromatic NIR video, we extract a 48-dimensional
time series corresponding to the pixel intensities over time of 48 fa-
cial regions, similar to [1]. We localize 68 facial landmarks in each
frame using OpenFace [19], then smooth these locations using a 10-
frame moving average. The smoothed locations are used to extract
48 regions of interest (ROIs) located around the forehead, cheeks
and chin (the face areas containing the strongest PPG signals [17]).
In each video frame, we compute the average intensity of the pixels
in each region. This averaging reduces the impact of quantization
noise of the camera, motion jitter due to imperfect landmark local-
ization, and minor deformations due to head and face motion.

The time series are temporally windowed and normalized before
being fed to the PPG estimator described in Sec. 3.2. The windowed
sequences are of 10 seconds duration (300 frames at 30 fps), with
a 10-frame stride at inference (we experimented with strides from
10–60 frames in training, since longer strides are more efficient for
the larger driving dataset). To each window, we add a preamble of
0.5 seconds by adding the 14 additional frames immediately preced-
ing the start of the sequence. While the heartbeat signal is locally
periodic, its period (heart rate) changes over time—the 10 s window
is a good compromise duration for extracting a current heart rate.
For each 10-second window of the ground-truth PPG signal, we fil-
ter its spectrum according to the natural cardiac frequency range of
[42, 240] beats per minute (bpm) [11]. Finally, the 10-second se-
quences are normalized as: ŷi = (yi − µi)/σi, where µi and σi are,
respectively, the sample mean and standard deviation of the temporal
sequence yi corresponding to the ith face region.



3.2. TURNIP: Deep neural architecture for PPG estimation

The input to our PPG estimator network is the multidimensional time
series provided by the module of Sec. 3.1, in which each dimension
is the signal from an explicitly tracked ROI. This tracking helps to
reduce the amount of motion-related noise, but the time series still
contains significant noise due to factors such as landmark localiza-
tion errors, lighting variations, 3D head rotations, and deformations
such as facial expressions. Our approach needs to recover the sig-
nal of interest from the noisy time series. Given the semi-periodic
nature of the signal, we design our architecture to extract temporal
features at different time resolutions. We present the Time-series U-
net with Recurrence for NIR Imaging PPG (TURNIP), in which we
apply a U-Net [20] architecture to time series data and modify the
skip connections to incorporate temporal recurrence.

The 48 dimensions of the time sequence are fed to the network
as channels, which are combined during the forward pass. For each
10-second window, our architecture extracts convolutional features
at three temporal resolutions, downsampling the original time series
by a factor of 3 and later an additional factor of 2. It then estimates
the desired PPG signal in a deterministic way. At every resolution,
we connect the encoding and decoding sub-networks by a skip con-
nection. In parallel with the 1 × 1 convolutional skip connections,
we introduce a novel recurrent skip connection. We utilize gated
recurrent units (GRUs) to provide temporally recurrent features.

At each time scale, the convolutional layers of the U-net process
all of the samples from the 10-second window in parallel. In con-
trast, the new recurrent GRU layers process the temporal samples se-
quentially. This temporal recurrence has the effect of extending the
temporal receptive field at each layer of the U-net. After the GRU
has run through all of the time steps in the 10-second window, the
resulting sequence of hidden states is concatenated with the output
of a standard pass-through layer (1 × 1 convolution). Note that the
hidden state of the GRU is reinitialized for each 10-second window
that is fed to the network. We show empirically that incorporating
this GRU improves performance (see ablation study in Sec. 4).

Loss functions for training TURNIP: Denote by y the ground
truth PPG signal and by y(θ) the estimated PPG signal in the time
domain. Our objective is to find the optimal network weights θ∗ that
maximize the Pearson correlation coefficient between the ground
truth and estimated PPG signals. Therefore, we define the training
loss function G(x, z) for any two vectors x and z of length T as:

G(x, z) = 1− T · x>z− µxµz√
(T · x>x− µ2

x)(T · z>z− µ2
z)
, (1)

where µx and µz are the sample means of x and z, respectively.
We experimented with two loss functions: temporal loss (TL) and
spectral loss (SL). To minimize TL, find network parameters θ∗ such
that:

θ∗ = argmin
θ
G(y,y(θ)). (2)

For SL, the inputs to the loss function are first transformed to the fre-
quency domain, and any frequency components lying outside of the
[0.6, 2.5] Hz band are suppressed because they are outside the range
of heart rates in the dataset. In this case, the network parameters are
computed to solve

θ∗ = argmin
θ
G(|Y|2, |Y(θ)|2), (3)

Table 1. HR estimation errors (mean ± std) in terms of PTE6 and
RMSE on the MR-NIRP Car Dataset.

Driving Garage

PTE6 (%) ↑ RMSE
(bpm) ↓ PTE6 (%) ↑ RMSE

(bpm) ↓
TURNIP (Ours) 65.1± 13.9 11.4± 4.1 89.7± 15.7 4.6± 4.8
PhysNet-ST-SL-NIR 53.2± 26.7 13.2± 7.0 88.8± 17.8 6.3± 6.7
AutoSparsePPG [1] 61.0± 5.2 11.6± 1.8 81.9± 5.9 5.1± 1.4
SparsePPG [18] 17.4± 3.4 > 15 35.6± 6.8 > 15
DistancePPG [17] 24.6± 2.3 > 15 37.4± 4.0 > 15

where Y := FFT(y) and Y := FFT(y), and | · | is the complex
modulus operator. We have tested both loss functions, and we re-
port our results using TL as it performs better with our method (see
ablation study in Sec. 4).

4. EXPERIMENTAL RESULTS

Dataset: We use the MERL-Rice Near-Infrared Pulse (MR-NIRP)
Car Dataset [1]. The face videos were recorded with an NIR camera,
fitted with a 940 ± 5 nm bandpass filter. Frames were recorded at
30 fps, with 640 × 640 resolution and fixed exposure. The ground-
truth PPG waveform is obtained using a CMS 50D+ finger pulse
oximeter recording at 60 fps, which is then downsampled to 30 fps
and synchronized with the video recording. The dataset features 18
subjects and is divided into two main scenarios, labeled Driving (city
driving) and Garage (parked with engine running). Following [1],
we evaluate only on the “minimal head motion” condition for each
scenario. The dataset includes female and male subjects, with and
without facial hair. Videos are recorded both at night and during the
day in different weather conditions. All recordings for the garage
setting are 2 minutes long (3,600 frames), and during driving range
from 2 to 5 minutes (3,600–9,000 frames).
Data augmentation: The dataset consists of subjects with heart
rates ranging from 40 to 110 bpm. However, the heart rates of test
subjects are not uniformly distributed. For most subjects, the heart
rate ranges roughly from 50 to 70 bpm. Examples in the extremes
are infrequent. Therefore, we propose a data augmentation tech-
nique to address both (i) the relatively small number of subjects and
(ii) gaps in the distribution of subject heart rates. At training time,
for each 10-second window, in addition to using the 48-dimensional
PPG signal that was output by the time series extraction module (see
Sec. 3.1), we also resample that signal with linear resampling rates
1+r and 1−r, where we randomly chose the value of r ∈ [0.2, 0.6]
for each 10-second window.
Training and test protocols: We trained TURNIP for 10 epochs,
and selected the model after 5 training epochs to use for testing
(results were similar across the range 3–8 epochs). We use the
Adam optimizer [21], with a batch size of 96 and a learning rate of
1.5 · 10−4 reduced at each epoch by a factor of 0.05. The train-test
protocol is leave-one-subject-out cross-validation. At test time, we
window the test subject’s time-series as indicated in Sec. 3.1 and es-
timate the heart rate sequentially with a stride of 10 samples between
the windows (we output one heart rate estimate every 10 frames).

Metrics: We evaluate the performance using two metrics. The first
metric, PTE6 (percent of time the error is less than 6 bpm), indicates
the percentage of HR estimations that deviate in absolute value by
less than 6 bpm from the ground truth. The error threshold is set to
6 bpm as that is the expected frequency resolution of a 10-second
window. The second metric, root-mean-squared error (RMSE) be-



Table 2. Ablation study. We compare TURNIP to its variants in-
cluding: (i) removing data augmentation (DA), (ii) removing the
GRU module, and (iii) changing the objective function from TL to
SL.

Driving Garage

PTE6 (%) ↑ RMSE
(bpm) ↓ PTE6 (%) ↑ RMSE

(bpm) ↓
Ours 65.1± 13.9 11.4± 4.1 89.7± 15.7 4.6± 4.8
Ours, no DA 61.9± 22.3 10.7± 5.9 81.9± 31.0 5.9± 8.9
Ours, no GRU 63.3± 13.1 11.4± 4.0 89.7± 15.4 5.0± 5.0
Ours, SL 61.7± 12.4 13.8± 4.2 85.8± 18.9 7.3± 8.0

tween the ground-truth and estimated HR, is measured in bpm for
each 10-second window and averaged over the test sequence.

Comparison methods: We compare with three recent monochro-
matic iPPG methods based on hand-crafted models: AutoSparsePPG
[1], SparsePPG [18], and DistancePPG [17]. We also compare
with the end-to-end deep learning method PhysNet-ST [5]. We
implemented and modified PhysNet-ST to handle single-channel
(monochromatic) frames, and we tested it with different objective
functions. The best performing version used the Spectral Loss (SL)
objective (see Eqn. (3)), so we call it PhysNet-ST-SL-NIR.

Main Results: Table 1 compares the quantitative performance of
all of the methods. Our method outperforms the others in most cases,
often by a substantial margin.

PhysNet-ST-SL-NIR performs slightly worse than our method
in the Garage condition (TURNIP has 0.9% higher PTE6 and 1.7%
lower RMSE), but significantly worse than ours in the Driving con-
dition (TURNIP is better by 11.9% in PTE6). This behavior can be
attributed to the first module of our pipeline. Unlike PhysNet, we
inject domain knowledge into our method, performing explicit face
tracking and selecting face regions that are known to provide a strong
PPG signal. In contrast, PhysNet relies solely on spatio-temporal
deep convolutional features to implicitly track the face, find the ROI,
and extract the PPG signal simultaneously. This works pretty well
when there is little head motion (Garage), but for data with moder-
ately large head motion (such as Driving), PhysNet is less successful.

In the Garage condition, TURNIP considerably outperforms
AutoSparsePPG (the best hand-crafted model-based method and
best published result on the dataset), with a 7.8% PTE6 increase
and a 0.5% RMSE decrease. In Driving, the performance is 4.1%
better in terms of PTE6 but equivalent in RMSE. As AutoSparsePPG
employs a similar video feature extraction module to ours, the main
factor of variation is the PPG recovery method.

Ablation study: In Table 2, we compare performance quantita-
tively when removing different parts of our framework. We can see
that data augmentation (DA) is an important part of TURNIP, yield-
ing considerable improvement in PTE6 (3.2% in Driving, 7.8% in
Garage), while RMSE is similar. Data augmentation is especially
useful for those subjects with out-of-distribution heart rates. It is
desirable to train TURNIP with as many examples as possible for
a given frequency range. Without data augmentation, the network
shows poor performance for subjects with heart rates that are not
present in the training set. Table 2 shows that the standard deviation
for PTE6 is considerably higher without data augmentation, indicat-
ing a high variability across subjects. Figure 2 illustrates why this
happens for the Garage data. Subjects 10 and 12 have the lowest
and highest resting heart rates in the dataset, ∼40 and ∼100 bpm
respectively. Thus when testing on either of those subjects, the train-
ing set contains no subjects with similar heart rates. Without data
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Fig. 2. Impact of data augmentation on tested subjects. Highlighted
in red, we show the poor performance of the method without data
augmentation for two subjects with out-of-distribution heart rates.
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Fig. 3. Comparison of PPG signal estimated by temporal vs. spectral
loss for a test subject. Clearly, temporal loss makes better estimates.

augmentation, the model fails completely for those subjects. With
data augmentation, it is much more accurate.

Second, we analyze the impact of the GRU cell in our skip con-
nection module. The GRUs process the feature maps sequentially at
multiple time resolutions. Thus, they extract features beyond the lo-
cal receptive field of the convolutional kernels. Addition of this cell
improves performance, as shown in the table.

Finally, we compare the two loss functions (TL vs. SL) for
training TURNIP, and we see a clear performance drop with SL
(Eqn. (3)). However, SL still achieves good performance, outper-
forming PhysNet-ST-SL-NIR in the Driving condition. Figure 3
compares SL vs. TL for the estimated PPG signals for 10 seconds
of a test subject. As shown in the figure, the model trained with
TL generates a much better estimate of the ground-truth PPG signal.
While the recovered signal with SL has a similar frequency, it often
does not match the peaks and distorts the signal amplitude or shape.
That is, the spectrum of the recovered signal and the heart rate are
similar in both cases, but not the temporal variations.

5. CONCLUSION

In this paper, we proposed a modular framework for estimating the
PPG signal from NIR videos. The time series feature extraction
module operates on different facial regions and is designed to ac-
count for motion variations. The neural network module, TURNIP,
maps the extracted multi-dimensional time series to the desired PPG
signal, from which the heart rate is determined. TURNIP is an adap-
tation of U-Nets to time series data, with the addition of GRUs in the
passthrough connections. Results show that the proposed framework
outperforms existing methods for this application. Investigating the
use of other deep architectures for time series processing, such as
transformers, presents a promising avenue for future research.
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