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A key assumption of traditional machine learning approach is that the test data are draw from the same
distribution as the training data. However, this assumption does not hold in many real-world scenarios.
For example, in facial expression recognition, the appearance of an expression may vary significantly for
different people. As a result, previous work has shown that learning from adequate person-specific data
can improve the expression recognition performance over the one from generic data. However, person-
specific data is typically very sparse in real-world applications due to the difficulties of data collection
and labeling, and learning from sparse data may suffer from serious over-fitting. In this paper, we propose
to learn a person-specific model through transfer learning. By transferring the informative knowledge
from other people, it allows us to learn an accurate model for a new subject with only a small amount
of person-specific data. We conduct extensive experiments to compare different person-specific models
for facial expression and action unit (AU) recognition, and show that transfer learning significantly
improves the recognition performance with a small amount of training data.

� 2013 Published by Elsevier B.V.
1. Introduction

In recent years, machine learning approaches have been suc-
cessfully applied to the field of human action recognition, includ-
ing automatic facial expression recognition. Traditionally, many
machine learning algorithms work well only under the assumption
that the training and test data are drawn from the same distribu-
tion. In facial expression recognition, this assumption holds for
some prototypical and posed expressions, such as the ‘‘smiling’’
faces from the Cohn–Kanade DFAT database (Kanade et al., 2000)
(Fig. 1(a)). Because smile is quite consistent across subjects, the
state-of-the-art smile detection system can easily achieve an accu-
racy of 97% (Whitehill et al., 2009) on the DFAT database via leave-
one-subject-out cross validation. However, the identical-distribu-
tion assumption does not hold for complex and spontaneous
expressions. For example, the PAINFUL database (Lucey et al.,
2011a) contains the spontaneous pain expressions of patients with
shoulder injury when they move their shoulders, as shown in
Fig. 1(b). We can observe large variation of the pain expression
across different subjects, such as eyes open or closed, mouth open
or closed, etc. Because the training and test data may not share the
same distribution, the performance of the pain detection is much
worse than that of the smile detection.
When the appearance of the facial expression changes across
the subjects, learning a person-specific model is likely to achieve
better performance than a generic model. However, in many
real-world applications, it is not only expensive to collect and label
a large amount of data for a specific person, but also impractical in
some scenarios. For example, in pain expression recognition, a new
subject has to enact the pain expression specifically for the data
collection. This process is unnatural and cumbersome for the sub-
ject, and this posed expression may be different from the sponta-
neous expression in the actual testing scenario. Thus, how to
learn a person-specific model with limited person-specific data
becomes a critical research problem.

In this paper, we exploit a new promising way to learn a person-
specific model via transfer learning. Transfer learning represents a
family of algorithms that transfer the informative knowledge from
the source domain to a new target domain. In our applications, we
view the data of the subject of interest as the target domain, and
the training data of other subjects as the source domain. We con-
sider two transfer learning scenarios: inductive transfer learning
(Section 3.1) and transductive transfer learning (Section 3.2). For
the former, only a small amount of labeled data from the target do-
main are required to learn the robust target model without overfit-
ting. For the latter, the target data does not need to be labeled
hence the burden of data labeling is entirely avoided.

We apply our algorithm to two recognition tasks: the aforemen-
tioned pain expression recognition and facial action unit

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.patrec.2013.02.002&domain=pdf
http://dx.doi.org/10.1016/j.patrec.2013.02.002
mailto:chenji@ge.com
http://dx.doi.org/10.1016/j.patrec.2013.02.002
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


Fig. 1. (a) The smile expressions from the DFAT database (Kanade et al., 2000). (b) The spontaneous pain expressions from the PAINFUL database (Lucey et al., 2011a). Pain
expression has large variation across subjects.

Fig. 2. Examples of facial action units.
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recognition. Action units (AUs) are a set of local facial behavior
descriptors defined in the widely used Facial Action Coding System
(FACS) (Ekman and Friesen, 1978). Based on FACS, the facial behav-
ior is decomposed into 46 AUs, where some frequent action units
are shown in Fig. 2. Although only a small number of AUs are de-
fined, over 7000 different AU combinations have been observed
so far (Ekman and Friesen, 1978). Thus, AU recognition result can
be treated as the recognition of more generalized expressions
which are basically viewed as certain combinations of AUs.

We compare various transfer learning algorithms and tradi-
tional learning algorithms in our experiment and show significant
improvement of the inductive transfer learning in both the expres-
sion recognition and the AU recognition (Section 4).

2. Related work

In recent years, facial expression recognition (e.g. happy, anger,
disgust, fear, sadness, surprise) (Cohen et al., 2003) and FACS facial
action units (AU) recognition (Ekman et al., 2005) have made con-
siderable progress. A comprehensive review can be found in (Zeng
et al., 2009). However, most of the current expression and AU rec-
ognition research has focused on the posed expression under
tightly controlled laboratory conditions, e.g. Cohn–Kanade DFAT
(Kanade et al., 2000), CMU-PIE (Sim et al., 2003) and MMI (Pantic
et al., 2005) expression database. There have been very little work
on detecting natural spontaneous facial expression (Tong et al.,
2010; Bartlett et al., 2006) which varies significantly across sub-
jects. The first attempt to the spontaneous expression recognition
is on the RUFACS database (Bartlett et al., 2006), which consists
of 34 subjects. They are asked to express an opinion on a social
or political issue and convince an interviewer that they are telling
the truth. This dataset contains many subtle facial expressions
indicative of the natural human behavior, and these subtle
expressions are different across subjects. Bartlett et al. (2006)
found that the performance of spontaneous expression recognition
diminished greatly when compared to the scenario of posed
expression.

An application of spontaneous facial expression recognition that
would be of great benefit is pain and no-pain classification (Lucey
et al., 2011b). For instance, in intensive care units (ICU) (Gawande,
2009), the improvement in patient outcomes has been achieved by
pain monitoring. Lucey et al. (2011b) collect the spontaneous pain
database from patients with shoulder injuries. Their pain detection
system achieved 0.751 area under the ROC curve (AUC) using only
appearance features, and achieved the best performance of 0.839
AUC by combining the shape and appearance features. In this pa-
per, we propose to further improve this state-of-the-art perfor-
mance through a person-specific expression recognizer.

Previous work (Cohen et al., 2003; Valstar et al., 2011) has
shown that a person-specific model out-performs a person-inde-
pendent model in expression recognition when adequate person-
specific data is available. Hence, in order to learn a person-specific
pain detector deployed in a healthcare application, the doctor or
nurse has to enroll and label the pain expressions for every to-
be-detected patient. It would greatly reduce the data collection
burden if only a small number of training images for each patient
are required. For traditional machine learning algorithms, learning
from a small amount of data can be exposed to the risk of overfit-
ting. In this paper, we propose to learn the person-specific model
through transfer learning.

Transfer learning aims to extract knowledge from one or more
source domains and improve the learning in the target domain. It
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has been applied to a wide variety of applications, such as object
recognition (Yao and Doretto, 2010), sign language recognition
(Farhadi et al., 2007) and text classification (Wang et al., 2008).
For more details we refer the reader to the survey paper (Pan
and Yang, 2010). In (Pan and Yang, 2010), the transfer learning
algorithms are classified into three categories, namely inductive
transfer learning, transductive transfer learning and unsupervised
transfer learning.

In inductive transfer learning (Dai et al., 2007; Yang et al., 2007),
only a small amount of labeled data in the target domain is avail-
able. Learning a classifier solely from the labeled target data may
suffer serious overfitting. Transfer learning remedies this problem
by using the knowledge from the data in the source domain. TrAda-
Boost (Dai et al., 2007) attempts to utilize the ‘‘good’’ data in the
source domain, which are similar to the target data, to improve
the target Adaboost classifier. Kulis et al. (2011) propose a domain
adaption approach for object recognition. From the labeled object
categories, they learn a non-linear transformation to transfer the
data points in the source domain to the target domain.

In transductive transfer learning (Zadrozny, 2004; Huang et al.,
2006; Sugiyama et al., 2007; Si et al., 2010), the target data is avail-
able but not labeled. Only the source data has labels. Thus, we cannot
learn a classifier directly from the unlabeled target data. A common
approach is to shift or re-weight the labeled source data, from which
a target classifier can be learned. In (Zadrozny, 2004; Huang et al.,
2006), the source training data is re-weighted to approximate the
distribution in the target domain. Gopalan et al. (2011) propose to
learn a domain shift from the source subspace to the target subspace
in Grassmann manifold, and project the labeled source data to a sub-
space close to the target domain. Another approach for transductive
transfer learning is to incorporate the unlabeled target data in the
training of the source domain. Si et al. (2010) propose to use the
unlabeled target data as a regularization term in the discriminative
subspace learning in the source domain, so that the learned sub-
space can generalize well to the target domain. Please notice that
the term ‘‘transductive transfer learning’’ was first proposed by
Arnold et al. (2007) to distinguish it from ‘‘transductive learning’’
(Vapnik et al., 1995) in the traditional machine learning setting. In
transductive learning (Joachims, 1999; Li and Wechsler, 2005), the
unlabeled testing data is known at the training stage, which allows
the learner to shape its decision function to match the properties
of testing data. However, in transductive learning, the training and
testing data are assumed to be drawn from the same distribution,
while in transductive transfer learning, the source and target data
are drawn from different distributions.

Finally, the unsupervised transfer learning (Dai et al., 2008) is ap-
plied to unsupervised learning tasks, such as clustering and dimen-
sionality reduction, when both the target labels and the source
labels are not available. In this paper, we apply both the inductive
and transductive transfer learning to the task of person-specific
facial expression and AU recognition.
3. Learning a person-specific model

We first introduce the notation used in our transfer learning prob-
lem. Let’s denote the training data of a new subject as the target data
DT ¼ fðxT;i; yT;iÞgi¼1���NT

and the training data of other M subjects as the
source data DS ¼ fD1; . . . ;DMg, where Dm ¼ fðxm;1; ym;1Þ; . . . ;

ðxm;Nm ; ym;Nm
Þg;x 2 X is in the feature space and y 2 f1;þ1g is the bin-

ary class label. For example, in expression recognition, y represents
the presence or absence of certain facial expression. A person-specific
model is a classifier fT : xT ! yT learned from the target data DT . How-
ever, since the size of target data (NT ) is very small, learning from DT

alone may suffer serious overfitting problems.
The most straightforward approach to address this problem is
to combine the source data with the person-specific target data,
and learn the classifier fT from fDT ;DSg. In the first facial expres-
sion recognition and analysis (FERA) challenge (Valstar et al.,
2011), this method works well for the expression recognition task.
For example, the F-score is 0.44 for the person-independent test,
and it is improved to 0.73 for the person-specific test. However,
this method may have problems when the size of the target data
is much smaller than that of the source data, i.e., NT � NS. In this
case, the target data is likely to be ignored in the combined training
data set, because data samples from DT and DS contribute equally
to the learning.

In comparison, transfer learning focuses on the performance on
the target data. It can improve the learning of fT by transferring
informative knowledge from the abundant source data DS. Accord-
ing to Pan and Yang (2010), there are two types of transfer learning
algorithms that are suitable for learning fT .

3.1. Inductive transfer learning algorithm

In this section, we use the boosting-based inductive transfer
learning in (Yao and Doretto, 2010) to learn a person-specific model.
This framework consists of two phases. In the first phase, the knowl-
edge of the source data is represented by a large collection of weak
classifiers. In the second phase, some of the weak classifiers are
selected to boost the classification performance on the target data.

Algorithm 1. Inductive transfer learning for a person-specific
model

input: Source data of M subjects D1; . . . ;DM and target data of a
subject DT .

output: A person-specific classifier for the target subject
y ¼ fTðxÞ.

Phase-I Learning a weak classifier set H ¼ fhðkÞm g from
source data D1; . . . ;DM .

for m ¼ 1 to M do

Initialize the weight vector wð1Þm ¼ ðwð1Þm;1; . . . ;wð1Þm;Nm
Þ,

for k ¼ 1 to K do
Normalize the weight vector wm to 1,

Find hðkÞm that minimizes the weighted classification error
e of Dm,

Compute the weighted error e ¼
PNm

i¼1wðkÞm;i½ym;i – hðkÞm ðxm;iÞ�,
a ¼ 1

2 ln 1�e
e ,

Update the weights wðkþ1Þ
m;i ¼ wðkÞm;i expf�aym;ih

ðkÞ
m ðxm;iÞg,

H H
S

hðkÞm .
end for

end for
Phase-II Learning a target classifier on target data DT .

Initialize the weights wð1ÞT ¼ ðw
ð1Þ
T;1; . . . ;wð1ÞT;NT

Þ,
for k ¼ 1 to K do

Normalize the weight vector wT to 1,

Select hðkÞT from H that minimizes the weighted
classification error e of DT ,

Compute the weighted error e ¼
PNT

i¼1wðkÞT;i ½yT;i – hðkÞT ðxT;iÞ�,

aðkÞT ¼ 1
2 ln 1�e

e ,

Update the weights wðkþ1Þ
T;i ¼ wðkÞT;i expf�aðkÞT yT;ih

ðkÞ
T ðxT;iÞg,

H H n hðkÞT .
end for

return fTðxÞ ¼ sign
P

ka
ðkÞ
T hðkÞT ðxÞ

� �
.
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The transfer learning algorithm is summarized in Algorithm 1.

Notice that it transfers the knowledge from multiple sources, each
is the training data of one subject. The total number of the source
data samples is NS ¼

PM
m¼1Nm. Compared to the transfer learning

from a single source (Dai et al., 2007), this multi-source transfer
learning is able to identify and take advantage of the sources that
are closely related to the target, making it less vulnerable to nega-
tive transfer from the unrelated sources.

Phase-I is the standard Adaboost algorithm conducted for each
subject of the source data. The Adaboost classifier includes the
weak classifiers that best discriminate the positive and negative
data for a particular source subject. All the weak classifiers learned
from source data constitute a large set of classifiers H. Phase-II is a
variation of Adaboost on the target data DT . In contrast to the tra-
ditional Adaboost which learns weak classifiers from the target
data, we select the weak classifiers from the source classifier set
H, which basically stores all weak classifiers work well for the
source data. Since only the classifiers with the lowest classification
rate on DT are finally selected, it ensures the positive transfer of the
knowledge from the source domain to the target domain.

3.2. Transductive transfer learning algorithm

In this section, we use the transductive transfer learning algo-
rithm in (Sugiyama et al., 2007) to learn a person-specific model.
This approach is attractive because it can learn the target classifier
without knowing the target labels fyT;1; . . . ; yT;NT

g, so that the bur-
den of manual labeling for a new subject can be entirely
eliminated.

The basic idea of transfer learning is to re-use the source data
that is close to the target. Given the labeled source data
DS ¼ fðxS;i; yS;iÞgi¼1...NS

and the unlabeled target data
DT ¼ fxT;jgj¼1...NT

, transductive transfer learning reweights every
sample ðxS;i; yS;iÞ in the source data using the probability ratio

wðxS;iÞ ¼
pSðxS;iÞ
pT ðxS;iÞ

, where pSðxÞ and pTðxÞ are the marginal distributions

of the source and the target, and then the reweighted source data
are used to train the target model.

Here, the sample weight wðxÞ is approximated by a linear
model,

ŵðxÞ ¼
Xb

l¼1

al/lðxÞ; ð1Þ

where /lðxÞ is a basis function such that /lðxÞP 0 for all x, and al is
the parameter to be learned. In our experiment, we use the kernel

function as the basis function: /lðxÞ ¼ Kðx;xlÞ ¼ exp �kx�xlk
2r2

� �
,

where r is the kernel width; xl is a data sample randomly selected
from the target data. We randomly select half of the target data set
to estimate these basis functions.

Based on Eq. (1), the target distribution can be approximated by
the weighted source distribution,

p̂TðxÞ ¼ ŵðxÞpSðxÞ: ð2Þ

Transductive transfer learning minimizes the KullbackLeibler
(KL) divergence between p̂TðxÞ and pTðxÞ, with respect to falgb

l¼1,

KL½pTðxÞjjp̂TðxÞ� ¼
Z

pTðxÞ log
pTðxÞ

ŵðxÞpSðxÞ
dx

¼
Z

pTðxÞ log
pTðxÞ
pSðxÞ

dx�
Z

pTðxÞ log ŵðxÞdx: ð3Þ

Given the training data, the first term is independent of falgb
l¼1.

Thus, we maximize the second term,
J :¼
Z

pTðxÞ log ŵðxÞdx � 1
nT

X
j

log ŵðxT;jÞ

¼ 1
nT

X
j

log
Xb

l¼1

al/lðxT;jÞ
 !

; ð4Þ

subject to the constraint,

1 ¼
Z

ŵðxÞpSðxÞdx ¼ 1
nS

X
i

ŵðxS;iÞ ¼
1
nS

X
i

Xb

l¼1

al/lðxS;iÞ: ð5Þ

For the details of this optimization procedure, please refer to
Sugiyama et al. (2007). After optimization, we can used the esti-
mated falgb

l¼1 to compute the weight of each source data sample
using Eq. (1).

Finally, we use the weighted source data to train an Adaboost
classifier for the target subject, i.e., the sample weights of the
source data are initialized as fŵðxS;iÞi¼1...NS

g in the AdaBoost learn-
ing algorithm.

4. Experimental results

We apply the transfer learning algorithms in two experiments,
namely pain expression recognition and facial action unit (AU) rec-
ognition. Pain is an holistic expression as shown in Fig. 1(b), which
is of specific interest in health care applications (Gawande, 2009).
Facial action units are a set of local facial muscular movements de-
fined by psychologists. Over 7000 different facial expressions can
be represented by the combinations of 46 AUs (Ekman and Friesen,
1978). By applying transfer learning to AU recognition, we expect
to generalize our algorithm to the recognition of more facial
expressions.

We test the transfer learning algorithms on the PAINFUL data-
base (Lucey et al., 2011a), which contains video sequences (totally
48,398 frames) of 25 patients with shoulder injuries. Spontaneous
pain facial expressions are captured when the patients are rotating
their arms.

4.1. Feature extraction

Local Binary Pattern (LBP) (Ahonen et al., 2006) is used as the
facial image feature in our experiments. We first use the eye loca-
tions provided in the PAINFUL database to crop and warp the face
region to a 128 � 128 image. Following the similar method in
(Ahonen et al., 2006), the face image is divided into 8 � 8 small re-
gions to extract the LBPu2

8;1 feature (59 dimensions). Here the super-
script u2 reflects the use of uniform patterns, and (8,1) represents 8
sampling point on a circle of radius of 1. These LBP features are
concatenated into a single, spatially enhanced feature which there-
fore has 59� 8� 8 ¼ 3776 dimensions, as shown in Fig. 3.

4.2. Pain expression recognition

Parkachin and Solomon pain intensity (PSPI) (Prkachin and
Solomon, 2008) is defined for each frame in the PAINFUL database,
with PSPI ranges from 0 to 16. Here we label the frames with
PSPI ¼ 0 as the negative samples and the frames with PSPI > 0 as
the positive samples.

Similar to Lucey et al. (2011a), we perform a leave-one-subject-
out evaluation on 25 subjects. The number of frames varies from
518 to 3360 for different subjects. For the target subject, we con-
catenate his positive frames into a sequence of length NP and select
the first N0P frames as the target data to train a person-specific
model. The second half of this sequence is retained for testing. Sim-
ilarly, in NN negative frames, first N0N frames are selected as the tar-
get data and the last bNN=2c frames are used for testing. Totally



Fig. 3. LBP is extracted as the facial image feature.

Table 1
Performance comparison: AUC for different sizes of target data (N0T ). ‘Half’ refers to
using the first half of the sequence for transfer learning.

N0T 10 25 50 100 Half

Traditional Model-A 0.557 0.684 0.786 0.862 0.893
Traditional Model-B 0.786 0.816 0.819 0.835 0.878
Inductive transfer 0.782 0.821 0.880 0.891 0.895
Transductive transfer 0.756 0.755 0.765 0.756 0.760

Generic model (baseline) 0.769

Table 2
Average time for training a person-specific model.

Traditional Model-A 2.6 min
Traditional Model-B 14.3 min
Inductive transfer model 0.16 min
Transductive transfer model 17.6 min
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N0T ¼ N0P þ N0N frames are used as the target data for transfer learn-
ing. We keep the positive/negative ratios to be the same NP

NN
¼ N0P

N0N
.

We compare the generic model and four different person-
specific models as follows.

� Generic model is an Adaboost classifier learned from the source
data of 24 subjects. This is our baseline algorithm;
� Traditional person-specific Model-A is an Adaboost classifier

learned only from the target data without transfer learning;
� Traditional person-specific Model-B is an Adaboost classifier

learned from a combined dataset of both the source data and
the target data;
� Inductive transfer model is learned using Algorithm 1. The

target data and their labels are used to select weak classifiers
from the source classifier set;
� Transductive transfer model is learned using the algorithm in

Section 3.2. The target data are used to reweight the source
data. The labels of the target data are not used.

Each of the above models consists of 50 weak classifiers. When
the number of training samples is 50, i.e., N0T ¼ 50, the ROCs of these
models are shown in Fig. 4. Table 1 shows the area under ROC (AUC)
of these models with different number of samples in the target data.

For the traditional person-specific Model-A, we learn the Ada-
boost classifier only from the person-specific target data. This
model suffers serious overfitting problems when the target data
is limited (AUC is 0.557 when the number of target data is 10).
Its performance can be improved by adding more training data,
but it is always worse than the inductive transfer learning. When
using adequate training data (i.e., half of the sequence), its perfor-
mance is close to the inductive transfer learning.
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Fig. 4. ROCs when N0T ¼ 50.
For the traditional person-specific Model-B, the classifier is
learned from a combined dataset that consists of both the source
and the target data. Because we have a large amount of training
data, the overfitting problem can be remedied. However, since this
classifier focuses on the combined dataset, its performance on the
target data is not as good as Model-A when the target data is suf-
ficient. Furthermore, since the training data size is very large, the
learning process is very time consuming. We list the average train-
ing time for various person-specific models in Table 2.

The inductive transfer learning achieves the best performance
among person-specific models. It outperforms the baseline with a
5 10 25 50
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Fig. 5. AUC of different models with different numbers of weak classifiers when
N0T ¼ 50.



Table 3
Comparison of AUCs of AU recognition. N0T ¼ 50 is used in inductive transfer learning.

AU 6 7 10 12 20 25 26 43 AVG

Generic model 0.792 0.634 0.758 0.772 0.820 0.655 0.596 0.875 0.738
Inductive transfer 0.907 0.921 0.930 0.901 0.888 0.855 0.864 0.922 0.8985
Lucey et al. (2011a) 0.854 0.804 0.892 0.857 0.779 0.780 0.710 0.875 0.8189
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small number of target data samples (AUC is improved from 0.769
to 0.782 with only 10 samples) and its performance increases sig-
nificantly when adding more training samples (AUC = 0.891 with
100 target samples). Furthermore, because inductive transfer
learning does not need to train new weak classifiers, it is the fastest
algorithm as shown in Table 2, which makes it suitable for rapid re-
training of a new target subject.

For the transductive transfer learning, we did not observe any
improvement even with adequate training data. A possible reason
is that the boosting classifier is not sensitive to the marginal distri-
bution change. In (Zadrozny, 2004), the classifiers are grouped into
two categories: local classifiers, which depend only on PðyjxÞ, and
global classifiers, which depend on both PðyjxÞ and PðxÞ. In our
transductive transfer learning, we only reweight the source data
to approximate the target marginal distribution PTðxÞ. Since the
AdaBoost classifier tends to be a local learner, this transductive
transfer scheme may not be suitable.

The training and testing time of an Adaboost classifier is propor-
tional to its number of weak classifiers. An efficient algorithm can
learn a good AdaBoost classifier with fewer weak classifiers. Fig. 5
depicts the performance of different algorithms with different
numbers of weak classifiers. It shows that inductive transfer learn-
ing can achieve good performance (AUC = 0.818) with merely five
weak classifiers, which further demonstrates its efficacy.
4.3. Action unit recognition

In this section we focus on AU recognition because we expect to
generalize our transfer-learning framework to more expressions,
which basically can be viewed as certain combinations of AUs. In
the PAINFUL database, we focus on eight frequent AUs which are
labeled frame by frame. The descriptions of these AUs are showed
in Fig. 2. For each AU, we label the frames with AU presence as po-
sitive samples, and the other frames as negative samples. We use
the same method in Section 4.1 to extract the 3776 dimensional
LBP feature from each frame.

A leave-one-subject-out evaluation on 25 subjects is performed,
using the same method in Section 4.2 to select target data and test-
ing data for each subject. We compare the generic model, the
inductive transfer model (N0T ¼ 50), and the state-of-the-art meth-
od (Lucey et al., 2011a) in Table 3. In (Lucey et al., 2011a), both face
shape and appearance from Active Appearance Model (AAM) track-
ing are used as the image feature and a generic SVM classifier is
trained for each AU. In our generic model and inductive transfer
model, we only use the face appearance feature, i.e., the LBP fea-
ture. Each model is composed of 50 weak classifiers.

We observe significant performance improvement of inductive
transfer learning given only a small number of target data
(N0T ¼ 50). It outperforms our generic model and also the start-of-
the-art model in (Lucey et al., 2011a). In terms of individual AU
detection, transfer learning improves the performance of every
AU, especially the AUs with small muscular movement, which
are typically very difficult to be detected, such as eyelid tightening
(AU7) and lip stretcher (AU20).
5. Conclusion

This paper exploits the idea of learning a person-specific model
to improve facial expression recognition. In order to learn a robust
person-specific model with minimal demand on new target data,
we propose to use the transfer learning, which can mitigate the
overfitting in the target domain by transferring the informative
knowledge from similar source domains. We deploy and evaluate
different transfer learning algorithms within the context of pain
expression recognition and face AU recognition. Compared to the
traditional methods, the experiment shows that inductive transfer
learning can significantly improve the recognition performance
with a limited number of target samples, through a very efficient
learning procedure. In order to further reduce the dependence on
data collection and labeling, our future work includes extending
the algorithm to make use of the unlabeled data samples or par-
tially labeled data, e.g., only the negative data is available and
labeled.
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