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ABSTRACT

A key assumption of traditional machine learning is that both
the training and test data share the same distribution. How-
ever, this assumption does not hold in many real-world sce-
narios. For example, in facial expression recognition, the
appearance of an expression may vary significantly for dif-
ferent people. Previous work has shown that learning from
adequate person-specific data can improve facial expression
recognition results. However, because of the difficulties of
data collection and labeling, person-specific data is usually
very sparse in real-world applications. Learning from the
sparse data may suffer from serious over-fitting. In this pa-
per, we propose to learn a person-specific facial expression
model through transfer learning. By transferring the infor-
mative knowledge from other people, it allows us to learn an
accurate person-specific model for a new subject with only a
small amount of his/her specific data.

1. INTRODUCTION

In recent years, machine learning approaches have been suc-
cessfully applied to the field of automatic facial expression
recognition. However, many machine learning algorithms
work well only under the assumption that the training and
test data are drawn from the same distribution. In facial ex-
pression recognition, this assumption may hold for some pro-
totypical and posed expressions, such as the “smiling” faces
from the Cohn-Kanade DFAT database [6] (Figure 1(a)). Be-
cause the posed smile is quite consistent across subjects, cur-
rent smile detection systems can easily achieve an accuracyof
97% [13] on the DFAT database (leave-one-subject-out cross
validation). However, the identical-distribution assumption
does not hold for complex and spontaneous expressions, like
the “pain” expressions in the PAINFUL database [8] (Figure
1(b)). This database contains the spontaneous pain expres-
sions of patients with shoulder injuries during their shoulder
movement. We can observe large variation of the pain expres-
sions across different subjects, such as eyes open or closed,
mouth open or closed, etc. Because the training and test data
may not share the same distribution, the performance of pain
detection is worse than that of posed smile detection.

When the appearance of the facial expression changes
across the subjects, learning a person-specific model is likely
to achieve better performance than a generic model. However,
in many real-world applications, it is expensive to collectand
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Fig. 1. (a) The posed smile expressions from DFAT database
[6]. (b) The spontaneous pain expressions from PAINFUL
database [8]. Pain expression has large variation across sub-
jects.

label a large amount of data for a specific new person. Thus,
how to learn the person-specific model with limited person-
specific data becomes a critical problem.

In this paper, we exploit a new promising way to learn
a person-specific model for expression recognition: transfer
learning. Transfer learning represents a family of algorithms
that transfer the informative knowledge from the source data
to the new target domain. In our application, we take the pain
expressions of other subjects as the source data and learn a
person-specific model for a new target subject. We consider
two transfer learning scenarios: inductive transfer learning
(Sec. 3.1) and transductive transfer learning (Sec. 3.2). For
the former, only a small amount of labeled target data are re-
quired to learn the robust target model without over-fitting.
For the latter, the target data does not need to be labeled
hence the data labeling work is entirely avoided. Finally, we
compare various transfer learning algorithms and traditional
learning algorithms in the PAINFUL database, and show sig-
nificant improvement of the inductive transfer learning (Sec.
4).

2. RELATED WORK

Facial expression recognition has made considerable progress
in recent years. A comprehensive review can be found in [16].
However, most of the current expression recognition research
has focused on the posed expression under tightly controlled
laboratory condition. There have been very little work on de-
tecting natural spontaneous facial expression [11, 2] which
may vary significantly across subjects.



An application of spontaneous facial expression recogni-
tion that would be of great benefit is pain/no-pain detection
[7]. For instance, in intensive care units (ICU) [5], the im-
provement in patient outcomes has been achieved by pain
monitoring. Lucey et al. [7] collected the spontaneous pain
database from patients with shoulder injuries. Their pain
detection system achieved 0.751 area under the ROC curve
(AUC) using only appearance features, and achieved the best
performance of 0.839 AUC by combining the shape and
appearance features. In this paper, we propose to further
improve this result through a person-specific pain detector.

Previous work [3, 12] has shown that a person-specific
model out-performs a person-independent model in expres-
sion recognition when adequate person-specific data is avail-
able. However, if only a small number of training images for
a new subject are available, learning a person-specific model
increases the risk of over-fitting. In this paper, we proposeto
address this problem through transfer learning.

Transfer learning aims to extract knowledge from one or
more source domains and improve the learning in the target
domain. It has been applied to a wide variety of applications,
such as object recognition [14], sign language recognitionand
text classification. For more details we refer the reader to the
survey [9]. In this paper, we apply transfer learning algo-
rithms to the task of person-specific facial expression recog-
nition.

3. PERSON-SPECIFIC FACIAL EXPRESSION
RECOGNITION

We first introduce the notation used for the transfer learning
problem we intend to approach. Let’s denote the training data
of a new subject as target dataDT = {(xT,i, yT,i)}i=1..NT

and the training data of other subjects as source dataDS =
{(xS,i, yS,i)}i=1..NS

, wherex ∈ X is in the feature space
andy ∈ {1,+1} is the binary label representing expression
presence/absence.

For person-specific facial expression recognition, the goal
is to learn a classifierfT : xT → yT from the target data
DT . However, since the size of target data (NT ) is very small,
learning fromDT only would suffer serious overfitting prob-
lems. Transfer learning can improve the learning offT by
transferring knowledge from the abundant source dataDS .

3.1. Inductive Transfer Learning Algorithm
In this section, we use the boosting-based inductive trans-
fer learning in [14] to learn the person-specific model. This
framework consists of two phases. In the first phase, the
knowledge of the source data is represented by a large col-
lection of weak classifiers. In the second phase, some of the
weak classifiers are selected to boost the target classifier on
the target data.

This algorithm is summarized in Algorithm 1. Notice that
it transfers the knowledge from multiple sources. The total
number of the source data isNS =

∑M

m=1 Nm. Compared

Algorithm 1 Inductive transfer learning for person-specific
model

input: Source data ofM subjectsD1, ...,DM , whereDm =
{(xm,1, ym,1), ..., (xm,Nm , ym,Nm )}. The target data of a new
subjectDT = {(xT,1, yT,1), ..., (xT,NT

, yT,NT
)}.

output: A person-specific classifier for the target subjecty =
fT (x).
Phase-I Learning a weak classifier setH from source data
D1, ...,DM .
for m = 1 toM do

Initialize the weight vectorw(1)
m = (w

(1)
m,1, ..., w

(1)
m,Nm

)
for k = 1 toK do

Normalize the weight vectorwm to 1.
Find the weak classifierh(k)

m that minimizes the weighted
classification errorε over the data setDm.
Compute the errorε =

∑Nm

i=1 w
(k)
m,i[ym,i 6= h

(k)
m (xm,i)].

α = 1
2
ln 1−ε

ε
.

Update the weights

w
(k+1)
m,i = w

(k)
m,i exp{−αym,ih

(k)
m (xm,i)}.

H← H
⋃

h
(k)
m .

end for
end for
Phase-II Learning a target classifier on target dataDT .
Initialize the weightsw(1)

T = (w
(1)
T,1, ..., w

(1)
T,NT

).
for k = 1 toK do

Normalize the weight vectorwT to 1.
Select one weak classifierh(k)

T from H that minimizes the
weighted classification errorε over the data setDT .

Compute the weighted errorε =

NT∑

i=1

w
(k)
T,i[yT,i 6= h

(k)
T (xT,i)].

α
(k)
T = 1

2
ln 1−ε

ε
.

Update the weightswT,i = wT,i exp{−α
(k)
T yT,ih

(k)
T (xT,i)}.

H← H \ h
(k)
T .

end for
return fT (x) = sign(

∑

k

α
(k)
T h

(k)
T (x))).

to the transfer learning from a single source [4], this multi-
source transfer learning can identify and take advantage of
the sources that closely related to the target, making it less
vulnerable tonegative transferfrom unrelated sources.

Phase-I is the standard Adaboost algorithm run for each
of the source data. The Adaboost classifier includes the weak
classifiers that best discriminate the positive and negative data
for that source. All the weak classifiers learned from source
data constitute a large classifier setH. Phase-II is a variation
of Adaboost on the targetDT . In contrast to the traditional
Adaboost which learns weak classifiers from the target data,
we pick the weak classifiers from the source classifier setH.
Since only the classifiers with the lowest classification rate
onDT are selected, it can ensure thepositive transferof the
knowledge from source to target.



3.2. Transductive Transfer Learning Algorithm
In this section, we apply the transductive transfer learning al-
gorithm in [10] to the facial expression recognition. This ap-
proach is attractive because it can learn the target classifier
without knowing the target labels{yT,1, ..., yT,NT

}, so that
the labeling work for a new subject can be entirely avoided.

The basic idea of transfer learning is to re-use the source
data that is close to the target. Given the labeled source
dataDS = {(xS,i, yS,i)}i=1...NS

and the unlabeled target
dataDT = {xT,j}j=1...NT

, transductive transfer learning
reweights every sample(xS,i, yS,i) in the source data using

the probability ratiow(xS,i) =
pS(xS,i)
pT (xS,i)

, wherepS(x) and
pT (x) are the marginal distributions of the source and the
target, and then the reweighted source data are used to train
the target model.

Here, the sample weightw(x) is approximated by a linear
modelŵ(x) =

∑b

l=1 αlφl(x), whereφl(x) is a basis func-
tion such thatφl(x) ≥ 0 for all x. αl is the parameter to be
estimated.

Thus, the target distribution can be approximated by the
weighted source distribution:̂pT (x) = ŵ(x)pS(x). Trans-
ductive transfer learning minimizes the KL divergence be-
tweenp̂T (x) andpT (x):

KL[pT (x)||p̂T (x)] =
∫
pT (x) log

pT (x)
ŵ(x)pS(x)dx

=
∫
pT (x) log

pT (x)
pS(x)dx−

∫
pT (x) log ŵ(x)dx

. Given the training data, the first term is a constant, we just
need to maximize the second term with respect toŵ(x). (For
more details of this algorithm please refer to [10]).

Finally, we use the weighted source data to train an Ad-
aboost classifier for the target subject, i.e. the sample weights
of the source data are initialized as{ŵ(xS,i)i=1...NS

} in the
AdaBoost learning algorithm.

4. EXPERIMENTAL RESULTS

We tested the transfer learning algorithms on the PAINFUL
database [8], which contains video sequences (totally 48,398
frames) of 25 subjects with shoulder injuries.

Local Binary Pattern (LBP) is used as the facial image
feature in our experiments. We first use the eye locations pro-
vided in the PAINFUL database to crop and warp the face
region to a 128×128 image. Following the method in [1],
this face image is divided into 8×8 small regions and a 59-
dimensionalLBPu2

8,1 feature is extracted from each region.
Superscriptu2 reflects the use of uniform patterns.(8, 1) rep-
resents8 sampling point on a circle of radius of1. These
LBP features are concatenated into a single, spatial enhanced
feature with8× 8× 59 = 3776 dimensions (Figure 2).

Similar to [8], we perform a leave-one-subject-out evalua-
tion on 25 subjects. For the target subject, we use the firstNT

frames of his/her video sequence to learn the person-specific
model via transfer learning and test on the second half of the

Fig. 2. LBP vector is used as the facial image feature.

Table 1. Performance comparison: AUC for different number
of transfer learning data (NT ). ’half’ represents the result
using the first half of the target data for transfer learning.

NT 10 25 50 100 half
Traditional Model-A 0.557 0.684 0.786 0.862 0.893
Traditional Model-B 0.786 0.816 0.819 0.835 0.878
Inductive Transfer 0.782 0.821 0.880 0.891 0.895

Transductive Transfer 0.756 0.755 0.765 0.756 0.760

Generic Model (Baseline) 0.769

sequence. The number of frames in the sequence varies from
518 to 3360.

We compare the generic model and four different person-
specific models as follows.Generic modelis the Adaboost
classifier learned from the source data of 24 subjects. This
is our baseline algorithm.Traditional person-specific Model-
A is a Adaboost classifier learned only from the target data
without transfer learning.Traditional person-specific Model-
B is a Adaboost classifier learned from a combined dataset of
both the source data and the target data.Inductive transfer
model is learned using Algorithm 1.Transductive transfer
model is learned using the algorithm in Sec. 3.2. Each of
the above models consists of 50 weak classifiers. When the
number of training samples is 50, the ROCs of these models
are shown in Figure 3. The results with different number of
training samples are summarized in Table 1.

For the traditional person-specific Model-A, we learn the
Adaboost classifier only from the person-specific target data.
This model suffers serious over-fitting when the target data
is limited (AUC is 0.557 when the number of target data is
10). Its performance can be improved by adding more train-
ing data, but it is always worse than inductive transfer learn-
ing. When using adequate training data (i.e. half of the target
data), its performance is close to inductive transfer learning.

For the traditional person-specific Model-B, the classifier
is learned from a combined data-set that consists of both the
source and the target data. Because we have a large amount
of training data, over-fitting problem can be avoided. How-
ever, because this classifier focuses on the combined data-set,
its performance on the target data is not as good as Model-
A when the target data is sufficient. Furthermore, since the
training data size is very large, the learning process is very
time consuming. We list the average training time for person-
specific models in Table 2.

The inductive transfer learning achieves the best perfor-
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Fig. 3. ROCs whenNT = 50.

Table 2. Average time for training a person-specific model.
Traditional Model-A 2.6 min
Traditional Model-B 14.3 min
Inductive Transfer Model 0.16 min
Transductive Tranfer Model 17.6 min

mance among person-specific models. It out-performs the
baseline with a small number of target training data (AUC is
improved from 0.769 to 0.782 with only 10 samples) and its
performance increases significantly when adding more train-
ing samples (AUC=0.891 with 100 target samples). Further-
more, because inductive transfer learning does not need to
train new weak classifiers, it is the fastest algorithm in Table
2, which makes it suitable for rapid retraining for a new target.

For the transductive transfer learning, we didn’t observe
any improvement even with adequate training data. A pos-
sible reason is that the boosting classifier is not sensitiveto
the marginal distribution change. In [15], the classifiers are
grouped into two categories:local classifiers, which depend
only on P (y|x), and global classifiers, which depend on
bothP (y|x) andP (x). In our transductive transfer learning,
we only reweight the source data to approximate the target
marginal distributionPT (x). Since the AdaBoost classifier
tends to be a local learner, this tranductive transfer may not
work.

The training and testing time of an Adaboost classifier is
proportional to its number of weak classifiers. An efficient
algorithm can learn a good AdaBoost classifier with fewer
weak classifiers. Figure 4 depicts the performance of different
algorithms with different number of weak classifiers. It shows
that inductive transfer learning can achieve good performance
(AUC=0.818) with only five weak classifiers, which further
confirms its efficacy.

5. CONCLUSION

This work exploits the idea of learning a person-specific
model to improve facial expression recognition. In order to
learn a robust person-specific model with minimal new data
input, we propose to use the transfer learning, which can mit-
igate the overfitting in the target domain by transferring the
informative knowledge from similar source domains. We de-
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Fig. 4. AUC of different models with different number of
weak classifiers whenNT = 50.

ploy and evaluate different transfer learning algorithms within
the context of pain expression recognition. Compared to the
traditional methods, the experiment shows thatinductive
transfer learningcan significantly improve the recognition
performance with a limited number of target samples.
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