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When training and testing data are drawn from different distributions, most statistical models need to be
retrained using the newly collected data. Transfer learning is a family of algorithms that improves the
classifier learning in a target domain of interest by transferring the knowledge from one or multiple
source domains, where the data falls in a different distribution. In this paper, we consider a new scenario
of transfer learning for two-class classification, where only data samples from one of the two classes (e.g.,
the negative class) are available in the target domain. We introduce a regression-based one-class transfer
learning algorithm to tackle this new problem. In contrast to the traditional discriminative feature selec-
tion, which seeks the best classification performance in the training data, we propose a new framework to
learn the most transferable discriminative features suitable for our transfer learning. The experiment
demonstrates improved performance in the applications of facial expression recognition and facial land-
mark detection.

� 2013 Published by Elsevier B.V.
1. Introduction

A common assumption in traditional machine learning algo-
rithms is that the training and testing data share the same distribu-
tion. However, this assumption may not hold in many real-world
applications. When the distribution changes, most statistical mod-
els need to be retrained using the newly collected data. In order to
reduce the burden of recollecting and relabeling training data, the
transfer learning framework is introduced (Pan and Yang, 2010;
Yao and Doretto, 2010; Dai et al., 2007).

Transfer learning (TL) represents a family of algorithms that
transfer the informative knowledge from a source domain,1 where
the training data is adequate, to a target domain, where the data is
limited and follows a different distribution. For example, the concept
of transfer learning has been explored extensively in speech recogni-
tion (Kuhn et al., 1998; Leggetter and Woodland, 1995). While the
speech recognizer is trained on a large training set, its performance
on a new target speaker can be poor due to the variability of human
voices. On the other hand, the speeches from different speakers
share many similarities. A typical TL application is speaker-
adaptation, which adapts the generic speech recognition model to
a new target speaker using a small amount of data collected from
that speaker. Similarly, in facial expression recognition it is benefi-
cial to adapt a generically trained expression model to a new person
through TL.

In this paper, we focus on the two-class classification problem.
Conventional TL algorithms assume that data samples from both
positive and negative classes are available in the target domain
(Chen et al., 2013). In contrast, we study a new TL setting, where
only one-class data (e.g., negative data) is available in the target
domain. This setting is in sharp contrast from previous TL
algorithms, but is not uncommon in real-world applications. For
example, in pain expression recognition, as shown in Fig. 1, a
new subject has to enact the pain expression for the collection of
the positive data in the target domain. This process is unnatural
and cumbersome for the user, and this posed expression may be
different from the spontaneous expression in the actual system
execution. On the other hand, collecting the negative data (e.g.,
non-pain expression) of a new subject is much easier. Note that
non-pain expression represents any natural expressions other than
pain. The most common non-pain expression is neutral expression.

Motivated by this, we propose a regression-based algorithm to
address this one-class transfer learning problem. Using the training
data of one available class, we use a regressor to predict the other
unknown class. Unlike the conventional imputation approach
where a regressor predicts data samples, our regressor intends to
predict the distributions of one class from another. The general
assumption of transfer learning (Pan and Yang, 2010) is that the
target and source data are different but somehow related. For
example, they can share the model parameters (Yao and Doretto,
2010) or part of the training data (Dai et al., 2007; Zadrozny,
2004). In our algorithm, the basic assumption is that the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2013.07.017&domain=pdf
http://dx.doi.org/10.1016/j.patrec.2013.07.017
mailto:chenji@ge.com
http://dx.doi.org/10.1016/j.patrec.2013.07.017
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


Fig. 1. Illustration of transfer learning with one-class data in pain expression recognition. Traditional classifier (solid line) is learned from the training data of different
subjects and applied on a new subject. Our algorithm takes a few one-class data samples (e.g., negative samples) of the new subject and learns a new classifier. Here, þ and �
denote positive data samples (e.g., pain expression) and negative data samples (e.g., non-pain expression) respectively. Different colors represent different subjects. �
represents the negative data in a target domain (e.g., a new subject). (For interpretation of the references to colour in this figure caption, the reader is referred to the web
version of this article.)
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relationship between the positive and negative distributions is
shared by the target domain and the source domain.

The main contributions of this paper are as follows:

(1) We identify the novel problem of transfer learning using
one-class, rather than two-class, data in the target domain.
This has not been addressed before, but exists in many
real-world applications.

(2) We propose a regression-based algorithm to address this
problem. Because the success of our TL algorithm depends
on both the classifier and the regressor, we propose a new
approach to select the most transferable features, which are
not only discriminative, but also favorable to the regressor.

(3) We design new application scenarios where the target
domain performance can be improved using the readily
available one-class data, such as the non-pain expression
in the beginning of face videos, and the initial negative patch
in facial landmark detection.

2. Related work

TL aims to extract the knowledge from one or more source do-
mains and improve learning in the target domain. It has been ap-
plied to a wide variety of applications, such as object recognition
(Yao and Doretto, 2010; Kulis et al., 2011), sign language recogni-
tion (Farhadi et al., 2007), and text classification (Wang et al.,
2008).

We denote the source domain data as DS ¼ fðxS;1; yS;1Þ;
. . . ; ðxS;NS ; yS;NS

Þg and the target domain data as DT ¼ fðxT;1; yT;1Þ;
. . . ; ðxT;NT ; yT;NT

Þg, where x 2 X is in the feature space and
y 2 f�1;þ1g is the binary label. Given these labels, the target
and source data can be divided into positive and negative data
respectively, i.e., DS ¼ fD�S ;D

þ
S g and DT ¼ fD�T ;D

þ
T g.

The conventional TL algorithm can be categorized into three
settings (Pan and Yang, 2010). In inductive TL (Dai et al., 2007;
Yao and Doretto, 2010; Yang et al., 2007), both the source data
DS and the target data DT are available. The goal is to learn the
target classifier fT : xT ! yT . However, when the size of target train-
ing data DT is very small, i.e., NT � NS, learning fT solely from DT

may suffer serious overfitting problems. TL remedies this problem
by using knowledge from the source data DS. TrAdaBoost (Dai et al.,
2007) attempts to utilize the ‘‘good’’ source data, which is similar
to the target data, to improve the target Adaboost classifier. Yao
and Doretto (2010) extend TrAdaBoost to cases where abundant
training data is available for multiple sources. They propose a
mechanism to select the weak classifiers from the source that ap-
pears to be most closely related to the target. Kulis et al. (2011)
propose a domain adaption approach for object recognition. From
the labeled object categories, they learn a non-linear transforma-
tion for transferring the data points from the source to the target
domain. Chen et al. (2013) propose to use inductive TL to learn a
person-specific model for facial expression recognition. In this pa-
per, we learn a person-specific model using only one-class data
(negative data). Inductive TL cannot be applied in this setting
directly.

In transductive TL (Zadrozny, 2004; Huang et al., 2006; Sugiy-
ama et al., 2007; Si et al., 2010), the source and target data are
available, but only the source data has labels. Transductive TL uti-
lizes the unlabeled target data to ‘‘shift’’ or ‘‘adapt’’ the model in
the source domain to the target domain. In the literature, transduc-
tive TL is closely related to dataset shift (Quiñonero Candela J. et al.,
2008; Sugiyama et al., 2007), importance reweighting (Cortes
et al., 2010; Loog, 2012; Ren et al., 2011; Zadrozny, 2004; Huang
et al., 2006) and domain adaptation (Daumé and Marcu, 2006;
Gopalan et al., 2011). Because the classifier fT cannot be learned
directly from the unlabeled target data, a common approach is to
shift or reweight the labeled source data, from which a target clas-
sifier can be learned. Zadrozny (2004) proposes to estimate the
source and target marginal distribution PSðxSÞ; PTðxTÞ indepen-
dently and uses the probability ratio PT ðxSÞ

PSðxSÞ
to reweight the source

data. Huang et al. (2006) and Sugiyama et al. (2007) propose differ-
ent algorithms to estimate this weight directly. The learning bound
of this importance weighting approach is analyzed by Cortes et al.
(2010). In the computer vision community, Gopalan et al. (2011)
propose to learn a domain shift from the source subspace to the
target subspace in Grassmann manifold, and project the labeled
source data to a subspace close to the target domain. Another ap-
proach for transductive TL is to incorporate the unlabeled target
data of the source domain into the training. Si et al. (2010) propose
to use the unlabeled target data as a regularization term in the dis-
criminative subspace learning, so that the learned subspace can
generalize to the target domain.

Finally, the unsupervised TL, such as Dai et al. (2008), is applied
to a unsupervised learning task, such as clustering or dimensional-
ity reduction, when both the target label and the source label are
not available.

This paper studies a new setting of TL, where only one-class
data, D�T or DþT , is available in the target domain, but two-class data,



Algorithm 2. One-Class (Negative) Data Transfer Learning

input: Data of M sources D1; . . . ;DM , where
Dm ¼ ðxm;1; ym;1Þ; . . . ; ðxm;Nm ; ym;Nm

Þ
� �

.
The target negative data D�T . The discriminative features and

their weights ff ðkÞ;aðkÞgk¼1::K .
output: The classifier for the target domain y ¼ HTðxÞ.
for m ¼ 1 to M do

for k ¼ 1 to K do
Estimate the distributions fp�m;f ðkÞ ; p

þ
m;f ðkÞ g of the feature f ðkÞ

using Dm.
end for

end for
Given the distributions of M sources, learn the regressors:
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D�S and DþS , are available in the source domain. To the best of our
knowledge, this one-class TL problem has not been addressed in
the literature. It is related to but different from the following
topics:

� In transductive TL the target data is unlabeled but includes both
positive and negative data, whereas in one-class TL the target
data is extremely unbalanced, i.e., either positive or negative
data is available.
� Similarly, semi-supervised learning utilizes a small amount of

labeled data and a large amount of unlabeled data, which
includes both positive and negative data.
� One-class SVM (Schölkopf et al., 2001) focuses on a one-to-

many classification problem where we only have the training
data of one target class. One-class SVM attempts to learn a tight
hyper-sphere to include most target examples. In our one-class
transfer learning, we focus on a binary classification problem in
the target domain. Although only one-class data is available in
the target domain, both classes are available in the source
domain. Furthermore, unlike TL, one-class SVM does not con-
sider the difference between the source and target domains.
� Similar to one-class SVM, PU-learning (Liu et al., 2003) or par-

tially supervised learning (Liu et al., 2002) only has one-class
(positive) labeled data. However, it also needs a large set of
unlabeled data, from which the reliable negative samples can
be selected and utilized in learning.

3. One-class transfer learning

Typically TL algorithms start with a base classifier learned from
the source domain data DS.2 This base classifier is then updated to a
target classifier with target data. For example, in Dai et al. (2007) and
Yao and Doretto (2010) the target boosted classifier is adapted from
weak classifiers learned from the source data. In Duan et al. (2010)
and Yang et al. (2007), the target classifier is adapted from existing
SVMs from source data. The Adaboost classifier has been very popu-
lar in the vision community due to its simplicity and power to gen-
eralize well. For these reasons, we choose the Adaboost classifier
(Bishop, 2006) as our base classifier.

3.1. Learning the base classifier from source data

Adaboost produces a strong classifier by combining multiple
weak classifiers, such as trees or simple stumps (Friedman et al.,
2000). Considering that a weak classifier will be updated with
the distribution of the target data, we designed a specific form of
weak classifier, which solely depends on the distribution of the
positive and negative data. Here, a input data vector
x ¼ ðx1; x2; . . . ; xFÞT is composed of F features, and we model the
distribution of each feature as a Gaussian distribution. The proba-
bility density function (PDF) of the fth feature xf is

pf ðxÞ ¼ pðxf ;lf ;rf Þ ¼
1

rf

ffiffiffiffiffiffiffi
2p
p exp �

ðxf � lf Þ
2

2r2
f

( )
: ð1Þ

The weak classifier of the fth feature is shown in Eq. 2 of
Algorithm 1.

In the source domain, since data from two classes are available,
we can directly learn the Adaboost classifier as shown in Algorithm
1. Please note that each weak classifier is associated with a feature.
Hence, a byproduct of the classifier learning is a set of the most dis-
criminative feature with minimal error ff ðkÞgk¼1::K .
2 Some transductive TL algorithms (Zadrozny, 2004; Daumé and Marcu, 2006)
focus on the transfer of marginal distribution pðxÞ. These algorithms are based on
generative models without using a base classifier.
Algorithm 1. Adaboost classifier learning from the source
data.

input: Source data DS ¼ ðx1; y1Þ; . . . ; ðxN; yNÞf g, where x 2 RF

and y 2 f�1;þ1g.
output: The classifier y ¼ HðxÞ.
Initialize the weights wð1Þ1 ; . . . ;wð1ÞN ¼ 1

N.
for k ¼ 1 to K do K is the number of weak classifiers.

for f ¼ 1 to F do F is the number of features.
Estimate the distributions of positive and negative classes

for the fth feature fpþf ; p
�
f g

3

Specify the weak classifier as:

hf ðxÞ ¼ sign log
pþf ðxÞ
p�f ðxÞ

" #
: ð2Þ

Compute the weighted error: eðkÞf ¼
PN

i¼1wðkÞi I hf ðxiÞ – yi

� �
,

where I hf ðxiÞ– yi

� �
is the indicator function, which equals 1 when

hf ðxiÞ – yiand 0 otherwise.
end for
Find the most discriminative feature with the minimal

error: f ðkÞ ¼ arg minf e
ðkÞ
f .

Set aðkÞ ¼ 1
2 ln ð1� eðkÞf ðkÞ Þ=e

ðkÞ
f ðkÞ

h i
.

Update the weights: wðkþ1Þ
i ¼ wðkÞi exp aðkÞI hf ðkÞ ðxiÞ – yi

� �n o
.

end for

return HðxÞ ¼ sign
P

kaðkÞhf ðkÞ ðxÞ
h i

.

As the first attempt to address the one-class TL problem, we use
a uni-modal Gaussian for simplicity, and use the feature tuning ap-
proach in Section 4.1.1 to convert a multi-modal distribution to an
uni-modal distribution. This method works well in our experi-
ments. More complex data can be approximated by a mixture of
Gaussians but with the cost of increased model complexity.

3.2. One-class transfer learning from target data
3 Because the PDF of a Gaussian distribution is determined by its parameters l and
r, we use its parameters to denote this PDF for simplicity. For instance, the PDFs of
positive and negative data distributions of the fth feature are denoted as
pþf ¼ ðl

þ
f ;r

þ
f Þ and p�f ¼ ðl�f ;r�f Þ.



Algorithm 2. One-Class (Negative) Data Transfer Learning

pþf ðkÞ ¼ Rf ðkÞ ðp�f ðkÞ Þ.
for k ¼ 1 to K do

Estimate the negative distribution p�T;f ðkÞ from D�T .

Predict the positive distribution p̂þT;f ðkÞ ¼ RðkÞf ðp
�
T;f ðkÞ Þ.

Specify the weak classifier as: hT;f ðkÞ ðxÞ ¼ sign log
p̂þ

T;f ðkÞ
ðxÞ

p�
T;f ðkÞ

ðxÞ

	 

.

end for

return HTðxÞ ¼ sign
P

kaðkÞhT;f ðkÞ ðxÞ
h i

.

4 We estimate one regressor for each feature f. Subscript f is ignored for simplicity
Because the variance estimation is not robust given the limited number of the targe
data, we only learn the regressor from the negative mean to the positive mean
lþ ¼ Rðl�Þ. We assume the variances of the target and source data are the same
which are estimated from all the source data.
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In the above section, we learn the AdaBoost classifier from the
positive and negative distributions of the source domain data. This
classifier consists of the selected discriminative features and their
weights ff ðkÞ;aðkÞg and the distributions of these features
fpþ

f ðkÞ
; p�f ðkÞ g. In the TL setting interested to us, the main objective

is to update the base classifier given the one-class data from the
target domain. One intuitive approach to achieve this objective is
to only update the distributions of the selected features based on
the target data, while maintaining the feature selection and their
associated weights. Since only one-class target data is available,
we employ a regressor to predict the distribution of the other class
in the target domain. In order to learn this regressor, we assume
that the source data can be divided into multiple sources
DS ¼ fD1; . . . ;DMg, e.g., the training data of facial expression recog-
nition is from multiple subjects.

Algorithm 3 summarizes the regression-based method to up-
date the model with only negative data D�T in the target domain.
The transfer learning with positive data is the same by switching
the label. Fig. 2 depicts the diagram of this one-class transfer
learning.

Algorithm 3 is composed of two steps. The first step estimates
the positive and negative distributions fp�m; pþmgm¼1::M of M sources,
which are then used as the training data to learn the regressor R
between the positive and negative distributions,4 p̂þ ¼ Rðp�Þ, with
a Gaussian Process Regression (GPR) (Rasmussen and Williams,
2005).

GPR is a non-parametric regressor and has proven its effective-
ness in a wide range of applications, such as gaze estimation (Sug-
ano et al., 2010) and object categorization (Kapoor et al., 2007).
Here, we assume a noisy observation model pþm ¼ gðp�mÞ þ �m,
where each pþm is a function of gðp�mÞ perturbed by a noise term
�m ¼ Nð0;r2Þ. We set the noise variance r2 as the variance of pþ

in the training data, and gðp�mÞ is assumed to be a Gaussian process
with a covariance function:

kðp�m;p�l Þ ¼ expð�kp�m � p�l k
2Þ: ð3Þ

With this assumption, given the training data fp�m;pþmgm¼1::M and a
new p�, the distribution of pþ can be derived as a Gaussian distribu-
tion, and we use its mean as the regression output:

p̂þ ¼ Rðp�Þ ¼ k̂TðKþ SÞ�1g; ð4Þ

where K and S are M �M matrices whose entries are kðp�m;p�l Þ and
r2dml respectively, and k̂ and g are M-dimensional vectors whose
entries are kðp�;p�mÞ and pþm respectively. Here m and l are both
.
t
:
,

matrix indexes from 1 to M. In the training of this non-parametric
GPR, we only need to estimate the covariance matrix K from the
training data.

In the second step, we estimate the distribution p�T from the
negative target data, and predict the positive distribution p̂þT based
on Eq. (4). Finally, the weak classifiers are updated using p�T and p̂þT .

Notice that we are still using the discriminative features learned
from the training data (Algorithm 1), and only update the distribu-
tions of selected features. In the next section, we will take one step
further and update this feature set with the novel transferable
features.

3.3. Learning the transferable features

Algorithm 3. Boosting the transferable features.

input: Data of M sources D1; . . . ;DM , where
Dm ¼ ðxm;1; ym;1Þ; . . . ; ðxm;Nm ; ym;Nm

Þ
� �

.
output: Transferable features and their weights
faðkÞ; f ðkÞgk¼1::K .

Step 1. Predict the positive distributions of M sources
for f ¼ 1 to F do

for m ¼ 1 to M do
Estimate the distributions fp�m;f ; p

þ
m;f g of the fth feature

using Dm.
end for
for m ¼ 1 to M do

Learn a regressor pþ ¼ Rm;f ðp�Þ using other sources
fp�l;f ; p

þ
l;f gl¼1;::;m�1;mþ1;::;M

.

Predict the positive distribution p̂þm;f ¼ Rm;f ðp�m;f Þ.
end for

end for
Step 2. Boosting transferable discriminative features

Initialize the weights wð1Þ1 ; . . . ;wð1ÞM of M sources, where

wm ¼ ðwm;1; . . . ;wm;NmÞ
T .

for k ¼ 1 to K do
for f ¼ 1 to F do

Specify the weak classifier as: hm;f ðxÞ ¼ sign log
p̂þ

m;f
ðxÞ

p�
m;f
ðxÞ

	 

.

Compute the weighted error:

eðkÞf ¼
PM

m¼1
PNm

i¼1wðkÞm;iI hm;f ðxm;iÞ– ym;i

� �
.

end for
Find the feature f ðkÞ that minimizes the weighted error:

f ðkÞ ¼ arg minf e
ðkÞ
f .

Set aðkÞ ¼ 1
2 ln ð1� eðkÞf Þ=e

ðkÞ
f

h i
.

Update the weights:

wðkþ1Þ
m;i ¼ wðkÞm;i expfaðkÞI hm;f ðxm;iÞ– ym;i

� �
g.

end for
return faðkÞ; f ðkÞgk¼1::K .
In Algorithm 1, the discriminative features are selected based
on the positive and negative distributions of the source data. In
contrast, for Algorithm 3, the positive distribution of the target do-
main is predicted through a set of regressors. Since the true posi-
tive distribution of the target data may be different from the
predicted one, these features can be less than optimal for the clas-
sification task in the target domain. Hence, to remedy this issue, we



Fig. 2. Diagram of one-class transfer learning.
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propose a new algorithm to select the transferable features which
are especially designed for the one-class transfer learning setting
(Algorithm 3).

Algorithm 3 consists of two steps. In the first step, for each
source domain, we estimate the negative distribution from data
and predict the positive distribution using a regressor trained from
other M � 1 source domains. This leave-one-source-out regressor
actually simulates the regression step to be performed in the target
domain during transfer learning. We repeat it for M sources to ob-
tain the negative distributions and the predicted positive distribu-
tions fp�m; p̂þmgm¼1::M .

The second step is similar to the discriminative feature selection
in Algorithm 1. However, we use the predicted positive distribu-
tion p̂þm, rather than the true positive distribution pþm, to learn the
weak classifier. Compared to the discriminative feature, this step
is consistent with our negative transfer learning which updates
the weak classifiers based on the predicted positive distribution.
Thus, the selected features are expected to be more suitable for
the transfer learning task.
Fig. 3. Diagram of one-class transfer learni
Please note that after Algorithm 3 outputs the selected transfer-
rable features and their weights faðkÞ; f ðkÞgk¼1::K , we use Algorithm 3
to train the target model. The whole transfer learning procedure
with transferable features is shown in Fig. 3. Comparing Fig. 3 with
Fig. 2, the discriminative features are replaced with the transfer-
able features.
4. Experiments

In this section, we demonstrate the efficacy of our transfer
learning algorithms in two applications: pain expression recogni-
tion and facial landmark detection.

4.1. Pain expression recognition

Previous approaches (Cohen et al., 2003; Valstar et al., 2011)
have shown that a person-specific model significantly outperforms
a generic model when adequate person-specific data are available.
ng with transferable feature selection.



Fig. 4. LBP feature extraction and feature tuning.
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However, for pain recognition, person-specific positive data is dif-
ficult to collect unless some severe conditions induce pain.

Our one-class transfer learning only needs a few negative sam-
ples to train the target model. We use the UNBC-McMaster Shoul-
der Pain Expression Archive database (Lucey et al., 2011a) for
experiments. This database contains the spontaneous pain expres-
sion of 25 subjects with shoulder injuries during their shoulder
movement. It includes 203 video sequences (totally 48;398
frames). Each frame is labeled with a pain intensity (PI) from 0
to 16. The frames with PI > 0 are labeled as positive data, and
the rest frames are labeled as negative data.

4.1.1. Feature extraction
Local Binary Pattern (LBP) is used as the facial image feature be-

cause of its efficiency and effectiveness in facial expression recog-
nition (Shan et al., 2009). Following the method in Ahonen et al.
(2006), we first use the eye locations to crop and warp the face re-
gion to a 128� 128 image. This face image is divided into 8� 8
blocks. For each block, we extract a LBP histogram with 59 bins
(please refer to Ahonen et al. (2006) for details). Finally, the LBP
histograms from image blocks are concatenated into a spatially en-
hanced LBP feature with 59� 8� 8 ¼ 3776 dimensions.

Notice that our weak classifier design assumes the uni-modal
Gaussian distribution of the positive and negative data. In order
to handle the multi-modal distribution in real-world data, we ap-
ply the feature ‘‘tuning’’ approach (Collins et al., 2005) to the LBP
features. This tuning step maps the feature value to the likelihood
ratio of positive versus negative: LðxÞ ¼ log maxfpþðxÞ;dg

maxfp�ðxÞ;dg, where x is the
original feature value, LðxÞ is the tuned feature value, pþðxÞ and
p�ðxÞ are the positive and negative distributions, and d is a small
value. We tune each dimension of the LBP feature independently.
After feature tuning, the positive and negative data follow two sep-
arable uni-modal distributions, as shown in Fig. 4.

4.1.2. Pain recognition results
Similar to Lucey et al. (2011a), we perform a leave-one-subject-

out cross evaluation on 25 subjects, i.e., iteratively taking one sub-
ject as the target data for testing and the remaining 24 subjects as
the source data for training.

For our one-class transfer learning, the testing process on the
target subject is shown in Fig. 1. To simulate the real-world
application, we test on each video sequence separately. For each
sequence, we assume the first few frames are non-pain expression
and use those frames as negative target data. This assumption
works well in real-world expression recognition systems because
in real life people exhibit non-pain expression most of the time,
and usually have non-pain expression when starting to use the sys-
tem. In the pain database, there are 194 out of 203 sequences start-
ing with at least 15 neutral frames. In our test, we divide each
sequence into two halves. The negative frames from the first half



Table 1
AUC for one-class transfer learning using different number of negative data samples N.

N 5 10 15 Quarter Half

TransModel 0.756 ± 0.007 0.776 ± 0.006 0.783 ± 0.006 0.786 ± 0.006 0.795 ± 0.006
FeatureTransModel 0.773 ± 0.007 0.799 ± 0.006 0.802 ± 0.006 0.804 ± 0.006 0.820 ± 0.006
Generic Model 0.771 ± 0.007

5 The upper-bound of the uncertainty of AUC is computed by r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AUCð1�AUCÞ
minðnþ ;n�Þ

q
(Cortes and Mohri, 2004), where nþ ;n� are the number of positive and negative
testing data samples.
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are used for transfer learning, and we test on the second half. The
number of frames for each sequence varies from 66 to 683, with an
average of 238.

The first experiment compares the performance of five
algorithms:

� GenericModel is a baseline approach using the source data to
train a generic Adaboost classifier (Algorithm 1);
� TransModel is learned using the transfer learning algorithm as

described in Algorithm 3. It shares the same feature set as Gen-
ericModel, but its positive and negative distributions are
updated with the target data;
� FeatureTransModel uses Algorithm 3 to select the transferable

features, and Algorithm 3 to update the distributions;
� InductTransModel is an state-of-the-art inductive transfer learn-

ing algorithm (Yao and Doretto, 2010) utilizing both positive
and negative data in the target domain. We use the parameter
transfer learning as described in Yao and Doretto (2010).
� DataTransModel is a naive data transfer learning algorithm that

directly combines the negative target data with all positive
source data and learn an Adaboost classifier. This algorithm
uses the same data as TransModel and FeatureTransModel use.

All five classifiers use the same number (400) of weak classifiers.
The ROC curves of the above algorithms are shown in Fig. 5. The
area under ROC curves (AUC) is 0:771 for GenericModel, 0:795 for
TransModel, 0:820 for FeatureTransModel, 0:895 for InductTrans-
Model, and 0:753 for DataTransModel.

First, we notice that DataTransModel is even worse than the
generic model, because we only update the negative data distribu-
tion using the negative target data, without considering the trans-
fer of the positive data distribution. Second, we can see that the
one-class transfer learning can improve the generic model. With
the discriminative feature, transfer learning improves the baseline
slightly, but with the selected transferable features, the AUC is im-
proved significantly from 0:771 to 0:82. The state-of-the-art pain
recognition system (Lucey et al., 2011b) achieved AUC=0:751 using
appearance features, and achieved AUC ¼ 0:839 by combining two
difference normalized appearance features and a shape feature.
Compared to Lucey et al. (2011b), our algorithm needs neutral
expression for transfer learning, and can achieve comparable result
by only using appearance features.

Note that it is not a fair comparison between InductTransModel
and one-class transfer learning, because the former uses both posi-
tive and negative target data. Hence, it may be viewed as a loose
upper-bound of our methods. There are two inductive transfer
learning algorithms, i.e., instance-transfer and parameter-transfer
in Yao and Doretto (2010). Both of them select weak classifiers
based on the error rate in the target data. If only negative target
data is available, they tend to select weak classifiers to classify
all the data as negative, so that the classification error on training
data is zero, but the error on the testing data is very large. When
N ¼ half , the AUC is 0:54 for InductTransModel with negative target
data only.

Although the negative data samples are usually easy to collect,
we would like to use as fewer data samples as possible in practical
applications. To evaluate the effect of the transfer learning data
size, we select the first N negative frames from the testing se-
quence N ¼ 5;10;15; quarter;half . For quarter and half, we use all
the negative frames from the first quarter or the half of the testing
sequence for transfer learning. Table 1 shows the AUC5 of the trans-
fer learning algorithms using different numbers of negative data
samples N. Compared to GenericModel, FeatureTransModel can im-
prove the AUC from 0:771 to 0:802 with the first 15 negative frames,
which is less than 1 s of the video clip.

Our transfer learning is very efficient, since it only needs to
compute the mean of the target data. It runs in real time
(< 30 ms) on a PC with 3:2 GHz CPU. For algorithm training, the
transferable feature selection is time consuming (� 25 min), but
it is only slightly slower than the generic model training
(� 21:5 min).

4.1.3. Comparison of two feature sets
As we discussed in Section 3.3, transferable feature selection is

optimal for our regression-based transfer learning. To demonstrate
the efficacy of transferable features, we compare them with the
discriminative features (Algorithm 1) regarding their classification
and regression accuracy. The top 1;5;10;20;50;100;200 and 400
features selected by two different methods are compared. To eval-
uate the regression accuracy we compare the predicted positive
mean (l̂þ) and the true mean (lþ) of the positive data.6 The aver-

age regression error for top N features is: 1
N

PN
i¼1jl̂þi � lþi j. The

regression and classification errors are shown in Fig. 6.
We observe that the top transferable features are better than

discriminative features in both classification and regression tasks.
We also observe that the top selected features have larger regres-
sion errors than the features selected later. That is because a fea-
ture is selected based on its classification ability. The top features
tend to have both larger data variances and larger distances be-
tween positive and negative data. The large regression error may
be due to the large data variance. Considering the variance of the
positive and negative data, we use the metric DD to measure the

regression performance: DD ¼ 1
N

PN
i¼1

jl̂þ
i
�lþ

i
j

rþ
i
� jl̂

þ
i
�l�

i
j

r�
i

� �
, where lþ;�i

and rþ;�i are the mean and standard deviation of the positive and
negative distribution respectively. This metric is the average differ-
ence between the normalized distance from the positive mean and
the normalized distance from the negative mean. DD gets smaller
when l̂þi is closer to lþi and further from l�i . As shown in Fig. 6,
the top transferable features have much smaller DD compared to
discriminative features. Please notice that DD is negative because
l̂þi is always closer to lþi than to l�i . This means that the predicted
positive mean is not only close to the true positive mean but also
far from the true negative mean. This also explains why these
transferable features yield better classification results.

4.2. Facial landmark detection

Face alignment aims to estimate the location of a set of facial
landmarks (e.g., eye corner, mouth corner) on a given image by
6 Positive data is only used for this evaluation. It is not available in the test run.
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Fig. 6. Comparison of the transferable feature and the discriminative feature.

Fig. 7. Detection results for the generic LAM (a) and LAM with transfer learning (b). The red circle is the ground-truth. The red cross is the detection result. The green cross
and stars represent the initial position and positions to extract negative transfer learning data. (For interpretation of the references to colour in this figure caption, the reader
is referred to the web version of this article.)

7 http://www.pittpatt.com/
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using a supervisely learned model (Matthews and Baker, 2004; Liu,
2009). One popular model is the Active Shape Model (Cristinacce
and Cootes, 2007), which employs a set of local appearance models
(LAMs) to localize each landmark independently, and then uses a
global shape model to constrain the solution. Taking the eye corner
as an example, during the training procedure, its LAM is discrimi-
natively learned from the positive data (patch extracted from la-
beled ground-truth location) and the negative data (patch
extracted from the neighboring locations). During the testing pro-
cess, given an initial location, LAM will be applied to all candidate
locations within a neighborhood, and the maximum classifier score
will determine the estimated eye corner location. Since the LAM is
critical to the alignment performance, we apply transfer learning
to improve its performance. We view the generic training data as
the source domain and the given test image as the target domain.
Hence, the local patches around the initial location of the test im-
age are negative samples of the target domain.

We use the Labeled Face Parts in the Wild (LFPW) database
(Belhumeur et al., 2011), which includes images under a wide
range of head poses, light conditions, and image qualities. A total
of 35 fiducial landmarks are manually labeled in each face image.
Our experiment only focuses on the LAM of the left eye corner,
but the algorithm can be applied to other landmarks as well.

As the eye corner appearance varies substantially cross different
images, a generic eye corner LAM may not work well for an arbi-
trary unseen face image. In contrast, adapting the generic LAM
using the specific image characteristics embodied in the negative
data might result in a better LAM for this particular test image.

We randomly split 1135 images from LFPW into 200 training
images and 935 testing images. First, all the images are rotated
and scaled based on the labeled eye positions. Since each image
is labeled four times by different labelers, we extract four
15� 15 patches as the positive samples and randomly select 7 neg-
ative positions around ground-truth to extract negative samples.
Each 15� 15 patch is reshaped to a 115-dimensional vector and
tuned using the same feature tuning method as described in Sec-
tion 4.1.1. Similarly, we can extract the positive and negative data
from testing images.
First, we train a generic eye corner LAM from training data
using Algorithm 1. However, this classifier performs poorly on
the testing data (AUC ¼ 0:613� 0:011). Since this classifier works
well on the training data (AUC ¼ 0:940� 0:008), this poor testing
result is contributed by the large variation between the training
and testing data. To address this problem, in each testing image,
we extract 5 negative examples around the initial landmark loca-
tion, and use our one-class transfer learning algorithm to update
the classifier. This updated classifier improves the AUC to
0:665� 0:011.

To test our classifiers for eye corner detection, we start from an
initial eye corner position, which is detected by the PittPatt face-
eye detector,7 and search a neighborhood around the initial position
to find the maximal classifier output as our detection result. For our
transfer learning, we randomly extract a few negative examples
around the initial position to update the classifier. An example of
the detection result and the classifier output score map of two LAMs
are shown in Fig. 7. The red circle is the ground truth. The red cross is
the detection result. The green cross and stars represent the initial
position and positions to extract negative transfer learning data.
The results show that the generic LAM fails because of the appear-
ance of a large eye shadow. By updating the model with examples
from a small neighborhood, our transfer learning can improve the
classification result and more importantly, results in a score map
with fewer high scores (fewer bright pixels), which indicates the im-
proved detection reliability. In our experiment, we randomly select
an initial position which is up to 0:15d (d is the interocular distance)
from the ground truth. The average detection error over 935 testing
images is 0:0919d for the generic LAM and 0:0834d for the transfer
learning LAM. Although the improvement may appear to be small,
it is significant (t ¼ 4:48; p < 0:05 in t-test). Here, no comparison is
performed between our one-landmark detection result and the
state-of-the-art face alignment algorithm (e.g., Belhumeur et al.,
2011), since Belhumeur et al. (2011) detects 35 landmarks jointly
with the help of a global face shape model.
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5. Conclusions

This work identified a new problem of transfer learning, where
only one-class data is available. This problem is not uncommon in
real-world applications, but has not been studied before. We intro-
duced a new regression-based one-class transfer learning algo-
rithm to address this problem. In this algorithm, we introduced a
new feature selection framework for selecting the transferable fea-
tures that are not only discriminative between the negative and po-
sitive data, but also excellent in predicting the positive data
distribution from the negative data. We applied our algorithm to
facial expression recognition and facial landmark detection. Com-
pared to the generic model without transfer learning, our algo-
rithm with the transferable features can improve both
applications with only a few negative examples. This is the first at-
tempt to address such a one-class transfer learning problem. Our
framework is general and applicable to a wide range of learning
problems where only one-class target data is available. The main
assumption of our algorithm is that multiple sources are required,
each consisting of a pair of positive and negative distributions.
Some applications, like object recognition in Yao and Doretto
(2010), aims at solving a one-to-many classification problem,
where multiple sources may share the same large background.
Our algorithm cannot be applied to such a setting. Another limita-
tion is that our algorithm is only applicable to classifiers that are
directly derived from data distribution, such as the specific Ada-
boost classifier described in Section 3.1. Further research is re-
quired in order to generalize it to other classifiers such as SVM
and kNN.
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